

Booklet No.:

EC - 16

Electronics & Communication Engineering

Duration of Test: 2 Hours		Max. Marks: 120
	Hall Ticket No.	
Name of the Candidate :		
Date of Examination:	OMR A	nswer Sheet No. :
Signature of the Candidate		Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only.
- Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

EC-16-A

ELECTRONICS & COMMUNICATION ENGINEERING (EC)

- The sum of the eigen values of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{bmatrix}$ is equal to 1.
 - (A) 6
- (B) 8
- (D) 1
- If the rank of the matrix $A = \begin{bmatrix} \mu & -1 & 0 \\ 0 & 2 & -1 \\ -4 & 4 & 3 \end{bmatrix}$ is 2 then $\mu = \begin{bmatrix} \mu & -1 & 0 \\ 0 & 2 & -1 \\ 4 & 4 & 3 \end{bmatrix}$ 2.
 - (A) 1
- (B) 8
- (D) 2/5
- The function $f(x, y) = x^2 + y^2 + 6x + 12$ has minimum value at the point 3.
 - (A) (-3,0)
- (B) (3,0)
- (C) (0,1)
- 4. If $r = \frac{\partial^2 f}{\partial x^2}$, $s = \frac{\partial^2 f}{\partial x \partial y}$ and $t = \frac{\partial^2 f}{\partial y^2}$, then at the saddle point the function f(x, y) satisfy

(A) $rt - s^2 = 0$ (C) $rt - s^2 < 0$

- (B) $rt s^2 > 0$ (D) $st r^2 > 0$
- If f(z) is analytic within and on a closed curve C and a is any point within C then the 5. $f(z) = \frac{1}{k} \oint \frac{f(z)}{z - a} dz$, where k is equal to
- (A) $\frac{1}{\pi}$ (B) $\frac{1}{\sqrt{2\pi}}i$ (C) $\frac{1}{\sqrt{2\pi}}i$ (D) $2\pi i$
- A random variable X has probability density function $f(x) = kxe^{-\lambda x}, x \ge 0$ then k = 16.
 - (A) $\frac{1}{\lambda^2}$ (B) λ^2 (C) λ (D) $\frac{1}{\lambda}$

- If the coefficient of correlation is 0.98, then the variables are
 - (A) Negatively correlated
- Weak positively correlated (B)
- (C) Strong positively correlated
- Uncorrelated (D)
- The order of the differential equation $\left(\frac{dy}{dx}\right)^2 + 5y^{\frac{1}{3}} = x$ is 8.
 - (A) 1
- (B) 6
- (C) 2
- 1/3 (D)

Set - A

2

	$(A) x^2 y^6$	(B) $e^{1/x}$	(C)	$\frac{1}{x}$	(D)	X
10.	Which one of the formal (A) Picards Method (C) Milne Method	d	(B) (D)	Euler method		d
11.	The impulse responding output $y[n]$ if the integral $(A) (n-20)^2$	put is $x[n] = n^2$.				$(n-20)$. Determine the $2\delta[(n-20)^2]$
12.	The input output relation (A) linear and inverse (C) non-linear and	5 TO STATE OF THE	(B)	wen by $y[n] = 1$ linear and nor non-linear and	ı-inver	tible
13.		이 그들은 아이들이 아이들이 얼마가 되었다면 하나 이 사람들이 되었다. 그래 그래 그래 그래 되었다면 없다.	Service of the service of		The state of the s	eriod T are X_k . Find the $2X_k$ and time period is
	(A) $y(t) = 2x(5t)$ (C) $y(t) = x(10t)$		23	y(t) = 2x(t) $y(t) = 2x(2t)$		
14.	Choose the false state (A) $n\delta(n) = 0$ (C) $\delta(n) = \sum_{k=-\infty}^{n} \delta(n) = \sum_{k=-\infty}^{n} \delta$			$u(n) = \sum_{k=-1}^{n} n^2 \delta(n-2) =$		
15.	The signals $x_1(t)$ respectively. The Ny (A) $2\omega_1$ if $\omega_1 > \omega_2$	quist sampling rate	for the	7	$_{2}(t)$ w	$+\omega_1$) and $(-\omega_2, +\omega_2)$ will be
	(C) $2(\omega_1 + \omega_2)$		(D)	$\frac{\omega_1+\omega_2}{2}$		
16.	The response of an I (A) not periodic. (C) periodic havin	LTI discrete-time sy g a period 2N.	(B)	periodic havir	ig a pe	riod N.
17.	The step response of (A) $(n+1)u(n)$ (C) $(n-1)u(n)$	f an LTI system who	(B)	oulse response $nu(n)$ $n^2u(n)$	h(n) =	=u(n) is
18.	If the Fourier series (A) continuous-tin (C) continuous-tin	ne, periodic.	(B)	discrete-time,	period	lic.
Set -[<u>~</u>	1	3		r	EC

