SECTION 1

- This section contains **SIX (06)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

```
: +4 If only (all) the correct option(s) is(are) chosen;
   Full Marks
   Partial Marks :+3 If all the four options are correct but ONLY three options are chosen;
   Partial Marks :+2 If three or more options are correct but ONLY two options are chosen, both of
                           which are correct;
   Partial Marks :+1 If two or more options are correct but ONLY one option is chosen and it is a
                           correct option;
   Zero Marks
                    : 0 If unanswered;
   Negative Marks : -2 In all other cases.
   For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct
•
   answers, then
   choosing ONLY (A), (B) and (D) will get +4 marks;
    choosing ONLY (A) and (B) will get +2 marks;
    choosing ONLY (A) and (D) will get +2marks;
    choosing ONLY (B) and (D) will get +2 marks;
    choosing ONLY (A) will get +1 mark;
    choosing ONLY (B) will get +1 mark;
   choosing ONLY (D) will get +1 mark;
    choosing no option(s) (i.e. the question is unanswered) will get 0 marks and
    choosing any other option(s) will get -2 marks.
```

Q.1 The reaction sequence(s) that would lead to *o*-xylene as the major product is(are)

collegedunia

Q.2 Correct option(s) for the following sequence of reactions is(are)

(C) $\mathbf{Q} = \text{AgNO}_2$, $\mathbf{R} = \text{phenylmethanamine}$ (D) $\mathbf{W} = \text{LiAlH}_4$, $\mathbf{V} = \text{AgCN}$

Q.3 For the following reaction $2\mathbf{X} + \mathbf{Y} \xrightarrow{k} \mathbf{P}$ the rate of reaction is $\frac{d[\mathbf{P}]}{dt} = k[\mathbf{X}]$. Two moles of **X** are mixed with one mole of **Y** to make 1.0 L of solution. At 50 s, 0.5 mole of **Y** is left in the reaction mixture. The correct statement(s) about the reaction is(are)

(Use: $\ln 2 = 0.693$)

(A) The rate constant, *k*, of the reaction is 13.86×10^{-4} s⁻¹.

(B) Half-life of **X** is 50 s.

(C) At 50 s,
$$-\frac{d[\mathbf{X}]}{dt} = 13.86 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ s}^{-1}.$$

(D) At 100 s, $-\frac{d[\mathbf{Y}]}{dt} = 3.46 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ s}^{-1}.$

Pb ²⁺ /Pb	-0.13 V
Ni ²⁺ /Ni	-0.24 V
Cd^{2+}/Cd	-0.40 V
Fe ²⁺ /Fe	-0.44 V

To a solution containing 0.001 M of X^{2+} and 0.1 M of Y^{2+} , the metal rods X and Y are inserted (at 298 K) and connected by a conducting wire. This resulted in dissolution of X. The correct combination(s) of X and Y, respectively, is(are)

(Given: Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$, Faraday constant, $F = 96500 \text{ C mol}^{-1}$)

(A) Cd and Ni

(B) Cd and Fe

(C) Ni and Pb

- (D) Ni and Fe
- Q.5 The pair(s) of complexes wherein both exhibit tetrahedral geometry is(are)

(Note: py = pyridine Given: Atomic numbers of Fe, Co, Ni and Cu are 26, 27, 28 and 29, respectively)

(A) $[FeCl_4]^-$ and $[Fe(CO)_4]^{2-}$ (B) $[Co(CO)_4]^-$ and $[CoCl_4]^{2-}$ (C) $[Ni(CO)_4]$ and $[Ni(CN)_4]^{2-}$ (D) $[Cu(py)_4]^+$ and $[Cu(CN)_4]^{3-}$

Q.6 The correct statement(s) related to oxoacids of phosphorous is(are)

- (A) Upon heating, H₃PO₃ undergoes disproportionation reaction to produce H₃PO₄ and PH₃.
- (B) While H_3PO_3 can act as reducing agent, H_3PO_4 cannot.
- (C) H_3PO_3 is a monobasic acid.
- (D) The H atom of P–H bond in H_3PO_3 is not ionizable in water.

SECTION 2

- This section contains **THREE (03)** question stems.
- There are **TWO (02)** questions corresponding to each question stem.
- The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

```
Full Marks: +2If ONLY the correct numerical value is entered at the designated place;Zero Marks: 0In all other cases.
```

Question Stem for Question Nos. 7 and 8

Question Stem

At 298 K, the limiting molar conductivity of a weak monobasic acid is 4×10^2 S cm² mol⁻¹. At 298 K, for an aqueous solution of the acid the degree of dissociation is $\boldsymbol{\alpha}$ and the molar conductivity is $\mathbf{y} \times 10^2$ S cm² mol⁻¹. At 298 K, upon 20 times dilution with water, the molar conductivity of the solution becomes $3\mathbf{y} \times 10^2$ S cm² mol⁻¹.

- Q.7 The value of $\boldsymbol{\alpha}$ is ____.
- Q.8 The value of **y** is____.

Question Stem for Question Nos. 9 and 10

Question Stem

Reaction of \mathbf{x} g of Sn with HCl quantitatively produced a salt. Entire amount of the salt reacted with \mathbf{y} g of nitrobenzene in the presence of required amount of HCl to produce 1.29 g of an organic salt (quantitatively).

(Use Molar masses (in g mol⁻¹) of H, C, N, O, Cl and Sn as 1, 12, 14, 16, 35 and 119, respectively).

Q.10 The value of \mathbf{y} is _____.

Question Stem for Question Nos. 11 and 12

Question Stem

A sample (5.6 g) containing iron is completely dissolved in cold dilute HCl to prepare a 250 mL of solution. Titration of 25.0 mL of this solution requires 12.5 mL of 0.03 M KMnO₄ solution to reach the end point. Number of moles of Fe²⁺ present in 250 mL solution is $\mathbf{x} \times 10^{-2}$ (consider complete dissolution of FeCl₂). The amount of iron present in the sample is \mathbf{y} % by weight.

