

Booklet No.:

ME - 16

Mechanical Engineering

Duration of Test: 2 Hours		Max. Marks: 120
	Hall Ticket No.	
Name of the Candidate :		
Date of Examination:	OMR Ar	nswer Sheet No. :
Signature of the Candidate		Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only.
- Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

ME-16-A

MECHANICAL ENGINEERING (ME)

1.	A sys	stem of homog	geneous	linear equation	ons $A2$	X = 0 has a no	ntrivia	l solution if	
	(A)	A = -1	(B)	$ A \neq 0$	(C)	A = +1	(D)	A = 0	
2.	If 2,	l+2i are the ei	gen val	ues of a third	order 1	natrix A, then	the thi	rd eigen value is	
	(A)	1-2i	(B)	1+i	(C)	2+3i	(D)	1/2	
3.	If $f(t)$		–2) sat	tisfy Lagrang	e Mea	n Value theor	em at	c in the interval	[1,3],
	(A)	3	(B)	I	(C)	2	(D)	0	
4.	If $x =$	$= r\cos\theta$, $y = r$	$r \sin heta$, z	z = z, then the	value	of $\frac{\partial(x, y, z)}{\partial(r, \theta, z)} =$	į		
	(A)	r^2	(B)	$\frac{1}{r}$	(C)	r an heta	(D)	r	
5.	If v=	$=cx-c^3$ is the	genera	al solution of t	he diff	erential equati	ion		
		y'' - xy' - y				$(y')^3 - xy' +$			
		y''' - xy' - y			0.40.500		V . 00001		
_			2	n " a	,	, ·			
6.		complementar		on of $y - 2y$					
		$c_1 \cos x + c_2 \sin x$	n <i>x</i>		(B)	$c_1 e^x + c_2 e^{-x}$			
	(C)	$(c_1x+c_2)e^x$			(D)	$(c_1x+c_2)xe^x$			
7.			istribute	ed variable an	d P(X)	$(x = 0) = \frac{1}{e^2}$, th	en the	probability distri	bution
	funct			-3 o r		O.T.		140	
	(A)	$\frac{e^{-2}2^x}{x!}$	(B)	$\frac{e^{-3}}{r!}$	(C)	$\frac{2^n}{r!}$	(D)	$\frac{1}{r!}$	
8.	If the		ariance	Marie Debette Ve				respectively, the	en the
	(A)	$C_{x}^{8} \left(\frac{3}{4}\right)^{x} \left(\frac{1}{4}\right)^{x}$	8-x		(B)	$C_{x}^{16} \left(\frac{3}{4}\right)^{x} \left(\frac{1}{4}\right)^{x}$	$\left(\frac{1}{x}\right)^{16-x}$		
	(C)	$C_{x}^{8} \left(\frac{1}{4}\right)^{x} \left(\frac{3}{4}\right)^{x}$	8-x		(D)	$C_{x}^{16} \left(\frac{1}{4}\right)^{x} \left(\frac{3}{4}\right)^{x}$	-) $16-x$		
9.	One i	oot of the equ	ation <i>f</i>	$f(x) = 2x^2 - 5.$	x + 2 =	0 lies in the in	nterval		
		(0,1)				(-1,0)		(-2,0)	
Set -	A				2				ME

