Booklet No.: ## NT - 16 # Nano Technology | Duration of Test : 2 Hours | | Max. Marks: 120 | |----------------------------|-----------------|------------------------------| | | Hall Ticket No. | | | Name of the Candidate : | | | | Date of Examination: | OMR A | nswer Sheet No. : | | Signature of the Candidate | | Signature of the Invigilator | #### **INSTRUCTIONS** - 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes. - 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer. - 3. Each question carries **one** mark. There are no negative marks for wrong answers. - 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet. - 5. Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only. - Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully. - 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall. - 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall. - 9. No part of the Booklet should be detached under any circumstances. - 10. The seal of the Booklet should be opened only after signal/bell is given. NT-16-A ## NANO TECHNOLOGY (NT) | 1. | What | t is the microsti | ructur | e of pearlite? | | | | | | |-------|-------------------|--|---------|------------------|------------------|--------------------------------------|---------|-----------------|----| | | (A) | Single phase | | | (B) | Mixture of au | stenite | e and cementite | | | | (C) | Mixture of fer | rite ai | nd cementite | (D) | Mixture of au | stenit | e and ferrite | | | 2. | Dime | ensions of the c | onsta | nt in the Hall-F | etch e | equation is | | | | | | | MLT | (B) | | | ML ^{-0.5} T ⁻² | (D) | MLT -2 | | | - | ~ | | | 20 040 | | | | | | | 3. | 100 000 | tal structure of | | | (C) | DCT | (D) | UCD | | | | (A) | BCC | (B) | FCC | (C) | BCT | (D) | HCP | | | 4. | Tresc | ca Yield criterio | on is | | | | | | | | | (A) | $\sigma_y > (\sigma_1 - \sigma_3)/2$ | | | (B) | $\sigma_y > (\sigma_1 + \sigma_3)/2$ | 2 | | | | | (C) | $\sigma_y > \sigma_1$ | | | (D) | $\sigma_y > \sigma_3$ | | | | | 5. | Num | ber of slip syste | ems ir | FCC is | | | | | | | 2162 | (A) | ************************************** | (B) | 12 | (C) | 10 | (D) | 24 | | | | | | | | | | | | | | 6. | DE VOICE | rdination numb | | | .~. | _ | | | | | | (A) | 7 | (B) | 8 | (C) | 5 | (D) | 6 | | | 7. | Gern | nan silver conta | ins | | | | | | | | | (A) | 1% silver | (B) | 2% silver | (C) | 5% silver | (D) | no silver | | | 8. | Whic | ch order of forn | ation | is correct (wh | ich for | rme firet) ? | | | | | 0. | (A) | | | rain structure> | | | | | | | | (B) | LANGE AND AND AND ADDRESS OF THE ADD | | in structure>cr | | | | | | | | (C) | | | crostructure>cr | | | | | | | | (D) | Crystal structi | ıre>m | icrostructure> | grain s | structure | | | | | 9. | If x ⁴ | $= x^3 + 8$ then x | is equ | ial to | | | | | | | | (A) | 1 | (B) | 2 | (C) | 3 | (D) | 4 | | | 10 | NT | V. C. I. | | | | | | | | | 10. | Norn
(A) | nality of a solut
Moles/litre | 10n 1s | | (B) | Equivalents/li | fre | | | | | (C) | Moles × equiv | alents | S | (D) | $2 \times \text{molarity}$ | iic | | | | | _/ | | | 58 | \ - / | | | | | | 11. | In sto | eels, cyaniding | | | 200000 | 1.000.00000 | panan | 200 120 120 | | | ~ | (A) | Hardening | (B) | Toughening | (C) | Stiffening | (D) | Softening | | | Set - | A | | | | 2 | | | | NT | | 12 | 2. No | odular iron is pr | oduced | l by adding wh | iich ele | ment to cast ire | on? | | | |-------------------|--------------|---------------------|-----------|--|----------|---|---------|-------------------------------------|----| | | (A | () Cu | (B) | Ni | (C) | Cr | (D) | Mg | | | 13 | 3. If | P is number of p | hases, | C is number of | of comp | onents and F i | s the o | degrees of freedom th | en | | | (A |) P+F+C-2 = | 0 (B) | P+F-C-2=0 | (C) | P-F+C-2 = 0 | (D) | P-F-C+2 = 0 | | | 14 | 4. St | acking Fault is a | D. | | | | | | | | | (A |) Point Defect | | | (B) | Line Defect | | | | | | (C | | | | (D) | Volume Defe | ct | | | | | (0 | .) Surface Den | | | (15) | volume Dete | Ct | | | | 15 | 5. Bu | argers vector of | a dislo | cation in FCC | is | | | | | | | (A | .) [110] | (B) | [110]/2 | (C) | [111] | (D) | [111]/2 | | | | | | (· · · / | ************************************** | , -, | C8 808 C | . / | L | | | 16 | 6. W | hich of the follo | wing c | onstitutes a sl | ip syste | em in FCC ? | | | | | | (A | (111)[1-10) | (B) | (111)(110) | (C) | (1-11)[1-10] | (D) | (110)[111] | | | | | | | | | | | | | | 17 | 7. A1 | omic Packing F | actor c | f a simple cub | ic unit | cell is | | | | | | (A | .) 