An integrating factor of $xy' + y = x^3y^6$

19.	855 5				69	S) coefficients of the e signal $(-1)^n x(n)$ in	73
	(A) X_k	(B)	X_{-k}	(C)	$X_{k+\frac{N}{2}}$	(D) $X_{k-\frac{N}{2}}$	
20.			the exponenti		2	Z	
	(A) a consta		•	100000000000000000000000000000000000000	a rectangular	r pulse	
	(C) an impu	ılse		(D)	a series of in	npulses	
21.	The frequency	y response	of a system wi	th $h(n)$	$\delta(n) = \delta(n) - \delta(n)$	(n-1) is given by	
	(A) $\delta(\omega)$ –		ž	(B)	$1-e^{j\omega}$		
	(C) $u(\omega)$ –	$u(\omega-1)$		(D)	$1 - e^{-j\omega}$		
22.	The ROC of a	a causal fin	ite-duration dis	screte-t	ime signal is		
						plane except $z = \infty$	
	(C) the entire		D, 694		a ring in the	Land to the second seco	
23.	Linear phase	eveteme ha	ve a constant				
4J.	(A) phase	systems na	ve a constant	(B)	group delay		
	(C) magnitu	ıde		(D)	phase and m	aonitude	
	(C) magnite	100		(1)	pridise and m	agmade	
24.	In an N-point					L, the value of N sho	uld be
	(A) $N \ge L$	(B)	N = 0	(C)	N < L	(D) $N = L^2$	
25.	The algorithm	n used to co	ompute any set	t of equ	ually spaced s	amples of Fourier tran	sform on
	the unit circle						
	(A) DFT alg			(B)	FFT algorith		
	(C) Goertze	el algorithm		(D)	Chirp transfo	orm algorithm	
26.	Total number	of complex	x multiplication	ns requ	ired in radix -	2 DIT-FFT algorithm	is
	(A) N log ₂	N		(B)	$\frac{N}{2} \log_2 N$		
	(C) $N \log_2 \frac{1}{2}$	<u>v</u>		(D)	$\frac{N}{2} \log_2 \frac{N}{2}$		
	2000 40 40000565	2			2 2		
27.	The steady-st finite in a	tate error o	f a feedback of	control	system with	an acceleration input	becomes
	(A) type 0 s	vstem		(B)	type I syster	n	
	(C) type 2 s			(D)	147		
	(3) VIII	J 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		(>	·)[)		
28.	Considering t	he root loc	us diagram for	a syste	em with $G(s)$	$= \frac{K(s+5)}{s(s+2)(s+4)(s^2+2s^2+2s^2+2s^2+2s^2+2s^2+2s^2+2s^2+$	$\frac{1}{2}$, the
	meeting point	t of the asvi	nptotes on the	real ax	is occurs at	3(3+2)(3+4)(3-+2)	5+2)
						(D) -0.75	
Set -	A			4			EC
L	<u>~~</u>						20

29.	If for a control sy steady state value (A) 3.6		out as		e(t) is giv (D) 2		then the
30.	The equation 2s' s-plane.	$^{4} + s^{3} + 3s^{2} + 5s$	+ 10 = 0	0 has	root	ts in the left	half of
	(A) one	(B) two	(C)	three	(D) f	our	
31.	Given a unity feed ratio of 0.5 is	lback control syste	em with ($G(s) = \frac{K}{s(s+1)}$	$\frac{1}{4}$, the val	ue of K for a	damping
	(A) 1	(B) 16	(C)	32	(D)	64	
32.	The input to a con-	troller is					
	(A) sensed signa	1	(B)	desired va	riable value	e	
	(C) error signal		(D)	servo-sign	ıal		
33.	If the Nyquist plot the $(-1, j0)$ point						encloses
	(A) zero	. In the $G(S)H(S)$		greater tha		stem is	
	(C) less than zero	Ď.	(D)	infinity	in zero		
	(0) 1000 111111 200	Ť.	(~)				
34.	The transfer functi	on of a phase-lead	controlle	r is given b	у		
	$(A) \frac{1+aTs}{1+Ts}, a >$	1, T > 0	(B)	$\frac{1+aTs}{1+Ts}$, a	< 1, T > 0)	
	$(C) \frac{1-a Ts}{1+Ts}, a > 1$	T > 0	(D)	$\frac{1-aTs}{1+Ts}$, $a < \frac{1}{1+Ts}$	< 1, T > 0		