	(A)	$ \phi'(x) < 1$	(B)	$ \phi'(x) > 1$	(C)	$ \phi'(x) > 0$	(D)	$ \phi'(x) < 2$			
11.	*	librium of a rig	1000	dy under a sys	stem o	f forces signif	ies the	condition in which the			
		Positive Zero			(B) (D)	Negative Either Positiv	e or N	legative or Zero			
12.					arge s	tationary body	and a	a small moving body is			
	(A)	static		l body is	(B)	about to come to halt					
12	(C)	about to move		oou 9 Ira and	(D)	in uniform mo		without aliming on a			
13.	statio			100				without slipping on a instantaneous center of			
		4 kg.m^2	(B)	3 kg.m^2	(C)	2 kg.m^2	(D)	1 kg.m^2			
14.		velocity of a leration after 2			ear m	otion is given	by '	$V = 2t^3 - 3t^2 \text{ m/sec. Its}$			
	(A)	8 m/s ²	(B)	15 m/s ²	(C)	21 m/s^2	(D)	12 m/s^2			
15.		ear wheel of pential accelerat				ganaggaragg - amana 🖛 wa asasara	accele	eration of 6 rad/s ² . The			
	(A)	6.0 rad/s^2	(B)	3.0 m/s^2	(C)	5.0 m/s^2	(D)	6.0 m/s^2			
16.	passi hang	ing over a smo	ooth p mass l	oulley. Mass m M is moving o	lies	on smooth hor	rizonta	light inextensible string all plane and mass M is of the system is (g is			
	(A)			2g	(C)	2g/3	(D)	3g/2			
17.	with mov	another body	of mas a sing	s 10 kg movin le entity with	g in th same	ne same directi	on at :	nless surface. It collides 5.5 m/s. Both the bodies sion. What is the final			
		5.5 m/sec				7.8 m/sec	(D)	10 m/sec			
18.	The (A) (B) (C)	state of stress a Scalar Vector Tensor	it a po:	int in an elastic	body	is a					
	(D)		ove de	epending on the	e shap	e of the body					
Set -	A				3			ME			