0.74 | (B) | 0.69 | (C) | 0.52 | (D) | 0.34 | | | | 88.60 | € 00007030 ¥0 | | | X 10.7 | | | | | | 18 | 8. Cl | narpy test measu | res wh | ich of the folk | owing | ? | | | | | | (A | Strength | (B) | Stiffness | (C) | Ductility | (D) | Toughness | | | | | | | | | | | | | | 19 | 9. Sc | oft direction for | magner | tization in iron | is | | | | | | | (A |) [100] | (B) | [110] | (C) | [111] | (D) | [123] | | | | | 2 | \ / | • | | | X / | 50000 100 1 | | | 20 | 0. In | a doped semico | nducto | or if n and p are | e numb | er of electrons | and h | oles and n _i the intrins | ic | | | | arge carrier con | | | | 01 01 010 011 0111/ | | | | | | | n = p | | | (C) | $n\mathbf{p} = n_i^2$ | (D) | $p = n_i$ | | | | | | () | 1 900 | V/ | 1 | , | • | | | 21 | 1. Ti | me for solidifica | ation o | f a casting of y | olume/ | V and surface | area A | A is proportional to | | | 10 7.0 | | .) V/A | | | | | (D) | | | | | () | () 1771 | (13) | (* // * / | (0) | (+7.2) | (D) | 1 4.8 | | | 22 |) E. | paray of a disloc | ation v | with burgare we | otor b | is proportional | to | | | | 22 | | nergy of a disloc | | b ² | | | | 1.0 | | | | (A | a) b | (B) | b ⁻ | (C) | D | (D) | 1/b | | | | | | | | | | | | | | 23 | | rystal Structure of | | | | | | | | | | (A | A) FCC | (B) | BCC | (C) | SC | (D) | BCT | | | | × | 7 | | | | | | | | | Se | et - A |] | | | 3 | | | ľ | T | | 24. | A va | cancy defect in | n a cry | stal refers to | | | | | | |--------|-------|--|--------------------------|-------------------|---------|------------------|---------|----------------|----| | | (A) | Missing elect | ron | | (B) | Missing hole | | | | | | (C) | Missing atom | 1 | | (D) | Missing plane | • | | | | 25. | At a | pn junction the | ere wi | ll be | | | | | | | | (A) | Excess of hol | es | | (B) | Excess of elec | etrons | | | | | (C) | Excess of dop | ants | | (D) | Depletion of o | charge | e carriers | | | 26. | Whic | ch steel will yo | u reco | ommend for cry | ogeni | c applications | ? | | | | | (A) | Ferritic | (B) | Austenitic | (C) | Martensitic | (D) | Bainitic | | | 27. | Defo | rmation twins | are ob | served in | | | | | | | | (A) | Cu alloys | (B) | Al alloys | (C) | Ni alloys | (D) | Mg alloys | | | 28. | Peier | els stress is the | stress | required for | | | | | | | | (A) | Twinning | | | (B) | Moving a disl | locatio | on | | | | (C) | Creating a sta | cking | fault | (D) | Fracture | | | | | 29. | Diffu | usion is faster i | n | | | | | | | | | (A) | FCC alloys | (B) | HCP alloys | (C) | BCC alloys | (D) | Compounds | | | 30. | The | speed of gas pa | article | s in a container | show | S | | | | | | (A) | Gaussian dist | | | (B) | Bimodal distr | | | | | | (C) | Maxwell-Bol | tzman | n Distribution | (D) | Uniform distr | ibutio | n | | | 31. | In a | regular solution | n | | | | | | | | | (A) | Entropy of m | ixing | is zero | | | | | | | | (B) | Enthalpy of n | nixing | is zero | | | | | | | | (C) | STATE OF THE | 000 000 - 600 | is same as that | | | | | | | | (D) | Enthalpy of n | nixing | is same as that | of ide | eal solution | | | | | 32. | Reso | lution of an op | tical 1 | nicroscope of r | numeri | ical aperture N | A is | | | | | (A) | 0.5λ/NA | (B) | λ/NA | (C) | λ/0.5NA | (D) | λ^2/NA | | | 33. | Whic | ch of the follow | ving is | s not a diffusion | n conti | rolled process ' | ? | | | | | (A) | Martensitic tr | ansfo | rmation | (B) | Solidification | | | | | | (C) | Spinodal deco | ompos | sition | (D) | Ordering | | | | | Set -[| A | | | | 