35. A system with gain margin close to unity or a phase margin close to zero is

(A) highly stable

- (B) oscillatory
- (C) relatively stable
- (D) unstable

Peak overshoot of step-input response of an underdamped second-order system is 36. explicitly indicative of

(A) settling time

- (B) rise time
- (C) natural frequency
- (D) damping ratio

37. If the system matrix of a linear time invariant continuous system is given by $A = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix}$, its characteristic equation is given by

- (A) $s^2 + 5s + 3 = 0$ (C) $s^2 + 3s + 5 = 0$

- (B) $s^2 3s 5 = 0$ (D) $s^2 + 2s + 2 = 0$

Set - A

- 38. A phase lag-lead network shifts the phase of a control signal in order that the phase of the output
 - (A) lags at low frequencies and leads at high frequencies relative to input
 - leads at low frequencies and lags at high frequencies relative to input
 - (C) lags at all frequencies relative to input
 - leads at all frequencies relative to input (D)
- The Bode plot of the transfer function G(s) = s is 39.
 - (A) constant magnitude and constant phase shift angle
 - (B) -20 dB/decade and constant phase shift angle
 - (C) 20 dB/decade and phase shift of $\pi/2$
 - (D) zero magnitude and phase shift
- The state-variable description of a linear autonomous system is $\dot{\bar{X}} = A\bar{X}$, where X is a two-40. dimensional state vector and A is a matrix given by $A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$. The poles of the system are located at
 - (A) -2 and +2

(B) -2j and +2j (D) +2 and +2

(C) -2 and -2

- 41. 24 voice channels (4 KHz bandwidth) are sampled at 8 times the Nyquist rate and multiplexed. Each voice channel is delta modulated. 1 bit is added per frame for transmitting control information. What is the data rate of transmission?
 - (A) 1.600 Mbps

(B) 1.544 Mbps

(C) 2.048 Mbps

- (D) 1.536 Mbps
- 42. The characteristic of the channel resembles the filter shown in the figure 1. Find the time delay of the channel.

- (A) $\frac{1}{2\pi f} \tan^{-1} \left(\frac{f}{2\pi RC} \right)$
- (B) $2\pi f \tan^{-1} \left(\frac{f}{2\pi RC} \right)$
- (C) $\frac{1}{2\pi f} \tan^{-1}(2\pi fRC)$
- (D) $2\pi f \tan^{-1}(2\pi f RC)$
- Let X be a continuous random variable with uniform PDF defined by $f_x(x) = \frac{1}{2\pi}$, for 43. $0 < x < 2\pi$ and zero elsewhere. Find σ_x .
- (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{\sqrt{3}}$ (D) $\frac{\pi}{\sqrt{6}}$

Set - A

- 44. The stationary process has
 - (A) ensemble average equal to time average
 - (B) all the statistical properties dependent on time
 - (C) all the statistical properties independent of time
 - (D) zero mean and zero variance
- 45. In a modulator, it is found that the amplitude spectrum of the signal at the output of the modulator consists of a component f_c , the carrier frequency and one component each at $f_c + f_m$ and $f_c - f_m$ where f_m is the modulating signal frequency. The modulator used is
 - (A) SSB
- (B) PAM
- (C) PCM
- (D) AM
- A signal $X(t) = 4\cos 2\pi f_c t + 2\cos 4\pi f_c t + m(t)\cos 2\pi f_c t$ is applied to the system 46. shown in Figure 2. What will be Y(t)?