10. The method of successive approximation $x_{k+1} = \phi(x_k)$ converges if

	(A) Criffman in dimension and an elementary in the contract of
	(A) Stiffness is directly proportional to flexibility.(B) Stiffness is inversely proportional to flexibility.
	(C) Stiffness is equal to flexibility.
	(D) Stiffness and flexibility are not related.
20.	
	are (A) +100, -100 (B) +50, -50 (C) 0, 100 (D) +200, -200
21.	CONTROL TO A TRACE OF THE SECOND PROPERTY OF
	(A) On the plane which carries maximum normal stress, the shear stress is zero.
	 (B) Principle planes are mutually orthogonal. (C) On the plane, which carries maximum shear stress, the normal stress is zero
	(D) The principle stress axes and principle strain axes coincide for an isotropic in
22.	Section of the sectio
	Moment and SF for shear force. (A) In any part of the beam BM is Constant and SF is Zero
	(B) In any part of the beam SF is Constant and BM is Zero
	(C) SF varies linearly and BM has parabolic variation
	(D) BM varies linearly and SF has parabolic variation
23.	
23.	A simply supported beam has its longitudinal axis parallel to X-axis. It is subtransverse load parallel to Y-axis. The width of the beam measured parallel to
23.	A simply supported beam has its longitudinal axis parallel to X-axis. It is subtransverse load parallel to Y-axis. The width of the beam measured parallel to double the thickness measured parallel to Y-axis. The neutral axis of the beam is
23.	A simply supported beam has its longitudinal axis parallel to X-axis. It is subtransverse load parallel to Y-axis. The width of the beam measured parallel to
23.	A simply supported beam has its longitudinal axis parallel to X-axis. It is subtransverse load parallel to Y-axis. The width of the beam measured parallel to X double the thickness measured parallel to Y-axis. The neutral axis of the beam is to (A) X axis (B) Y axis (C) Z axis (D) Either X or Y
23.	A simply supported beam has its longitudinal axis parallel to X-axis. It is subtransverse load parallel to Y-axis. The width of the beam measured parallel to double the thickness measured parallel to Y-axis. The neutral axis of the beam is to (A) X axis (B) Y axis (C) Z axis (D) Either X or Y A solid cylindrical shaft has stiffness 'K'. The shaft is replaced by a hallow shaft the outer diameter D_0 remains same as that of the solid shaft and inner diameter D_0
	A simply supported beam has its longitudinal axis parallel to X-axis. It is subtransverse load parallel to Y-axis. The width of the beam measured parallel to X double the thickness measured parallel to Y-axis. The neutral axis of the beam is to (A) X axis (B) Y axis (C) Z axis (D) Either X or Y A solid cylindrical shaft has stiffness 'K'. The shaft is replaced by a hallow shaft the outer diameter D_0 remains same as that of the solid shaft and inner diameter fourth of the outer diameter (ie. D_i =0.25 D_o). Rest of the variables remains unalter
	A simply supported beam has its longitudinal axis parallel to X-axis. It is subtransverse load parallel to Y-axis. The width of the beam measured parallel to X double the thickness measured parallel to Y-axis. The neutral axis of the beam is to (A) X axis (B) Y axis (C) Z axis (D) Either X or Y A solid cylindrical shaft has stiffness 'K'. The shaft is replaced by a hallow shaft the outer diameter D_0 remains same as that of the solid shaft and inner diameter 1 fourth of the outer diameter (ie. D_i =0.25 D_o). Rest of the variables remains unalter stiffness of the hallow shaft is ?
	A simply supported beam has its longitudinal axis parallel to X-axis. It is subtransverse load parallel to Y-axis. The width of the beam measured parallel to X double the thickness measured parallel to Y-axis. The neutral axis of the beam is to (A) X axis (B) Y axis (C) Z axis (D) Either X or Y A solid cylindrical shaft has stiffness 'K'. The shaft is replaced by a hallow shaft the outer diameter D_0 remains same as that of the solid shaft and inner diameter fourth of the outer diameter (ie. D_i =0.25 D_o). Rest of the variables remains unalter
	A simply supported beam has its longitudinal axis parallel to X-axis. It is subtransverse load parallel to Y-axis. The width of the beam measured parallel to X-axis of the beam is to (A) X axis (B) Y axis (C) Z axis (D) Either X or Y A solid cylindrical shaft has stiffness 'K'. The shaft is replaced by a hallow shaft the outer diameter D_0 remains same as that of the solid shaft and inner diameter fourth of the outer diameter (ie. D_i =0.25 D_0). Rest of the variables remains unaltestiffness of the hallow shaft is ? (A) $\frac{255K}{256}$ (B) $\frac{63K}{64}$ (C) $\frac{3K}{4}$ (D) $\frac{15K}{16}$
24.	A simply supported beam has its longitudinal axis parallel to X-axis. It is subtransverse load parallel to Y-axis. The width of the beam measured parallel to X-axis of the beam is to (A) X axis (B) Y axis (C) Z axis (D) Either X or Y A solid cylindrical shaft has stiffness 'K'. The shaft is replaced by a hallow shaft the outer diameter D_0 remains same as that of the solid shaft and inner diameter fourth of the outer diameter (ie. D_i =0.25 D_0). Rest of the variables remains unaltestiffness of the hallow shaft is ? (A) $\frac{255K}{256}$ (B) $\frac{63K}{64}$ (C) $\frac{3K}{4}$ (D) $\frac{15K}{16}$
24.	A simply supported beam has its longitudinal axis parallel to X-axis. It is subtransverse load parallel to Y-axis. The width of the beam measured parallel to X-axis double the thickness measured parallel to Y-axis. The neutral axis of the beam is to (A) X axis (B) Y axis (C) Z axis (D) Either X or Y A solid cylindrical shaft has stiffness 'K'. The shaft is replaced by a hallow shaft the outer diameter D_0 remains same as that of the solid shaft and inner diameter fourth of the outer diameter (ie. D_1 =0.25 D_0). Rest of the variables remains unalter stiffness of the hallow shaft is? (A) $\frac{255K}{256}$ (B) $\frac{63K}{64}$ (C) $\frac{3K}{4}$ (D) $\frac{15K}{16}$ A planar mechanism consists of 8 links, 8 turning pairs and 2 sliding pairs. The material of the solid shaft are also the variables remains unaltered to the solid shaft are also the variables remains unaltered to the variable
24.	A simply supported beam has its longitudinal axis parallel to X-axis. It is subtransverse load parallel to Y-axis. The width of the beam measured parallel to double the thickness measured parallel to Y-axis. The neutral axis of the beam is to (A) X axis (B) Y axis (C) Z axis (D) Either X or Y A solid cylindrical shaft has stiffness 'K'. The shaft is replaced by a hallow shaft the outer diameter D_0 remains same as that of the solid shaft and inner diameter fourth of the outer diameter (ie. D_i =0.25 D_0). Rest of the variables remains unalte stiffness of the hallow shaft is ? (A) $\frac{255K}{256}$ (B) $\frac{63K}{64}$ (C) $\frac{3K}{4}$ (D) $\frac{15K}{16}$ A planar mechanism consists of 8 links, 8 turning pairs and 2 sliding pairs. The nedegrees of freedom for the mechanism is (A) 0 (B) 1 (C) 2 (D) -1
24.	A simply supported beam has its longitudinal axis parallel to X-axis. It is sub transverse load parallel to Y-axis. The width of the beam measured parallel to X double the thickness measured parallel to Y-axis. The neutral axis of the beam is to (A) X axis (B) Y axis (C) Z axis (D) Either X or Y A solid cylindrical shaft has stiffness 'K'. The shaft is replaced by a hallow shaft the outer diameter D_0 remains same as that of the solid shaft and inner diameter I fourth of the outer diameter (ie. D_i =0.25 D_0). Rest of the variables remains unalte stiffness of the hallow shaft is ? (A) $\frac{255K}{256}$ (B) $\frac{63K}{64}$ (C) $\frac{3K}{4}$ (D) $\frac{15K}{16}$ A planar mechanism consists of 8 links, 8 turning pairs and 2 sliding pairs. The ned degrees of freedom for the mechanism is (A) 0 (B) 1 (C) 2 (D) -1
24.	A simply supported beam has its longitudinal axis parallel to X-axis. It is subtransverse load parallel to Y-axis. The width of the beam measured parallel to double the thickness measured parallel to Y-axis. The neutral axis of the beam is to (A) X axis (B) Y axis (C) Z axis (D) Either X or Y A solid cylindrical shaft has stiffness 'K'. The shaft is replaced by a hallow shaft the outer diameter D_0 remains same as that of the solid shaft and inner diameter fourth of the outer diameter (ie. D_i =0.25 D_0). Rest of the variables remains unalte stiffness of the hallow shaft is ? (A) $\frac{255K}{256}$ (B) $\frac{63K}{64}$ (C) $\frac{3K}{4}$ (D) $\frac{15K}{16}$ A planar mechanism consists of 8 links, 8 turning pairs and 2 sliding pairs. The nedegrees of freedom for the mechanism is (A) 0 (B) 1 (C) 2 (D) -1

