SECTION 1

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is(are) chosen;
Partial Marks $\quad:+3$ If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If unanswered;
Negative Marks : -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks.
Q. 1 The reaction sequence(s) that would lead to o-xylene as the major product is(are)
(A)

1. $\mathrm{NaNO}_{2} / \mathrm{HCl}$

2. $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{KOH}$ heat
(B)

3. $\mathrm{Zn}-\mathrm{Hg}, \mathrm{HCl}$
(D)

4. $\mathrm{O}_{3}, \mathrm{Zn} / \mathrm{H}_{2} \mathrm{O}$
5. $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{KOH}$, heat
Q. 2 Correct option(s) for the following sequence of reactions is(are)

(A) $\mathbf{Q}=\mathrm{KNO}_{2}, \mathbf{W}=\mathrm{LiAlH}_{4}$
(B) $\mathbf{R}=$ benzenamine, $\mathbf{V}=\mathrm{KCN}$
(C) $\mathbf{Q}=\mathrm{AgNO}_{2}, \mathbf{R}=$ phenylmethanamine
(D) $\mathbf{W}=\mathrm{LiAlH}_{4}, \mathbf{V}=\mathrm{AgCN}$
Q. 3 For the following reaction
$2 \mathbf{X}+\mathbf{Y} \xrightarrow{k} \mathbf{P}$
the rate of reaction is $\frac{d^{[\mathbf{P}]}}{d t}=k[\mathbf{X}]$. Two moles of \mathbf{X} are mixed with one mole of \mathbf{Y} to make 1.0 L of solution. At $50 \mathrm{~s}, 0.5$ mole of \mathbf{Y} is left in the reaction mixture. The correct statement(s) about the reaction is(are)
(Use: $\ln 2=0.693$)
(A) The rate constant, k, of the reaction is $13.86 \times 10^{-4} \mathrm{~s}^{-1}$.
(B) Half-life of \mathbf{X} is 50 s .
(C) At $50 \mathrm{~s},-\frac{d[\mathbf{X}]}{d t}=13.86 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.
(D) At $100 \mathrm{~s},-\frac{d[\mathbf{Y}]}{d t}=3.46 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.
Q. 4 Some standard electrode potentials at 298 K are given below:

$$
\begin{array}{ll}
\mathrm{Pb}^{2+} / \mathrm{Pb} & -0.13 \mathrm{~V} \\
\mathrm{Ni}^{2+} / \mathrm{Ni} & -0.24 \mathrm{~V} \\
\mathrm{Cd}^{2+} / \mathrm{Cd} & -0.40 \mathrm{~V} \\
\mathrm{Fe}^{2+} / \mathrm{Fe} & -0.44 \mathrm{~V}
\end{array}
$$

To a solution containing 0.001 M of \mathbf{X}^{2+} and 0.1 M of \mathbf{Y}^{2+}, the metal rods \mathbf{X} and \mathbf{Y} are inserted (at 298 K) and connected by a conducting wire. This resulted in dissolution of \mathbf{X}. The correct combination(s) of \mathbf{X} and \mathbf{Y}, respectively, is(are)
(Given: Gas constant, $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$,
Faraday constant, $\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}$)
(A) Cd and Ni
(B) Cd and Fe
(C) Ni and Pb
(D) Ni and Fe
Q. 5 The pair(s) of complexes wherein both exhibit tetrahedral geometry is(are)
(Note: py = pyridine
Given: Atomic numbers of $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$ and Cu are 26, 27, 28 and 29 , respectively)
(A) $\left[\mathrm{FeCl}_{4}\right]^{-}$and $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
(B) $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$and $\left[\mathrm{CoCl}_{4}\right]^{2-}$
(C) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(D) $\left[\mathrm{Cu}(\mathrm{py})_{4}\right]^{+}$and $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$
Q. 6 The correct statement(s) related to oxoacids of phosphorous is(are)
(A) Upon heating, $\mathrm{H}_{3} \mathrm{PO}_{3}$ undergoes disproportionation reaction to produce $\mathrm{H}_{3} \mathrm{PO}_{4}$ and PH_{3}.
(B) While $\mathrm{H}_{3} \mathrm{PO}_{3}$ can act as reducing agent, $\mathrm{H}_{3} \mathrm{PO}_{4}$ cannot.
(C) $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a monobasic acid.
(D) The H atom of $\mathrm{P}-\mathrm{H}$ bond in $\mathrm{H}_{3} \mathrm{PO}_{3}$ is not ionizable in water.

SECTION 2

- This section contains THREE (03) question stems.
- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+2$ If ONLY the correct numerical value is entered at the designated place; Zero Marks : 0 In all other cases.

Question Stem for Question Nos. 7 and 8

Question Stem

At 298 K , the limiting molar conductivity of a weak monobasic acid is $4 \times 10^{2} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. At 298 K , for an aqueous solution of the acid the degree of dissociation is $\boldsymbol{\alpha}$ and the molar conductivity is $\mathbf{y} \times 10^{2} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. At 298 K , upon 20 times dilution with water, the molar conductivity of the solution becomes $3 \mathbf{y} \times 10^{2} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Q. 7 The value of α is \qquad .
Q. 8 The value of \mathbf{y} is \qquad .

Question Stem for Question Nos. 9 and 10

Question Stem

Reaction of $\mathbf{x} \mathrm{g}$ of Sn with HCl quantitatively produced a salt. Entire amount of the salt reacted with \mathbf{y} g of nitrobenzene in the presence of required amount of HCl to produce 1.29 g of an organic salt (quantitatively).
(Use Molar masses (in $\mathrm{g} \mathrm{mol}^{-1}$) of $\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$ and Sn as $1,12,14,16,35$ and 119, respectively).
Q. 9 The value of \mathbf{x} is \qquad .
Q. 10 The value of \mathbf{y} is \qquad .