4 | | | | NT | | 34. | Hard | enability is measured in | | | | |-------|------------|---|---------|--|----| | | (A) | Millimetres | (B) | MPa | | | | (C) | MPa√m | (D) | It is a dimensionless parameter | | | 35. | In a t | wo phase field (eg. $\alpha + \beta$) in a binar | y allo | y | | | | (A) | Composition of the phases changes | s with | alloy composition | | | | (B) | Composition of the phases does no | t char | ige with alloy composition | | | | (C) | Volume fraction of the phases does | s not c | change with alloy composition | | | | (D) | Distribution of phases does not dep | end o | on alloy composition | | | 36. | For c | oxide to be protective the Pilling Bed | dwortl | n ratio should be | | | | (A) | <1 | (B) | between < 1 and > 2 | | | | (C) | >2 | (D) | 0 | | | 37. | Relat | tive permeability μ _r for a magnetic r | nateri | al | | | | (A) | is a constant for given material | - 23 | | | | | (B) | changes with applied magnetic fiel | | | | | | (C) | does not change with microstructur | re | | | | | (D) | depends on μ_o | | | | | 38. | Yield | l strength of an alloy | | | | | | (A) | does not change on cold working | (B) | increases on cold working | | | | (C) | decreases on cold working | (D) | depends on ductility | | | 39. | Recr | ystallization in alloy | | | | | | (A) | Does not require deformation | (B) | Requires deformation | | | | (C) | Occurs during solidification | (D) | Leads to coarse grains | | | 40. | 0040000000 | working of Al alloys | | | | | | (A) | frequently leads to recrystallization | 1 | | | | | (B) | rarely leads to recrystallization causes melting | | | | | | (C)
(D) | causes embrittlement | | | | | | | | | | | | 41. | Mg a | lloys are difficult to work | | | | | | (A) | because they are very strong. | | | | | | (B) | because they have very limited slip | | | | | | (C) | because they suffer from grain bou | indary | embrittlement. | | | | (D) | because they are very reactive. | | | | | 42. | Pb-S | n solders are used | | | | | | | because of their high conductivity. | | | | | | (C) | because they form a eutectic. | (D) | because they readily alloy with Al/Cu. | | | Set - | A | | 5 | | NT | | | (A)
(B)
(C)
(D) | because of their strong bonding. because the bonding is not direction because of the atoms can vibrate representation because electrons help to conduct | nore fi | 8.7.9 | |-------|--------------------------|---|----------------|--| | 44. | On lo (A) (B) | owering temperature to 0 K a semic
Will become a superconductor
Stop conducting | onduc | tor | | | (C)
(D) | Will show reduced conductivity Will show improved conductivity | | | | 45. | An o | xide superconductor | | | | | (A)
(B)
(C)
(D) | has higher critical temperature that
lower critical magnetic field than
is easier to be wound into a soleno
lower critical electric field than a | a meta
oid. | illic superconductor. | | 46. | | cording tape has magnetic particles
ld have | depos | ited on a flexible polymer. The particles | | | (A)
(C) | low coercivity
low saturation | (B)
(D) | low permeability
high remanence | | 47. | | cording head is used to convert elected on to a tape. The head should ha | | signals to magnetic signals and record these | | | (A)
(C) | high coercivity
large saturation | (B)
(D) | low permeability
high remanence | | 48. | Supe | r conductors are | | | | | (A) | paramagnetic (B) ferromagnetic | c (C) | Diamagnetic (D) ferrimagnetic | | 49. | Piezo | electric materials are used to mean | sure | | | | (A)
(C) | change in temperature change in magnetic field | (B)
(D) | change in stress
change in humidity | | 50. | Ferro | pelectric materials are | | | | | (A)
(C) | conductors semiconductors | (B)
(D) | insulators
superconductors | | 51. | Grap | hical representations of thermodyn | amic s | tability of oxides are called | | | (A) | Ellingham diagrams | (B) | Pourbaix diagrams | | | (C) | Shankey diagrams | (D) | TTT diagrams | | Set - | A | | 6 | NT | | | | | | | Metals have good thermal conductivity 43. | | (A)
(C) | Radiation pyr