(Assume: KMnO₄ reacts only with Fe^{2+} in the solution Use: Molar mass of iron as 56 g mol⁻¹)

Q.11 The value of \mathbf{x} is ____.

Q.12 The value of \mathbf{y} is____.

Paragraph						
The amount of energy required to break a bond is same as the amount of energy released when the same bond is formed. In gaseous state, the energy required for <i>homolytic cleavage</i> of a bond is called Bond Dissociation Energy (BDE) or Bond Strength. BDE is affected by <i>s</i> -character of the bond and the stability of the radicals formed. Shorter bonds are typically stronger bonds. BDEs for some bonds are given below:						
H ₃ C–H(g)		H ₃ C [●] (g)	+	$H^{\bullet}(g) \Delta H^{\circ} = 105 \text{ kcal mol}^{-1}$		
CI- C I (g)	>	Cl [●] (g)	+	$Cl^{\bullet}(g) \Delta H^{\circ} = 58 \text{ kcal mol}^{-1}$		
H₃C-€I(g)	\rightarrow	H₃C [●] (g)	+	$Cl^{\bullet}(g) \Delta H^{\circ} = 85 \text{ kcal mol}^{-1}$		
H-Cl (g)	>	H●(g)	+	$Cl^{\bullet}(g) \Delta H^{\circ} = 103 \text{ kcal mol}^{-1}$		

Q.13 Correct match of the C–H bonds (shown in bold) in Column J with their BDE in Column K is

Column J	Column K
Molecule	BDE (kcal mol ⁻¹)
$(P) \mathbf{H}-\mathbf{C}H(CH_3)_2$	(i) 132
(\mathbf{Q}) H – C H ₂ Ph	(ii) 110
(R) H– CH=CH ₂	(iii) 95
(S) H–C ≡CH	(iv) 88

$$(A) P - iii, Q - iv, R - ii, S - i \\ (C) P - iii, Q - ii, R - i, S - iv \\ (D) P - ii, Q - i, R - iv, S - iii \\ (D) P - ii, Q - i, R - iv, S - iv \\ (D) P - ii, Q - i, R - iv, S - iv \\ (D) P - ii, Q - iv, S - iv \\ (D) P - iv, Q - iv, S - iv \\ (D) P - iv, Q - iv, S - iv \\ (D) P - iv, S - iv \\ (D) P - iv \\ (D)$$

Q.14 For the following reaction

 $\begin{array}{c} \text{light} \\ \text{CH}_4\left(g\right) \ + \ \text{CI}_2\left(g\right) \ \blacktriangleright \ \text{CH}_3\text{CI}\left(g\right) \ + \ \text{HCI}\left(g\right) \end{array}$

the correct statement is

- (A) Initiation step is exothermic with $\Delta H^{\circ} = -58 \text{ kcal mol}^{-1}$.
- (B) Propagation step involving $\mathbb{C}H_3$ formation is exothermic with $\Delta H^\circ = -2$ kcal mol⁻¹.
- (C) Propagation step involving CH₃Cl formation is endothermic with $\Delta H^{o} = +27 \text{ kcal mol}^{-1}$.
- (D) The reaction is exothermic with $\Delta H^{o} = -25 \text{ kcal mol}^{-1}$.

Paragraph

The reaction of $K_3[Fe(CN)_6]$ with freshly prepared FeSO₄ solution produces a dark blue precipitate called Turnbull's blue. Reaction of $K_4[Fe(CN)_6]$ with the FeSO₄ solution in complete absence of air produces a white precipitate **X**, which turns blue in air. Mixing the FeSO₄ solution with NaNO₃, followed by a slow addition of concentrated H₂SO₄ through the side of the test tube produces a brown ring.

Q.15 Precipitate X is

(A) $Fe_4[Fe(CN)_6]_3$	(B) $Fe[Fe(CN)_6]$
(C) K ₂ Fe[Fe(CN) ₆]	(D) KFe[Fe(CN) ₆]

Q.16 Among the following, the brown ring is due to the formation of

(A) $[Fe(NO)_2(SO_4)_2]^{2-}$	(B) $[Fe(NO)_2(H_2O)_4]^{3+}$
(C) [Fe(NO) ₄ (SO ₄) ₂]	(D) $[Fe(NO)(H_2O)_5]^{2+}$

SECTION 4

- This section contains **THREE (03)** questions.
- The answer to each question is a **NON-NEGATIVE INTEGER.**
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:
 - *Full Marks* : +4 If ONLY the correct integer is entered;
 - Zero Marks : 0 In all other cases.

Q.17 One mole of an ideal gas at 900 K, undergoes two reversible processes, I followed by II, as shown below. If the work done by the gas in the two processes are same, the value of $\ln \frac{V_3}{V_2}$ is__.

(*U*: internal energy, *S*: entropy, *p*: pressure, *V*: volume, *R*: gas constant)

(Given: molar heat capacity at constant volume, $C_{V,m}$ of the gas is $\frac{5}{2}R$)

Q.18 Consider a helium (He) atom that absorbs a photon of wavelength 330 nm. The change in the velocity (in cm s⁻¹) of He atom after the photon absorption is____.

(Assume: Momentum is conserved when photon is absorbed. Use: Planck constant = 6.6×10^{-34} J s, Avogadro number = 6×10^{23} mol⁻¹, Molar mass of He = 4 g mol⁻¹)

Q.19 Ozonolysis of ClO₂ produces an oxide of chlorine. The average oxidation state of chlorine in this oxide is____.

END OF THE QUESTION PAPER