Question Stem for Question Nos. 11 and 12

Question Stem

A sample (5.6 g) containing iron is completely dissolved in cold dilute HCl to prepare a 250 mL of solution. Titration of 25.0 mL of this solution requires 12.5 mL of $0.03 \mathrm{M} \mathrm{KMnO}_{4}$ solution to reach the end point. Number of moles of Fe^{2+} present in 250 mL solution is $\mathbf{x} \times 10^{-2}$ (consider complete dissolution of FeCl_{2}). The amount of iron present in the sample is $\mathbf{y} \%$ by weight.
(Assume: KMnO_{4} reacts only with Fe^{2+} in the solution Use: Molar mass of iron as $56 \mathrm{~g} \mathrm{~mol}^{-1}$)
Q. 11 The value of \mathbf{x} is \qquad .
Q. 12 The value of \mathbf{y} is \qquad .

SECTION 3

- This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $:+3$ If ONLY the correct option is chosen; Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks : - 1 In all other cases.

Paragraph

The amount of energy required to break a bond is same as the amount of energy released when the same bond is formed. In gaseous state, the energy required for homolytic cleavage of a bond is called Bond Dissociation Energy (BDE) or Bond Strength. BDE is affected by s-character of the bond and the stability of the radicals formed. Shorter bonds are typically stronger bonds. BDEs for some bonds are given below:

Q. 13 Correct match of the $\mathbf{C}-\mathbf{H}$ bonds (shown in bold) in Column \mathbf{J} with their BDE in Column \mathbf{K} is

Column \mathbf{J} Molecule	Column K BDE $\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$
(P) $\mathbf{H}-\mathbf{C H}\left(\mathrm{CH}_{3}\right)_{2}$	(i) 132
(Q) H-CH2Ph	(ii) 110
(R) $\mathbf{H}-\mathbf{C H}=\mathrm{CH}_{2}$	(iii) 95
(S) H-C $\equiv \mathrm{CH}$	(iv) 88

(A) P - iii, Q - iv, R - ii, S - i
(B) P - i, Q - ii, R - iii, S - iv
(C) P - iii, Q - ii, $\mathrm{R}-\mathrm{i}, \mathrm{S}$ - iv
(D) P - ii, $\mathrm{Q}-\mathrm{i}, \mathrm{R}-\mathrm{iv}, \mathrm{S}-\mathrm{iii}$
Q. 14 For the following reaction

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\text { light }} \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

the correct statement is
(A) Initiation step is exothermic with $\Delta \mathrm{H}^{\mathrm{o}}=-58 \mathrm{kcal} \mathrm{mol}^{-1}$.
(B) Propagation step involving CH_{3} formation is exothermic with $\Delta \mathrm{H}^{\mathrm{o}}=-2 \mathrm{kcal} \mathrm{mol}^{-1}$.
(C) Propagation step involving $\mathrm{CH}_{3} \mathrm{Cl}$ formation is endothermic with $\Delta \mathrm{H}^{\mathrm{o}}=+27 \mathrm{kcal} \mathrm{mol}^{-1}$.
(D) The reaction is exothermic with $\Delta \mathrm{H}^{\circ}=-25 \mathrm{kcal} \mathrm{mol}^{-1}$.

Paragraph

The reaction of $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ with freshly prepared FeSO_{4} solution produces a dark blue precipitate called Turnbull's blue. Reaction of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ with the FeSO_{4} solution in complete absence of air produces a white precipitate \mathbf{X}, which turns blue in air. Mixing the FeSO_{4} solution with NaNO_{3}, followed by a slow addition of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ through the side of the test tube produces a brown ring.
Q. 15 Precipitate \mathbf{X} is
(A) $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$
(B) $\mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(C) $\mathrm{K}_{2} \mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(D) $\mathrm{KFe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
Q. 16 Among the following, the brown ring is due to the formation of
(A) $\left[\mathrm{Fe}(\mathrm{NO})_{2}\left(\mathrm{SO}_{4}\right)_{2}\right]^{2-}$
(B) $\left[\mathrm{Fe}(\mathrm{NO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{3+}$
(C) $\left[\mathrm{Fe}(\mathrm{NO})_{4}\left(\mathrm{SO}_{4}\right)_{2}\right]$
(D) $\left[\mathrm{Fe}(\mathrm{NO})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$

SECTION 4

- This section contains THREE (03) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;
Zero Marks : 0 In all other cases.
Q. 17 One mole of an ideal gas at 900 K , undergoes two reversible processes, \mathbf{I} followed by II, as shown below. If the work done by the gas in the two processes are same, the value of $\ln \frac{V_{3}}{V_{2}}$ is \ldots.

(U : internal energy, S : entropy, p : pressure, V : volume, R : gas constant)
(Given: molar heat capacity at constant volume, $C_{V, m}$ of the gas is $\frac{5}{2} R$)
Q. 18 Consider a helium (He) atom that absorbs a photon of wavelength 330 nm . The change in the velocity (in $\mathrm{cm} \mathrm{s}^{-1}$) of He atom after the photon absorption is \qquad .
(Assume: Momentum is conserved when photon is absorbed.
Use: Planck constant $=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}$, Avogadro number $=6 \times 10^{23} \mathrm{~mol}^{-1}$, Molar mass of $\mathrm{He}=4 \mathrm{~g} \mathrm{~mol}^{-1}$)
Q. 19 Ozonolysis of ClO_{2} produces an oxide of chlorine. The average oxidation state of chlorine in this oxide is \qquad .

END OF THE QUESTION PAPER