Figure 2

- (A) $4m(t) \cos 4\pi f_c t$
- (B) $4\cos 4\pi f_c t$

(C) 4 + m(t)

- (D) 4 m(t)
- 47. The power of an FM modulated signal with modulation index β and carrier c(t) = $A\cos 2\pi f_c t$ is
 - (A) $\frac{A^2}{2}$

(B) $\frac{A^2}{2} \left(1 + \frac{\beta^2}{2} \right)$

(C) $\frac{A^2}{2} \left(1 + \frac{\beta}{2} \right)$

- (D) $A^2 \left(1 + \frac{\beta^2}{2}\right)$
- If a Gaussian process X(t) is applied to the stable linear filter, then the random process 48. developed at the output of the filter will be
 - (A) Uniform

Exponential (B)

Gaussian

- (D) Rayleigh
- Binary data is transmitted using PSK signaling scheme with $S_1(t) = ACos\omega_c t$, 49. $S_2(t) = -ACos\omega_c t$, $0 \le t \le T_b$ where bit duration T_b is equal to 0.2 ns. The carrier frequency is $f_c = 5f_b$. The carrier amplitude at the receiver input is 1V and the power spectral density of the AWGN at the input is 10⁻¹¹ W/Hz. The probability of error for the optimum filter will be
 - (A) $\operatorname{erfc}(5.5)$
- (B) $0.5 \operatorname{erfc}(5)$ (C) $0.5 \operatorname{erfc}(\sqrt{5})$ (D) $\operatorname{erfc}(\sqrt{5.5})$

Set -

7

50.	Whic	ch of the follow:	ing is incorrect?					
	(A)	H(y/x) = H((x,y)-H(x)	(B)	I(x,y) = H(x,y)	(x) - H	(y/x)	
	(C)	H(x,y) = H(x,y)	(x/y) + H(y)	(D)	I(x,y) = H(y) – <i>H</i>	f(y/x)	
51.	The	SSB-SC is used	for the following	applicat	ion :			
	(A)	Radio Broadca			Point to poin	t comi	nunication	
	(C)	Telegraphy and	d Telephony	(D)	TV transmitt	er		
52.	Wha	t does a logic 1	Delta Modulation	ı (DM) b	it indicate?			
	(A)	The message s	ignal's amplitude	is decrea	asing.			
	(B)		•			ssage	signal's amplitude.	
	(C)		signal's amplitude				a a Na a a mana hista a da	
	(D)	The feedback	signal's amplitude	e is iess t	nan the messa;	ge sigi	nars amplitude.	
53.	The	asymptotic valu	e of $\frac{E_b}{N_0}$ required to	o achieve	e the data rate	equal	to the channel	
			hannel bandwidth					
	(A)	-1.6 dB	(B) -3 dB	(C)	0 dB	(D)	infinite	
54.	The	golden rule for a	encoding message	se with u	negual probab	ilities	ie to	
J71.	(A)	-	sage with high pro		,			
	(B)		ssages with equal					
	(C)	Encode a mess	sage with high pro	obability	by a shorter c	ode w	ord.	
	(D)	Encode a mess	sage by arbitrary o	choosing	variable lengt	h code	es.	
55.	The	output Signal to	Noise Ratio, (SA	$(R)_o$ of	matched filter	deper	ids only on	
	(A)	ratio of input r	noise to output no	ise.			(a -	
	(B)		noise to power sp		AND AND THE PROPERTY OF THE PROPERTY OF THE PARTY.		State	
	(C)		energy to power s	, ā		e nois	e at input.	
	(D)	correlation of	input signal to ou	tput sign	al.			
56.	In _		multiple acc	ess is ac	hieved by allo	ocating	g different time sle	ots for
		lifferent users.	(D) CDM	(0)	EDNAA	(D)	TOTAL	
	(A)	TDMA	(B) CDMA	(C)	FDMA	(D)	FGMA	
57.	Cellu	ılar CDMA syst	tem uses what mo	dulation	method?			
	(A)	GFSK	(B) ASK	(C)	QAM	(D)	BPSK	
50	The	anly and signal	wayafarm that no	odnose s	ara intar exemb	ol inte	orforance (ISI) is	
58.			waveform that pr (B) $\cos(2B_0t)$		- 12 C. 14 C.		스타이 이번 이번 시장에 있는데 보다는 그렇게 되어 되어 있다면 되었다.	
	()	(0-)	(-)(0-)	(-)	(0-)	\- /	(-0-)	
59.		length of anten						
		wavelength of		10	current distri			
**	(C)	angle of radiat	ion	(D)	area of cross-	-sectio	П	
Set -[A			8				EC