Thermocouple | | У | (B)
(D) | Induction furn
Laboratory m | | furnaces | | |---------|---------------|------------------------------------|---------|--------------------------------------|------------|-----------------------------------|------------------|--|----------------------------| | 53. | atm,
equil | the partial pre
librium constan | essure | A $(g) + B (g)$
of B is 10^{-3} | atm a | nd the partial | e part
pressi | tial pressure of A
ure of AB is 1 at | is 10 ⁻² m, the | | | (A) | 10 atm ⁻¹ | | | | 10 ⁵ atm ⁻¹ | | | | | | (C) | 10 (dimension | nless) | | (D) | 10 ⁵ (dimension | onless) |) | | | 54. | Perit | ectic reaction i | n a bir | nary system is ; | given | by | | | | | | (A) | $L = \alpha + \beta$ | (B) | $\alpha = L + \beta$ | (C) | $\gamma = \alpha + \beta$ | (D) | $L + \alpha = \beta$ | | | 55. | If Re | ynolds number | is gre | eater than 1.0 ti | hen th | e | | | | | | (A) | viscous force | is larg | er than the ine | rtia fo | rce | | | | | | (B) | inertia force is | s large | er than the visc | ous fo | rce | | | | | | (C) | inertia force is | s large | er than the surfa | ace te | nsion force | | | | | | (D) | inertia force is | s large | r than the grav | ritatio | nal force | | | | | 56. | Wha | | - | | | | | rogen is 0.044 (ma
pressure is redu | | | | (A) | | (B) | 0.022 | (C) | 0.088 | (D) | 0.176 | | | 57. | m^2/s | | e activ | | | | | a^2/s and it is 1.94 is (given log e = 0 | | | | (A) | 130 kJ/mol | (B) | 180 kJ/mol | (C) | 230 kJ/mol | (D) | 300 kJ/mol | | | 58. | Cont | act potential is | | | | | | | | | | (A) | Difference in | Fermi | Level | (B) | Difference in | electr | on mobility | | | | (C) | Difference in | hole c | oncentration | (D) | Difference in | electr | on concentration | | | 59. | Worl | k function of a | semic | onductor deper | nds or | ı . | | | | | | (A) | the band gap | | | (B) | Width of the | condu | ction band | | | | (C) | Width of the | valenc | e band | (D) | Fermi level | | | | | 50. | On ra | aising the temp | eratur | e of a semicon | ducto | r | | | | | | (A) | the Fermi leve | el char | nges | | | | | | | | (B) | the number of | cond | uction electron | is chai | nges | | | | | | (C) | the band gap | change | es | | | | | | | | (D) | the work func | | | | | | | | | Set - [| A | | | | 7 | | | | NT | | _ | | | | | | | | | | Seebeck effect is applied in 52. | 61. | In an | alloy precipita | ite fre | e zones forr | n near | | | | | |-------|-------|--------------------|---------|------------------------|------------------|--|--------------|------------|---------------| | | (A) | dislocations | | | (B) | stacking far | ults | | | | | (C) | grain boundar | ies | | (D) | vacancies | | | | | 62. | After | r stress relief ar | neali | ng | | | | | | | | (A) | Grain size of t | the all | loy increase | S | | | | | | | (B) | Alloy has recr | ystall | lized micros | tructure | | | | | | | (C) | Alloy has low | | | nsity | | | | | | | (D) | Alloy hardnes | s incr | eases | | | | | | | 63. | Com | posites are | | | | | | | | | | (A) | Difficult to re | cycle | | (B) | Difficult to | produce | | | | | (C) | Difficult to us | e | | (D) | Difficult to | store | | | | 64. | | ture stress for a | | | - | The state of s | \$ 100 miles | m is 200 M | ЛРа. Fracture | | | (A) | 50 MPa | (B) | 100 MPa | (C) | 25 MPa | (D) | 75 MPa | | | 65. | Whic | ch property do | we air | m to improv | e in cerai | mic matrix c | omposit | es? | | | | (A) | strength | | | (B) | toughness | | | | | | (C) | corrosion resi | stance | 2 | (D) | hardness | | | | | 66. | The | solvus line in F | e-C d | iagram is | | | | | | | | (A) | Line separatin | ıg L fi | rom L +γ | | | | | | | | (B) | Line separatin | ig L+ | γ from γ + F | e₃C | | | | | | | (C) | Line separatin | ıgαfi | $com \alpha + \beta$ | | | | | | | | (D) | Line separatin | ıg L+ | Fe ₃ C from | $\gamma + Fe_3C$ | | | | | | 67. | In fu | sion welding o | f alloy | ys, which or | ie is weak | cest ? | | | | | | (A) | Base metal | | | (B) | Heat affect | ed zone | | | | | (C) | Fusion zone | | | (D) | Zone show | ing warp | oing | | | 68. | Whic | ch dislocation is | s not | confined to | a slip pla | ne ? | | | | | | (A) | Edge | (B) | Screw | (C) | Mixed | (D) | Partial | | | 69. | Whic | ch of these caus | ses ch | ange in grai | n orientat | tion ? | | | | | | (A) | Slip | | | (B) | Twinning | | | | | | (C) | Brittle fracture | e | | (D) | Fatigue Fra | cture | | | | Set - | A | | | | 8 | | | | NT | | | | | | | | | | | | | 70. | Whic | ch of these is li | kely to | o show more di | uctilit | y ? | | | | |--------------|---------------|---|----------|--------------------------------------|----------|--|--------|---|--------| | | (A) | BCC | (B) | FCC | (C) | HCP | (D) | BCT | | | 71. | Whic | ch one of the fo | llowi | ng configuratio | n has | the highest fin | effect | tiveness? | | | | (A) | Thick closely | | | (B) | 154 15 154 | | | | | | (C) | Thick widely | • | | (D) | CHARLES A MAN RACE | - | | | | | (-) | , | 1 | | | 9 | 1 | | | | 72. | Mass
hot | s flow rate of th | ne hot | fluid is 1 kg/s | and th | nat of cold fluid | d is 2 | old fluid leaves at kg/s. Specific heat The LMTD for th | of the | | | (A) | 15 | (B) | 30 | (C) | 35 | (D) | 45 | | | 73. | heat
thick | | ir. If t | the air side hea
should be | | | | = 0.1 W/mK) to in (0 W/m ² K, then op 2 mm | | | 74. | follo | | hip bo | etween the hyd | drody | namic boundar | | ength. Which one
er thickness (δ) a | | | | (A) | $\delta > \delta_t$ | (B) | $\delta < \delta_t$ | (C) | $\delta = \delta_t$ | (D) | cannot be predict | ed | | 75. | In ra | diative heat tra | nsfer | a grav surface. | is one | · | | | | | | (A) | which appears | | | 10 011 | | | | | | | (B) | Mescare made of the factors Apple on the state of | | ity equal to zero | ^ | | | | | | | (C) | | | independent o | | alanath | | | | | | (D) | | 370 | ally bright from | | _ | | | | | | | winen appear | , eque | ing origin nom | | i couons. | | | | | 76. | Abso | orptivity of a bo | dy w | ill be equal to i | ts emi | ssivity | | | | | | (A) | At all tempera | itures | | | | | | | | | (B) | At only one p | articu | lar temperature | ; | | | | | | | (C) | When system | is und | der thermal equ | illibriu | ım | | | | | | (D) | At critical ten | nperat | ure | | | | | | | 77. | Un t | o the critical ra | dine o | f inculation | | | | | | | , , , | (A) | | | with addition of | of ine | ilation | | | | | | (A) | | | with addition of | | | | | | | | | | | | | auon | | | | | | (C) | | | rease in heat flu
ss is more than | | ection hast loss | | | | | <u>с</u> , Г | (D) | Conduction II | cat 108 | ss is more man | | etion heat ioss | | | N YOU | | Set - [| A | | | | 9 | | | | NT | | | | | | | | | | | | | 78. | The | thermal diffusivities | for gases are g | enera1 | ly | | | |--------|--------|--|------------------|---------|------------------|--|--------| | | (A) | More than those for | liquids | (B) | Less than thos | se for liquids | | | | (C) | More than those for | solids | (D) | Dependent on | the viscosity | | | 79. | The | wavelength of the rac | diation emitted | | | | | | | (A) | Depends on the tem | perature only | | | | | | | (B) | Depends on (temper | rature)² | | | | | | | (C) | Does not depend on | material of bo | ody | | | | | | (D) | Depends on tempera | ature and mate | rial of | the body | | | | 80. | An i | ncrease in convective | e coefficient ov | er a fi | n | | | | | (A) | Increase effectivene | ess | (B) | Decrease effec | ctiveness | | | | (C) | Does not influence | effectiveness | (D) | Influence only | the fin efficiency | | | 81. | | a cylindrical rod with
