SECTION 1

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ If only (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If unanswered;
Negative Marks : -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing $\operatorname{ONLY}(A)$, (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks.

Q. 1 Let

$$
\begin{gathered}
S_{1}=\{(i, j, k): i, j, k \in\{1,2, \ldots, 10\}\}, \\
S_{2}=\{(i, j): 1 \leq i<j+2 \leq 10, i, j \in\{1,2, \ldots, 10\}\}, \\
S_{3}=\{(i, j, k, l): 1 \leq i<j<k<l, i, j, k, l \in\{1,2, \ldots, 10\}\}
\end{gathered}
$$

and

$$
S_{4}=\{(i, j, k, l): i, j, k \text { and } l \text { are distinct elements in }\{1,2, \ldots, 10\}\} .
$$

If the total number of elements in the set S_{r} is $n_{r}, r=1,2,3,4$, then which of the following statements is (are) TRUE ?
(A) $n_{1}=1000$
(B) $n_{2}=44$
(C) $n_{3}=220$
(D) $\frac{n 4}{12}=420$
Q. 2 Consider a triangle $P Q R$ having sides of lengths p, q and r opposite to the angles P, Q and R, respectively. Then which of the following statements is (are) TRUE ?
(A) $\cos P \geq 1-\frac{p^{2}}{2 q r}$
(B) $\cos R \geq\left(\frac{q-r}{p+q}\right) \cos P+\left(\frac{p-r}{p+q}\right) \cos Q$
(C) $\frac{q+r}{p}<2 \frac{\sqrt{ } \sin Q \sin R}{\sin P}$
(D) If $p<q$ and $p<r$, then $\cos Q>^{p} \underset{r}{\text { and }} \cos R>^{p} \bar{q}$
Q. 3 Let $f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ be a continuous function such that

$$
f(0)=1 \text { and } \int_{0}^{3} f(t) d t=0
$$

Then which of the following statements is (are) TRUE ?
(A) The equation $f(x)-3 \cos 3 x=0$ has at least one solution in $\left(0_{3}{ }^{\pi}\right)$
(B) The equation $f(x)-3 \sin 3 x=-\frac{6}{\pi}$ has at least one solution in $\left(0, \frac{\pi}{3}\right)$
(C) $\lim _{x \rightarrow 0} \frac{x \int_{0}^{x} f(t) d t}{1-e^{x^{2}}}=-1$
(D) $\lim _{x \rightarrow 0} \frac{\sin x \int_{0}^{x} f(t) d t}{x^{2}}=-1$
Q. $4 \quad$ For any real numbers α and β, let $y_{\alpha, \beta}(x), x \in \mathbb{R}$, be the solution of the differential equation

$$
\frac{d y}{d x}+\alpha y=x e^{\beta x}, y(1)=1
$$

Let $S=\left\{y_{\alpha, \beta}(x): \alpha, \beta \in \mathbb{R}\right\}$. Then which of the following functions belong(s) to the set S ?
(A) $f(x)=\frac{x^{2}}{2} e^{-x}+\left(e-{ }^{1}\right)_{2} e^{-x}$
(B) $f(x)=-\frac{x^{2}}{2} e^{-x}+\left(e+{ }^{1}\right)_{2} e^{-x}$
(C) $f(x)=\frac{e^{x}}{2}\left(x-{ }^{1} \frac{1}{2}+\left(e-{ }^{e}\right)_{4}^{2} e^{-x}\right.$
(D) $f(x)=\frac{e^{x}}{2}\left(\frac{1}{2}-x\right)+\left(e+{ }^{e}\right)_{4}^{2} e^{-x}$
 $\vec{O} \vec{M}=1(\vec{O} \vec{O} B-\lambda \vec{O} \vec{A})$ for some $\lambda>0$. If $\mid \vec{O} \vec{B} \times \vec{O} \vec{O} C+{ }^{9}$, then which of the
following statements is (are) TRUE ?
(A) Projection of $\overrightarrow{O \rightarrow} \mathrm{C}$ on $\overrightarrow{O^{\rightarrow \rightarrow \rightarrow}} A_{2}^{\vec{~}}$ is ${ }^{3}$
(B) Area of the triangle $O A B$ is ${ }_{2}^{9}$
(C) Area of the triangle $A B C$ is $\begin{array}{r}9 \\ 2\end{array}$
(D) The acute angle between the diagonals of the parallelogram with adjacent sides $\vec{O} \vec{\longrightarrow} A$ and $\overrightarrow{O_{3}} \vec{\longrightarrow} C^{\rightarrow}$ is
Q. 6 Let E denote the parabola $y^{2}=8 x$. Let $P=(-2,4)$, and let Q and Q^{\prime} be two distinct points on E such that the lines $P Q$ and $P Q^{\prime}$ are tangents to E. Let F be the focus of E. Then which of the following statements is (are) TRUE ?
(A) The triangle $P F Q$ is a right-angled triangle
(B) The triangle $Q P Q^{\prime}$ is a right-angled triangle
(C) The distance between P and F is $5 \sqrt{2}$
(D) F lies on the line joining Q and Q^{\prime}