27.	rotat	es at N rpm w	ith resp	pect to the fix	ed link	ning pair and control of the while the slice. The Coriolis	der rec	ciprocate	es along the	axis
	(A)	0	(B)	2NV	(C)	π NV/30	(D)	π NV/	15	
28.	prim same	e mover. Keep	ing ev	erything same	the fly	the fluctuation ywheel is repla e diameter. Th	ced by	y anothe	r one having	g the
	(A) (C)	Reduced to 2 Remains san			(B)	Increases by Reduced to 5		6		
29.	Whe The	re F is the con condition for a	trol Fo	rce, r is the ra governor is	dius o	f rotation for the	he bal	ls, a and	b are const	
	(A)	a < 0 & b <0) (B)	a > 0 & b > 0	(C)	a > 0 & b <0	(D)	a < 0 &	& b > 0	
30.		757/	and th	ne magnitude o		nagnitude of t secondary unba Maximum Neither Mini	alance	d force	will be	orce
	(C)	Little William	num or	Waxiiiuiii	(D)	reduct with	iiiiuiii	noi wa	Millum	
31.		ging with a ge				oid interference teeth must be a 15		t	involute pi	nion
32.				(T)		ntial gear the he speed of the 61 rpm Can't say wit	crow	n wheel	will be	outer
33.	In a (A) (B) (C) (D)	Acceleration Acceleration Acceleration	is max is Zere is min	system while kimum and Ve o and Velocity imum and Ve o and Velocity	clocity y is mi locity	nimum is Zero	gh the	mean po	osition	
34.		indamped simplion the net for			s in th	e vertical plan	e, who	en the bo	ob is at its n	nean
	(A) (C)	Zero Opposite to the	ne dire	ction of motio	(B) n(D)	In the direction Upwards	on of i	notion		
35.	damı	oing ratio ?				C = 2 N.sec/m			Vm. What is	s the
	(A)	1	(B)	0.25	(C)	2	(D)	0.5		
Set -	A				5					ME