the radius location w | | stribut | ed heat sources | the thermal gradients dt | /dr at | | | (A) | one-fourth of that at | t the surface | (B) | One-half of th | at at the surface | | | | (C) | Twice of that at the | surface | (D) | Four times of | that at the surface | | | 82. | | ording to Planck's I ortional to | aw, the wave | length | corresponding | to the maximum energ | gy is | | | (A) | source and the second of s | T^3 | (C) | T^2 | (D) 1/T | | | 83. | The to | concept of stream fu | nction which i | s base | d on the princi | ple of continuity is appli- | cable | | | (A) | three-dimensional f | low only | (B) | two-dimension | nal flow only | | | | (C) | uniform flow only | | (D) | irrotational flo | ow only | | | 84. | The | flow in a river during | the period of l | heavy | rainfall is | | | | | (A) | steady, uniform, two | o-dimensional | 117.6 | | | | | | (B) | unsteady, uniform, | three-dimensio | nal | | | | | | (C) | unsteady, non-unifo | orm and three-c | limens | sional | | | | | (D) | steady, non-uniform | n and three-dim | nensio | nal | | | | 85. | cons | - Market Man-All Market and a - Barble and Market and a state | on the same s | | | ulli's equation. The Berr
which lie on other stream | | | | (A) | incompressible | | (B) | steady | | | | | (C) | irrotational | | (D) | uniform | | | | Set -[| A | | | 10 | | | NT | | 86. | | the fluid flows
ndary gets retar | | | 1,000 | | | l in the vicinity | of the | |-------|-------|---|--------------|---------------------------------|----------|----------|-------------------|-------------------|----------| | | (A) | the assumptio | n on flui | id being idea | 1 | | | | | | | (B) | high velocity | flow out | side the bou | ndary- | layer | | | | | | (C) | fluid density | | | | | | | | | | (D) | high velocity | gradient | s exist at and | l near | the bou | ndary | | | | 87. | | cy-Weisbach fri
endent on | ction fac | ctor f which | is a di | rect me | easure of resista | ance to flow in p | pipes is | | | (A) | roughness hei | ght, diar | neter and ve | locity | | | | | | | (B) | relative rough | ness, dia | imeter and v | iscosit | y | | | | | | (C) | relative rough | ness, ve | locity and vi | scosity | -
У | | | | | | (D) | roughness hei | ght, diar | neter, veloci | ty and | kinema | atic viscosity | | | | 00 | T.J., | | 1. : | F | | £ | | | | | 88. | | ntify the correct | | tion of state | | | | | | | | 1. | geometric sin | | | a. | | similarity of for | | | | | 2. | kinematic sim | 78 | | b. | | similarity of sh | • | | | | 3. | dynamic simi | 10000000 100 | | c. | | the similarity | | | | | (A) | 1-a, 2-b, 3-c | (B) 1 | -b, 2-c, 3-a | (C) | 1-b, 2- | -a, 3-c (D) 1 | 1-c, 2-b, 3-a | | | 89. | | resistance expe | | Street Management of the street | | | | | istance. | | | 1. | Inertia force | 2. | Surface ten | sion | 3. | Pressure force | 9 | | | | 4. | Viscous force | 5. | Gravity for | ce | 6. | Elastic force. | | | | | (A) | 2,3,4 | (B) 1 | ,2,3 | (C) | 1,4,5 | (D) 4 | 1,5,6 | | | 90. | The | parameters whi | ch deter | mine the fric | ction fa | actor fo | r turbulent flov | v in rough pipes | are | | | (A) | Froude number | er and re | lative rough | ness | | | | | | | (B) | Froude number | er and M | lach number | | | | | | | | (C) | Mach number | and rela | ative roughne | ess | | | | | | | (D) | | | (07) | | Œ. | | | | | 91. | way | er flowing at 4
re travelling in
nstream end is | the pi | pe due to t | the su | dden c | complete closu | re of a valve | | | | (A) | 12 sec | (B) 3 | sec | (C) | 1125 s | sec (D) 3 | 375 sec | | | Set - | A | | | | 11 | | | | NT | | | | | | | | | | | | | 92. | In order to have a continuous flow through a siphon, no portion of the pipe be higher than measured above the hydraulic grade line. | | | | | | | | | |-------|---|-----------------------------------|--------|------------------|----------|-----------------|-----------|--|--| | | (A) | 5.5 m | (B) | 10 m | (C) | 7.75 m | (D) | 10.33 m | | | 93. | venti | | ater p | ipeline, if an | error | of 2 mm l | ias been | e differences across a
n made in observing a