SECTION 2

- This section contains THREE (03) question stems.
- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +2 If ONLY the correct numerical value is entered at the designated place; Zero Marks : 0 In all other cases.

Question Stem for Question Nos. 7 and 8

Question Stem

Consider the region $R=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x \geq 0\right.$ and $\left.y^{2} \leq 4-x\right\}$. Let \mathscr{F} be the family of all circles that are contained in R and have centers on the x-axis. Let C be the circle that has largest radius among the circles in \mathscr{F}. Let (α, β) be a point where the circle C meets the curve $y^{2}=4-x$.
Q. 7 The radius of the circle C is \qquad .
Q. 8 The value of α is \qquad .

Question Stem for Question Nos. 9 and 10

Question Stem

Let $f_{1}:(0, \infty) \rightarrow \mathbb{R}$ and $f_{2}:(0, \infty) \rightarrow \mathbb{R}$ be defined by
$x 21$

$$
f_{1}(x)=\int \prod(t-j)^{j} d t, \quad x>0
$$

$$
0 j=1
$$

and

$$
f_{2}(x)=98(x-1)^{50}-600(x-1)^{49}+2450, \quad x>0,
$$

where, for any positive integer n and real numbers $a_{1}, a_{2}, \ldots, a_{n}, \prod_{i=1}^{n} a_{i}$ denotes the product of $a_{1}, a_{2}, \ldots, a_{n}$. Let \boldsymbol{m}_{i} and n_{i}, respectively, denote the number of points of local minima and the number of points of local maxima of function $f_{i}, i=1,2$, in the interval $(0, \infty)$.
Q. 9 The value of $2 m_{1}+3 n_{1}+m_{1} n_{1}$ is \qquad .
Q. 10 The value of $6 m_{2}+4 n_{2}+8 m_{2} n_{2}$ is \qquad .

Question Stem for Question Nos. 11 and 12

Question Stem

Let $g_{i}:\left[\underset{8}{\pi}, \frac{3 \pi}{8}\right] \rightarrow \mathbb{R}, i=1,2$, and $f:\left[\frac{\pi}{\frac{2 \pi}{8}} \frac{3 \pi}{8}\right] \rightarrow \mathbb{R}$ be functions such that

$$
g_{1}(x)=1, g_{2}(x)=|4 x-\pi| \text { and } f(x)=\sin ^{2} x \text {, for all } x \in\left[\frac{\pi}{8} \frac{3 \pi}{8}\right.
$$

Define

$$
S_{i}=\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} f(x) \cdot g_{i}(x) d x, \quad i=1,2
$$

Q. 11 The value of $\frac{1651}{\pi}$ is \qquad .
Q. 12 The value of $\frac{48 S 2}{\pi^{2}}$ is \qquad .

SECTION 3

- This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen; Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks : -1 In all other cases.