60.	For a	a broad side line	ear an	ray which of th	e follo	owing is not o	correct '	?	
	(A)	The maximun	ı radia	ation occurs pe	rpend	icular to the l	ine of th	he array at ϕ	$=90^{o}$.
	(B)	The progressi	ve pha	ase shift (α) be	etweer	elements is:	zero.	8 8	
	(C)	Width of prine	cipal l	obe is less than	that	of an end fire	array.		
	(D)	The maximun	n radia	ation occurs alo	ong th	e line of array	y at $\dot{\phi} =$	$= 0^{o}$.	
61.	The	phase velocity	of wa	ves propagating	g in a	hollow metal	waveg	uide is	
	(A)	greater than th	ne velo	ocity of light in	free s	space			
	(B)	less than the v	elocit	y of light in fre	ee spa	ce			
	(C) equal to the velocity of light in free space								
	(D) equal to the group velocity								
62.	If the	e diameter of a	1/26	linola antanna i	e incr	encod from 1	/100 to	2/50 then	ite
04.	(A)	bandwidth inc		. At	(B)	bandwidth c			its
	(C)	gain increases		3	(D)	gain decreas		.s	
	(C)	gam mercases	•11		(15)	gam decreas	503		
63.	The	directive gain c	annot	be stated as					
7.00.00.00.	(A)	-		ation intensity	in that	direction to	the aver	age radiated	power
	(B)	the function o						0	
	(C)			antenna when	direct	ive gain is m	aximun	n	
		independent of							
64.	An o	electromagnetic	wav	e has electric	field	component a	along Y	-direction ar	nd magnetic
	field	component alo	ng X-	direction. The	electr	omagnetic wa	ave is p	ropagating al	long
	(A)	Z-direction			(B)	X-direction			
	(C)	Y-direction			(D)	XY-direction	n		
Z=	Œ1	1	C	C		1	* 1	2.1	1.
65.		lower cut-off	_		ectang	gular wave	guide	with inside	dimensions
	8955	4.5 cm) operati			(C)	10 CII-	(D)	10 CII-	
	(A)	10 GHz	(B)	9 GHz	(C)	$\frac{10}{9}$ GHz	(D)	$\frac{-}{3}$ GHZ	
66	Duni	na niaht whiah	lover	does not exist)				
66.		ng night which D layer		F_1 layer		F ₂ layer	(D)	E layer	
	(A)	Diayer	(D)	1 layer	(C)	12 layer	(D)	Layer	
67.	The	dominant mode	of re	ctangular wave	eguide	is			
M.1.68		TE_{11}		TM_{11}	(C)	TE_{01}	(D)	TE_{10}	
			XX	2000 201 1 0	X = Z	30.5 T.M.	N		
68.	Vect	or potential is a	vecto	or					
	(A)	whose curl is	equal	to the magnetic	c flux	density			
	(B)	whose curl is	equal	to the electric	field in	ntensity			
	(C)	whose diverge	ence is	s equal to the e	lectric	potential			
	(D)	which is equa	l to th	e vector produ	ct E×F	H			
Set -	A				9				EC
per - [<i>[</i>]				7				EC

- 69. A uniform plane wave in air is incident normally on an infinitely thick slab. If the refractive index of the glass slab is 1.5, then the percentage of the incident power that is reflected from the air-glass interface is
 - (A) 0%
- (B) 4%
- (C) 20%
- (D) 10%
- 70. In an impedance Smith chart, a clockwise movement along a constant resistance circle gives rise to
 - (A) a decrease in the value of reactance
 - (B) an increase in the value of reactance
 - (C) no change in the reactance value
 - (D) no change in the impedance value
- 71. The value of " Z_{22} " for the circuit shown below:

(A) 4/9 Ohms

(B) 11/4 Ohms

(C) 4/11 Ohms

- (D) 9/4 Ohms
- 72. Two voltage sources, connected in parallel as shown in the below figure, must satisfy the conditions

- (A) $v_1 \neq v_2 \text{ but } r_1 = r_2$
- (B) $v_1=v_2$ and $r_1\neq r_2$

(C) $v_1=v_2$ and $r_1=r_2$

- (D) $r_1 \neq 0$ or $r_2 \neq 0$ if $v_1 \neq v_2$
- 73. A composite voltage $V = 10 \sin 100t + 10 \cos 100t$ is applied across a series combination of a capacitor of 1µf and resistance of 20 K Ω . The average power dissipation in the resistance is
 - (A) 5mW
- (B) 3.5mW
- (C) 2.5mW
- (D) 1.25mW
- 74. The driving point impedance function $Z(s) = \frac{s^2 + 2s + 2}{s^2 + s + 1}$ can be realized
 - (A) R-C Network