36.	magnification factor when the excitation	1 kg, $C = 2$ N.sec/m and $K = 4$ N/m. What is the frequency is 2 rad/sec? (C) 2 (D) 0.5
37.	curve with amplitude of 0.1 m and wave the road with a velocity of 10 m/sec. M the excitation frequency?	whose profile can be approximated as a harmonic velength 10 m/sec. when the vehicle travels along dodeling this as a support motion problem what is
38.	A slender shaft supported in short bear	(C) 10π rad/sec (D) 20π rad/sec rings has a critical speed N rpm. When the short
	bearings are replaced with long bearings (A) N (B) 2 N	(C) 4 N (D) N/2
39.	In the design of machine components i reduction in	if the factor of safety is increased it leads to the
	(A) Size (B) Cost	(C) Induced Stress (D) All the above.
40.	A component made of brittle material sulface (A) by yielding when $\tau_{max} = Syt$	bjected to pure shear fails (B) by fracture when $\tau_{\text{max}} = \text{Syt/2}$
	(C) by fracture when $\tau_{\text{max}} = \text{Sut}/2$	
41.	The relationship between notch sensiting factor (k _t) and fatigue (or) form stress co	tivity factor (q), theoretical stress concentration oncentration (k_f) is given by
	(A) $q = \frac{k_f}{k_i}$ (B) $q = \frac{k_i - 1}{k_f - 1}$	(C) $q = \frac{k_f - 1}{K_t - 1}$ (D) $q = \frac{k_f + 1}{k_f + 1}$
42.	(A) Needle bearing	hrust load the best bearing among the following is (B) Spherical roller bearing (D) Journal bearing
43.	Effect of increasing stiffness of springs in	in a centrifugal clutch leads to
	 (A) Increase in speed of engagement (B) Increase in friction torque at maxim (C) Decrease the effort for disengagem 	
44.	(D) All the aboveA brake is said to be self-energizing whe	en .
	(A) External force is not necessary to o	operate the brake
	마른 사람들은 보면 보다 보다 다른 사람들은 보다 하는 것이 되었다면 보다 되었다. 그리고 보다	n force induce moment in the same direction n force induce moment in opposing directions
45.	tensile force P. Assuming uniform stress	el fillet weld of length L and leg a is subjected to a sistribution, the shear stress in the weld is
	(A) $(\sqrt{2} \text{ P})/\text{aL}$ (B) $P/\sqrt{2} \text{ aL}$	(C) P/aL (D) 2P/aL
Set -	- A	6 ME