Paragraph

Let

$$
M=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^{2}+y^{2} \leq r^{2}\right\}
$$

where $r>0$. Consider the geometric progression $a_{n}=\overline{2^{n-1}}, n=1,2,3, \ldots$. Let $S_{0}=0$ and, for $n \geq 1$, let S_{n} denote the sum of the first n terms of this progression. For $n \geq 1$, let C_{n} denote the circle with center ($S_{n-1}, 0$) and radius a_{n}, and D_{n} denote the circle with center $\left(S_{n-1}, S_{n-1}\right)$ and radius a_{n}.
Q. 13 Consider M with $r=\frac{\overline{10 \angle J}}{513}$. Let k be the number of all those circles C_{n} that are inside M. Let l be the maximum possible number of circles among these k circles such that no two circles intersect. Then
(A) $k+2 l=22$
(B) $2 k+l=26$
(C) $2 k+3 l=34$
(D) $3 k+2 l=40$
Q. 14 Consider M with $r=\overline{\overline{\langle\langle 19 \varphi-1\rangle v \angle}}$ The number of all those circles D that are inside M is
(A) 198
(B) 199
(C) 200
(D) 201

Paragraph

Let $\psi_{1}:[0, \infty) \rightarrow \mathbb{R}, \psi_{2}:[0, \infty) \rightarrow \mathbb{R}, f:[0, \infty) \rightarrow \mathbb{R}$ and $g:[0, \infty) \rightarrow \mathbb{R}$ be functions such that $f(0)=g(0)=0$,

$$
\begin{gathered}
\psi_{1}(x)=e^{-x}+x, \quad x \geq 0, \\
\psi_{2}(x)=x^{2}-2 x-2 e^{-x}+2, \quad x \geq 0, \\
f(x)=\int_{-x}^{x}\left(|t|-t^{2}\right) e^{-t^{2}} d t, \quad x>0
\end{gathered}
$$

and

$$
g(x)=\int_{0}^{x} \sqrt{t} t e^{-t} d t, \quad x>0
$$

Q. 15 Which of the following statements is TRUE ?
(A) $f(\sqrt{\ln 3})+g(\sqrt{\ln 3})=\frac{1}{3}$
(B) For every $x>1$, there exists an $\alpha \in(1, x)$ such that $\psi_{1}(x)=1+\alpha x$
(C) For every $x>0$, there exists a $\beta \in(0, x)$ such that $\psi_{2}(x)=2 x\left(\psi_{1}(\beta)-1\right)$
(D) f is an increasing function on the interval $\left[0, \frac{3}{2}\right]$
Q. 16 Which of the following statements is TRUE ?
(A) $\psi_{1}(x) \leq 1$, for all $x>0$
(B) $\psi_{2}(x) \leq 0$, for all $x>0$
(C) $f(x) \geq 1-e^{-x^{2}}-{ }^{2} x_{3}^{\overline{3}}+{ }^{2} x^{5}$, for all $x \in\left(0,{ }^{1}\right)^{-}$
(D) $g(x) \leq{ }_{3}^{z} x^{3}-{ }_{5}^{2-} x^{5}+{ }^{1} \bar{x}_{7}^{7}$, for all $x \in\left(0,{ }^{1}\right)_{2}^{-}$

SECTION 4

- This section contains THREE (03) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ If ONLY the correct integer is entered;
Zero Marks : 0 In all other cases.
Q. 17 A number is chosen at random from the set $\{1,2,3, \ldots, 2000\}$. Let p be the probability that the chosen number is a multiple of 3 or a multiple of 7 . Then the value of $500 p$ is \qquad .
 $M(P, Q)$ be the mid-point of the line segment joining P and Q, and $M\left(P, Q^{\prime}\right)$ be the
mid-point of the line segment joining P and Q^{\prime}. Then the maximum possible value of the distance between $M(P, Q)$ and $M\left(P, Q^{\prime}\right)$, as P, Q and Q^{\prime} vary on E, is \qquad .
Q. 19 For any real number x, let $[x]$ denote the largest integer less than or equal to x. If

$$
I=\int_{0}^{10}\left[\begin{array}{ll}
& \overline{10 x} \\
x+1
\end{array}\right] d x
$$

then the value of $9 I$ is