(B) R-L Network

(C) L-C Network

(D) R-L-C Network

Set - A

10

- 75. A 100Ω , 1W resistor and 800Ω , 2W resistor are connected in series. The maximum DC voltage that can be applied continuously to the series circuit without exceeding the power limit of any of the resistors is
 - (A) 90 V
- (B) 50 V
- (C) 45 V
- (D) 40 V
- The Thevenin's equivalent circuit to the left of AB in figure shown has R_{eq} is given by 76.

- 1/3 Ohms
- (B) 3/2 Ohms
- (C) 1 Ohms
- (D) 1/2 Ohms

- 77. Under steady state condition
 - (A) Inductor acts as short and Capacitor acts as open
 - (B) Inductor acts as open and Capacitor acts as open
 - (C) Inductor acts as open and Capacitor acts as short
 - (D) Inductor acts as short and Capacitor acts as short
- In the series RLC circuit, the power factor of the circuit at $f = f_L$ (Lower Frequency) and 78. $f = f_0$ (resonance frequency)
 - (A) 0.707(lag), unity
- (B) unity, 0
- (C) 0.707(lead), unity
- (D) 0, unity
- 79. Two coils are connected in series with inductance values of 16mH and 8mH. The value of mutual inductance is
 - (A) 12mH
- (B) 8mH
- (C) 2mH
- (D) 4mH
- In parallel RLC circuit, if L=8H and C=2F then the value of critical resistance is 80.
 - (A) 0.5 Ohms
- (B) 1 Ohm
- (C) 2 Ohms
- (D) 3 Ohms
- 81. The transient free condition in RL and RC circuits with AC excitation will not depend on
 - (A) Source frequency
 - (B) Initial phase of the excitation
 - Maximum values of the excitation(Voltage and Current)
 - (D) Circuit constants(R,L, C)
- 82. A Unit impulse voltage is applied to one port network, which has two linear components. If the current through the network is 0 for t<0 and decays exponentially for t>0 then the network consists of
 - Resistor and Inductor in series (A)
- Resistor and Inductor in parallel (B)
- Resistor and Capacitor in parallel (D)
- Resistor and Capacitor in series

Set - A EC 11

83.	-	aph of network en tree, would		nodes and 7 b	ranch	es. The number	of lir	iks(l), with respect to t	he
	(A)		(B)	3	(C)	4	(D)	5	
84.	P2 v pow (A)	tant ideal sourc	ces. Po second y R is	ower consumed	d by R live. If (B)	is P1 when on	ly the	(R) in series with to first source is active a ctive simultaneously, t	nd
85.		ose the logic ga	ite fan (B)	nily which is h MOS	aving (C)	minimum prop DTL	agatic (D)	on delay ECL	
86.		3085 microproc 00 H. The addre					AM v	vith a starting address	of
	(A)	OFFF H	(B)	1000 H	(C)	B9FF H	(D)	BA00 H	
87.		many memory	y IC's	of capacity 2	K × 4	are required to	cons	truct a memory capac	ity
	(A)	14	(B)	15	(C)	16	(D)	18	
88.	The		201017	(T-2) ((T-2))		774 00776	70%	If $k=1$ then Q_{n+1}	
	(A) (C)	cannot be detwill be logic		ed	(B) (D)	will be logic will be race a			
89.		2-bit (3-digit) Dependence of V_{out} for an					ull sca	ale output of 9.99 V. T	he
		4.11 V	22	6.95 V		7.38 V	(D)	7.88 V	
90.		starting address LXI SP, 00FF LXI H, 0701 MVI M, 20 H MVI A, 20 H SUB M content of accu	FH H I			n counter reach	es 010 (D)	OB H is FF H	
91.	A 1 (A) (C)	micro-second p A Mono-stabl A Bi-stable m	le mul	lti-vibrator		a 1 milli-secor An Astable m A JK flip-flop	ulti-v		
Set -	A	A COLOR OF THE CASE AN		over and the control of the control	12			E	С