46.	Mere	cury does not wet the glass. This is	due to	the property of the liquid, known as							
	(A)	Cohesion	(B)	Surface tension							
	(C)	Adhesion	(D)	Viscosity							
47.	A flu	uid in equilibrium can't sustain									
	(A)	Shear stresses	(B)	Tensile stresses							
	(C)	Compressive stresses	(D)	Bending stresses							
48.	Cho	ose the wrong statement									
	(A) Viscosity of the fluid is that property which determines the amount of its resistance to a shearing force.										
	(B) Viscosity of liquids decreases with increase in temperature.										
	(C)	Viscosity is due primarily to intera	action	between fluid molecules.							
	(D) Viscosity of the liquid is appreciably affected by change in pressure.										
49.	Whe	n a body floating in a liquid, is disp	laced	slightly then it oscillates about							
	(A)	Center of pressure	(B)	Center of buoyancy							
	(C)	Meta center	(D)	Gravitational center							
50.	In a	free vortex motion, the radial comp	onent	of velocity everywhere is							
	(A)	Zero (B) Maximum	(C)	Minimum (D) Non-zero and finite							
51.		velocity profile for turbulent flow th									
	(A)	Linear (B) Parabolic	(C)	Hyperbolic (D) Logarithmic							
52.		ndary layer separation is caused by	the								
	(A)	Adverse pressure gradient.									
	(B)	Reduction of pressure gradient to		PO.							
	(C) (D)	Boundary layer thickness reducing Reduction of pressure to vapour p	- 74								
53.	The	tamparatura in isantronia flow									
55.	(A)	temperature in isentropic flow Depends on Mach number only.									
	(B)	May or may not depends on Mach	numb	er.							
	(C)	Does not depend on Mach number									
	(D)	Can't say									
54.	Whi	ch of the following is not a dimensi	on-les	s parameter ?							
	(A)	Euler number	(B)	Fanning friction factor							
	(C)	Specific gravity	(D)	None of the above							
55.	10000000	iece of metal of specific gravity 7 ion of it will under mercury?	floats	in mercury of specific gravity 13.6. What							
	(A)	About 0.4 (B) About 0.6	(C)	About 0.5 (D) About 0.65							
Set -	A		7	ME							

- 56. According to kinetic theory of gases, the absolute zero temperature can be attained when
 - (A) Volume of gas is zero
- (B) Kinetic energy of molecules is zero
- (C) Specific heat of gas is zero
- (D) Mass is zero
- **57.** Which of the following is correct?
 - (A) Only gases have two values of specific heat.
 - (B) Both gases and liquids have two values of specific heat.
 - (C) Specific heat value is constant irrespective of state of substance.
 - (D) Only liquids have two values of specific heat.
- 58. A heat exchange process in which product of pressure and volume remains constant is known as
 - (A) Adiabatic process

(B) Throttling process

(C) Isentropic process

- (D) Hyperbolic process
- 59. The absolute temperature of an ideal diatomic gas is quadrupled. What happens to the average speed of molecules?
 - (A) Quadruples

(B) Doubles

(C) Triples

- (D) Increases by a factor of 1.41
- 60. A 1 kg block of ice at 0 °C is placed into a perfectly insulated, sealed container that has 2 kg of water also at 0 °C. The water and ice completely fill the container, but the container is flexible. After some time one can except that
 - (A) The water will freeze so that the mass of the ice will increase.
 - (B) The ice will melt so that the mass of the ice will decrease.
 - (C) Both the amount of water and the amount of ice will remain constant.
 - (D) Both the amount of water and the amount of ice will decrease.
- **61.** Which of the following is correct?
 - (A) Both Stirling and Ericson cycle are reversible.
 - (B) Both Stirling and Ericson cycle are irreversible.
 - (C) Neither Stirling and Ericson cycle are reversible.
 - (D) Stirling cycle is reversible and Ericson cycle is irreversible.
- **62.** Read the following Statements:
 - (i) Otto cycle efficiency is higher than Diesel cycle efficiency for the same compression ratio and heat input because in Otto cycle combustion is at constant volume.
 - (ii) Otto cycle efficiency is higher than Diesel cycle efficiency for the same compression ratio and heat input because in Otto cycle maximum temperature is higher.
 - (iii) Otto cycle efficiency is higher than Diesel cycle efficiency for the same compression ratio and heat input because in Otto cycle heat rejection is lower.
 - (A) Only (i) is correct

(B) Both (i) and (iii) are correct

(C) Only (iii) is correct

(D) Both (ii) and (iii) are correct.