nce is: | | | | (A) | 20 | (B) | 5 | (C) | 10 | (D) | 2 | | | 94. | The | existence of ve | locity | potential in fl | uid-flo | w indicates t | hat | | | | | (A) | the flow must | be irr | rotational | | | | | | | | (B) | the flow is rot | ationa | al and satisfies | the co | ntinuity equa | ition | | | | | (C) | the vorticity n | nust b | e zero | | | | | | | | (D) | the flow is un | iform | | | | | | | | 95. | The | essential featur | e of a | turbulent flow | v is | | | | | | | (A) | large discharg | ;e | | | | | | | | | (B) | velocity and p | ressu | re at a point ex | khibit i | rregular fluct | uations | of high frequency | | | | (C) | high velocity | | | | | | | | | | (D) | velocity at a p | oint r | emains consta | nt with | i time | | | | | 96. | A pa | rticle moving a | long | a circle with v | ariable | angular spee | d will h | ave | | | | (A) | tangential cor | npone | nt of accelerat | tion on | ly | | | | | | (B) | normal compo | nent | of acceleration | n only | | | | | | | (C) | no acceleratio | n | | | | | | | | | (D) | both tangentia | al and | normal compo | onents | of acceleration | on | | | | 97. | | a rotating body,
tic energy is | mass | moment of in | ertia is | s 10 Kg-m² aı | nd angul | lar speed is 3 rad/s, then | | | | (A) | 45 Nm | (B) | 20 Nm | (C) | 30 Nm | (D) | 90 N-m | | | 98. | Dete
kN. | rmine the magi | nitude | of the resultar | nt force | e of F1=(5i -1 | 10 j +2 k | (s) kN and F2= (6 j+ 3K) | | | | (A) | 7.27 kN | (B) | 8.12 kN | (C) | 9 kN | (D) | 17.5 kN | | | Set - | A | | | | 12 | | | NT | | - 99. The centre of mass for a system of particles will coincide with that of centre of gravity if - (A) the density of all the particles is same - (B) the acceleration due to gravity of all the particles is same - (C) the acceleration due to gravity of the particles varies linearly - (D) the density of the particles varies linearly - 100. A square area of one quarter of a square sheet is cut from the corner as shown in the figure. Determine the centre of gravity of shaded area. - (A) 5a/4 - (B) 5a/6 - (C) 5a/8 - (D) 5a/12 - 101. Determine the moment of inertia for the section shown in the figure about its y-y axis - (A) 101.5 - (B) 102.5 - (C) 106.83 - (D) 110.5 - 102. The mass moment of inertia of a homogeneous sphere of radius R about its diameter is - (A) $3mR^2/5$ - (B) $2mR^2/5$ - (C) $4mR^2/5$ - (D) $5mR^2/4$ - 103. What is the mass moment of inertia of a cylinder of radius R about its longitudinal axis if the mass of the cylinder is m? - $(A) \quad mR^2$ - (B) $mR^2/2$ - (C) $2mR^2/3$ - (D) $2mR^2/5$ | 104. | A particle moves in a straight line such that its velocity is defined by $v = (3t^2 + 2t)$ m/s, where t is in seconds. Determine its position when t=3 seconds. The initial displacement is zero. | | | | | | | | | |--------|--|------------------|--------|-------------|-----|-----------------|--------|------------|----| | | (A) | 12 m | (B) | 24 m | (C) | 36 m | (D) | 48 m | | | 105. | The displacement of a particle following simple harmonic motion is given by $x=2\cos 20 t$. What is its period of oscillation? | | | | | | | 20 t. | | | | (A) | π/10 | (B) | π/20 | (C) | π/5 | (D) | 2π | | | 106. | A wooden block of 5.25 N weight is fired with a bullet of 0.25 N weight at a velocity of 176 m/s and it gets embedded into the block. Find the velocity of bullet and block together after the impact. | | | | | | | | | | | (A) | 2 m/s | (B) | 4 m/s | (C) | 8 m/s | (D) | 10 m/s | | | 107. | According to the principle of angular momentum, the rate of change of angular momentum of a rotating body with respect to its fixed axis of rotation is equal to (A) resultant of all external forces acting on the body. | | | | | | | ıtum | | | | | | | | | | | | | | | (B) moment of all external forces acting on the body with respect to any axis. | | | | | | | | | | | (C) moment of all external forces acting on the body with respect to the same axis.(D) Any of the above. | | | | | | | | | | 108. | The area under the stress – strain curve (up to elastic limit) gives | | | | | | | | | | | (A) | strain energy | | | (B) | strain energy | per ur | nit volume | | | | (C) | modulus of el | astici | ty | (D) | Bulk modulus | • | | | | 109. | The shape of Bending moment diagram for a cantilever beam subjected to uniformly distributed load consists of | | | | | | | | | | | (A) | Rectangle | (B) | parabola | (C) | cubic curve | (D) | triangle | | | 110. | The | shear force diag | gram (| consists of | | in case of tria | ngular | loads. | | | | (A) | rectangles | (B) | parabola | (C) | cubic curve | (D) | triangle | | | Set -[| A | | | | 14 | | | | NT | | | | section is