92.	What is the maximum frequency with propagation delay from CLK to Q of e (A) 100 MHz (C) 10.4 MHz	which a 4-bit binary ripple counter can work, if ach flip-flop is 24 ns? (B) 96 MHz (D) 6.9 MHz	the
93.		(5,7,9,11,13,15) is independent of variables (C) y (D) z and x	
94.	The initial sequence of 4-bit Johnson of clock pulse	counter is 1110, what will be the sequence after the	hird
	(A) 1000 (B) 0001	(C) 1110 (D) 0011	
95.	The logic function (A+B)(A'+B') car two input	be implemented by giving the inputs A and B t	to a
	(A) NOR gate	(B) NAND gate	
	(C) EX-NOR gate	(D) EX-OR gate	
96.	The function $f(A,B,C,D) = \sum m(0,1,4,6)$ essential prime implicants are	5,7,8,10,14,15), the number of prime implicants	and
	(A) 6, 1 (B) 6, 2	(C) 7, 1 (D) 7, 2	
97.		nter type ADC and SAR type ADC then the dig	gital
	output produced respectively		
	(A) 0100, 0100	(B) 0101, 0101	
	(C) 0100, 0101	(D) 0101, 0100	
98.	The current gain of a BJT drops at hig.	n frequencies because of	
	(A) Junction capacitances	(B) Bypass capacitances	
	(C) Coupling capacitances	(D) Parasitic capacitances	
99.	Which of the following fabrication is required accuracy?	suitable for maintaining the PN junction area to	the
	(A) Grown junction type	(B) Alloying	
	(C) Diffusion	(D) Ion-implantation	
100.	Moore's law relates to		
	(A) Speed of operation of bipolar de	vices	
	(B) Speed of operation of MOS devi	ces	
	(C) Power rating of MOS devices		
	(D) Level of integration of MOS dev	ices	
101.	The value of transport factor in a BJT	s effected by	
	(A) Doping of emitter	(B) Width of collector	
	(C) Doping of base	(D) Life time of minority carriers	
Set -	A	13 F	EC

102.	acros	ss the diodes w	hen th	ey are conduct	ing is	ed back to back		maximum voltage	drop
103.	A Pl bias,	N junction exh	ibits a many	transition cap farads o	acitive f diffu	e effect of seve sion capacitant	eral _ ce in t	farads in rethe forward biased smilli, micro	
104.	prov respe		ive vo	oltage feedback			t. The	amplifier is modificed values of R_{if} and	
105.	powe	er gain is						l power of 200mW	The
	(A)	200	(B)	10	(C)	50	(D)	20	
106.		sistor has $h_{fe} = -50$		$ts h_{fc} = 50$	(C)	-51	(D)	51	
107.	A cascade amplifier has higher cut off frequency (A) Equal to that of single stage amplifier (B) Less than that of single stage amplifier (C) More than that of single stage amplifier (D) Becomes double								
108.	An i	deal current con	ntrolle	d voltage sour	ce has				
		R_i is infinity							
	(C)	R_i is zero, R_0 i	s zero		(D)	R_i is infinity,	R_0 is	zero	
109.				1977	- D		10.7	rrent is given by	
	(A)	$j_0 = \frac{ne^2\tau}{m}E$	(B)	$j_0 = \frac{ne\tau}{m}E$	(C)	$j_0 = \frac{ne^2\tau}{mE}$	(D)	$j_0 = \frac{n^2 e \tau}{m} E$	
110.		JT, Sensitivity ent gain) is	of β	(common emit	ter cu	rrent gain) wit	h resp	pect to α (common	base
	(A)	$\frac{1}{1+\beta}$	(B)	1 + β	(C)	$\frac{1}{1+\alpha}$	(D)	I	
111.			lifier l	nas a different	ial gai	in of 20000 ar	nd CN	MRR = 80dB. Cor	nmon
	mode (A)	e gain is 2	(B)	1	(C)	0.5	(D)	0	
Set -	A				14				EC