Linear | (B) | Zero | (C) | Parabolic | (D) | Hyperbolic | |-------|--|---------------------------------------|----------|---------------------------|---------|------------------------------------|---------|--------------------------| | 112. | The ratio of maximum shear stress to mean shear stress of a rectangular cross section of a beam is | | | | | | | | | | (A) | $\frac{4}{3}$ | (B) | $\frac{3}{2}$ | (C) | 2 | (D) | $\frac{8}{3}$ | | 113. | What is the relationship among elastic constants? | | | | | | | | | | (A) | $E = \frac{9KG}{(3K + G)}$ | (B) I | $E = \frac{3KG}{9K + G}$ | (C) | $E = \frac{3KG}{K + 3G}$ | (D) | $E = \frac{9KG}{K + 3G}$ | | 114. | The | shear stress on | a princ | cipal plane is _ | (o | σ_x , σ_y – stresses | s in x | and y directions) | | | (A) | $(\sigma_x - \sigma_y)/2$ | (B) | $(\sigma_x + \sigma_y)/2$ | (C) | $(\sigma_x - \sigma_y)$ | (D) | Zero | | 115. | The 1 | radius of a Mol | hr's ci | rcle gives | | | | | | | (A) | minimum she | | | (B) | maximum she | | | | | (C) | maximum noi | rmal st | tress | (D) | minimum nor | mal st | ress | | 116. | The | variation of she | ear stre | ess in a circular | r shaft | subjected to to | orsion | is | | | (A) | linear | (B) | parabolic | (C) | hyperbolic | (D) | cubic curve | | 117. | Maxi | imum shear str | ess inc | luced in solid s | shaft s | ubjected to tor | que is | given by | | | (A) | $\frac{16T}{\pi d^3}$ | (B) | $\frac{16T}{\pi d^2}$ | (C) | $\frac{16T}{\pi d}$ | (D) | $\frac{\pi d}{16T}$ | | 118. | | shear stress is r
of bi-axial stat | | | inclin | ed atto | the giv | en planes of loading in | | | (A) | 45 degrees | (B) | 135 degrees | (C) | 90 degrees | (D) | 180 degrees | | 119. | What is the nature of stresses on a beam cross section subjected to pure couple? | | | | | | | | | **** | (A) | Tensile |), 3010. | see on a count | (B) | Compressive | ica to | pare coupie. | | | (C) | Both tensile a | nd Co | mpressive | (D) | Shear stress | | | | 120. | Find
in N- | | f a forc | ce F= (5i+6j-4l | c) N a | cting at a point | A (2, | 1,1) m about the origin | | | (A) | 7i+13j-10k | (B) | 5i+3j-2k | (C) | -10 i -13j+7k | (D) | -10i+13j+7k | | Set - | A | | | | 15 | | | NT | 111. According to the theory of simple bending, the variation of bending stress across a beam #### SPACE FOR ROUGH WORK ### NANO TECHNOLOGY (NT) SET-A | Question No | Answer | Question No | Answer | |-------------|--------|--------------------|--------| | 1 | C | 61 | C | | 2 | В | 62 | C | | 3 | С | 63 | Α | | 4 | Α | 64 | В | | 5 | В | 65 | В | | 6 | В | 66 | С | | 7 | D | 67 | В | | 8 | Α | 68 | В | | 9 | В | 69 | В | | 10 | В | 70 | В | | 11 | Α | 71 | D | | 12 | D | 72 | В | | 13 | В | 73 | В | | 14 | С | 74 | Α | | 15 | В | 75 | C | | 16 | Α | 76 | C | | 17 | С | 77 | В | | 18 | D | 78 | Α | | 19 | Α | 79 | D | | 20 | С | 80 | В | | 21 | В | 81 | В | | 22 | В | 82 | D | | 23 | D | 83 | В | | 24 | С | 84 | C | | 25 | D | 85 | C | | 26 | В | 86 | D | | 27 | D | 87 | D | | 28 | В | 88 | В | | 29 | С | 89 | C | | 30 | С | 90 | D | | 31 | С | 91 | Α | | 32 | Α | 92 | С | | 33 | Α | 93 | Α | | 34 | Α | 94 | С | | 35 | В | 95 | В | | 36 | В | 96 | D | | 37 | В | 97 | Α | | 38 | В | 98 | В | | 39 | В | 99 | В | | 40 | А | 100 | D | | S9(2020) | F80 | 00 (A 200 (A 200) | 10000 | | 41 | В | 101 | Α | |----|---|-----|---| | 42 | С | 102 | В | | 43 | D | 103 | В | | 44 | В | 104 | C | | 45 | Α | 105 | Α | | 46 | D | 106 | C | | 47 | С | 107 | C | | 48 | С | 108 | В | | 49 | В | 109 | В | | 50 | В | 110 | В | | 51 | Α | 111 | Α | | 52 | С | 112 | В | | 53 | В | 113 | Α | | 54 | D | 114 | D | | 55 | В | 115 | В | | 56 | В | 116 | Α | | 57 | С | 117 | Α | | 58 | Α | 118 | Α | | 59 | D | 119 | C | | 60 | В | 120 | D | | | | | |