112.	Which of the following h-parameters rel	lations	s is incorrect?
	(A) $h_{ic} = h_{ie}$	(B)	$h_{rc} = 1 - h_{re}$
	(C) $h_{fc} = 1 + h_{fc}$		$h_{oc} = h_{oc}$
	() Je	Xittaiz	OC OC
113.	Which of the following is true for n type	e semi	conductor?
	(A) $n = N_d + p$		$N_d + n = p$
	(C) $n + p = N_d$		$N_a + n = p$
114.			ary of the transformer in a half wave rectifier
	with capacitive filter, peak inverse volta		
	(A) 20 V (B) 14.14 V	(C)	10 V (D)7.8 V
115.	The condition of sustained oscillation in	RIT	phase shift oscillator is given by
110.			
	(where $K = \frac{R_c}{R}$ and R_c is collect	tor res	sistance)
	(A) $h_{fe} > 23 + \frac{29}{\nu} + 4K$	(B)	$h_{fe} > 29 + \frac{23}{\kappa} + 4K$
	(R) R	(D)	Mile Zot K
	(C) b > 22 + 4 + 20V	(D)	$h_{fe} > 29 + \frac{4}{\kappa} + 23K$
	(C) $h_{fe} > 23 + \frac{4}{K} + 29K$	(D)	$n_{fe} > 29 + \frac{1}{K} + 25K$
11/	A CE amplified has B 1000 O and	D	100 O and L 00 L 1000 O the imme
110.	(77)		= 100 Ω and h_{fe} =99, h_{ie} =1000 Ω ; the input
	resistance R_i is given approximately by	7	
	(A) 100Ω (B) $10 K\Omega$	(C)	1000Ω (D) $11 \text{ K }\Omega$
117	Wilson our about an array of the court of a most		difference of 10 M the enemy econiced by it
117.	when an electron moves through a pote will be	entiai	difference of 10 V, the energy acquired by it
	(A) 10 joules	(B)	$16 \times 10^{-19} \text{eV}$
	(C) $1.6 \times 10^{-19} \text{ eV}$	107 300	
	(C) 1.0x 10 ev	(D)	10 eV
118.	Which of the following represents the C	ascad	e configuration?
	which of the following represents the C	useuu	e comiguitation.
	(A) $CE - CE$ (B) $CE - CB$	(C)	CC - CC (D) $CE - CC$
119.	Condition for the minimum conductivity	y for t	he semiconductor
	(A) $n = \eta_i \sqrt{\frac{\mu_n}{\mu_n}}$ (B) $n = \eta_i \sqrt{\frac{\mu_p}{\mu_n}}$	(C)	$p = n \cdot \mu_0$ (D) $p = n \cdot \mu_p$
	(A) $\Pi = \eta_i \sqrt{\mu_p}$ (B) $\Pi = \eta_i \sqrt{\mu_n}$	(C)	$\Pi = \eta_i \frac{\Pi}{\mu_p} \qquad (D) \Pi = \eta_i \frac{\Pi}{\mu_n}$
	14 on 12 on 65		78
120.	The scaling factor of an MOS device i	s α us	ing constant voltage scaling model, the gate
	area of the device will be scaled by		AND SELECTION OF THE PROPERTY
	(A) $1/\alpha$ (B) $1/\alpha^2$	(C)	$1/\alpha^3$ (D) $1/\alpha^4$
	\$ -131-131-131-		

15

Set - A

SPACE FOR ROUGH WORK

Electronics and Communication Engineering (EC) SET-A

Question No	Answer	Question No	Answer
1	Α	61	A
2	D	62	C
3	A	63	D
4	A	64	\mathbf{A}
5	D	65	D
6	В	66	A
7	C	67	D
8	Α	68	A
9	D	69	В
10	Α	70	В
11	C	71	C
12	D	72	D
13	A	73	В
14	C	74	A
15	C	75	C
16	В	76	D
17	A	77	A
18	В	78	C
19	D	79	C
20	C	80	В
21	D	81	C
22	A	82	A
23	В	83	C
24	A	84	C
25	A	85	D
26	В	86	C
27	C	87	C
28	D	88	В
29	D	89	В
30	В	90	C
31	В	91	A
32	C	92	C
33	C	93	C
34	A	94	D
35	C	95	В
36	D	96	D
37	A	97	D
38	A	98	Α
39	C	99	C
40	A	100	D

41	A	101	C
42	C	102	C
43	C	103	В
44	C	104	В
45	D	105	D
46	C	106	C
47	Α	107	В
48	C	108	C
49	C	109	Α
50	В	110	В
51	В	11 1	Α
52	D	112	C
53	A	113	Α
54	C	114	Α
55	C	115	Α
56	A	116	D
57	D	117	D
58	C	118	В
59	В	119	В
60	D	120	В