Set - A 8 ME

- 63. Read the following Statements:
 - (i) Thermal conductivity of air with rise in temperature increases.
 - (ii) Thermal conductivity of non-metallic amorphous solids with decrease in temperature decreases.
 - (iii) Thermal conductivity of solid metals with rise in temperature normally increases.
 - (A) All (i), (ii) and (iii) are correct
- (B) Only (i) and (iii) are correct
- (C) Only (ii) and (iii) are correct
- (D) Only (i) and (ii) are correct
- 64. The concept of overall heat transfer coefficient is used in heat transfer problem of
 - (A) Conduction and convection
- (B) Conduction and radiation
- (C) Convection and radiation
- (D) Conduction, convection and radiation
- 65. Which of the following statement is correct pertaining to thermal diffusivity?
 - (A) It is a function of temperature
 - (B) It is inversely proportional to thermal conductivity
 - (C) It is property of material
 - (D) It is a dimensionless parameter
- **66.** In free convection heat transfer transition from laminar to turbulent flow is governed by the critical value of the
 - (A) Prandtl number, Grashoff's number
 - (B) Reynold's number, Grashoff's number
 - (C) Reynold's number, Prandtl number
 - (D) Reynold's number
- 67. The by-pass factor for a cooling coil
 - (A) May increase or decrease with increase in velocity of air passing through it depending upon the condition of air entering.
 - (B) Decreases with increase in velocity of air passing through it.
 - (C) Increases with increase in velocity of air passing through it.
 - (D) Remains unchanged with increase in velocity of air passing through it.
- **68.** Which of the following statement is correct?
 - (A) The minimum temperature to which water can be cooled in a cooling tower is wet bulb temperature.
 - (B) The minimum temperature to which water can be cooled in a cooling tower is dew point temperature of air.
 - (C) The minimum temperature to which water can be cooled in a cooling tower is ambient temperature of air.
 - (D) The minimum temperature to which water can be cooled in a cooling tower is dry bulb temperature of air.

Set - A 9 ME

- **69.** Stanton number is defined as
 - (A) The ratio of Prandtl number and the product of Nusselt number and Reynold's number.
 - (B) The ratio of Prandtl number and the product of Nusselt number and Raleigh's number.
 - (C) The ratio of Reynold's number and the product of Nusselt number and Prandtl number.
 - (D) The ratio of Nusselt number and the product of Reynold's number and Prandtl number.
- 70. The radial heat transfer rate through hollow cylinder increases as the ratio of outer radius to inner radius
 - (A) Decreases

(B) Increases

(C) Constant

- (D) May increase or decrease
- 71. Which of the following statements is correct?
 - (A) High value of Prandtl number indicates Rapid heat transfer by forced convection to natural convection.
 - (B) High value of Prandtl number indicates Rapid diffusion of momentum by viscous action compared to diffusion of energy.
 - (C) High value of Prandtl number indicates relative heat transfer by conduction to convection.
 - (D) High value of Prandtl number indicates relative heat transfer by radiation to convection.
- 72. Which of the following is not true pertaining to four stroke internal combustion engine?
 - (A) Because of one power stroke in two revolutions, lesser cooling and lubrication requirement, thus lesser rate of wear and tear compared to two stroke cycle engine.
 - (B) High initial cost compared to two stroke cycle engine
 - (C) Volumetric efficiency lesser compared to two stroke cycle engine, due to less time available for induction.
 - (D) Part load efficiency is better than two stroke cycle engine.
- 73. Mechanical efficiency of the internal combustion engine is defined as
 - (A) Ratio of indicated work to the energy supplied by the fuel.
 - (B) Ratio of shaft work obtained to the energy supplied by the fuel.
 - (C) Ratio of power obtained at the shaft to the indicated power.
 - (D) Ratio of power obtained at the shaft to the actual volume inhaled during suction stroke.
- **74.** Read the following Statements:
 - (i) Regenerative cycle thermal efficiency is always greater than simple Rankine cycle.
 - (ii) The maximum percentage gain in Regenerative feed heating cycle thermal efficiency, increases with more number of feed heaters.
 - (iii) In a regenerative feed heating cycle, the optimum value of fraction of steam extracted for feed heating decreases with increase in Rankine cycle efficiency.
 - (A) Only (i) and (ii) are correct
- (B) Only (i) and (iii) are correct
- (C) All above statements are correct
- (D) Only (ii) and (iii) are correct.

Set - A 10 ME

75.	The work output of theoretical Otto cycle (A) Increases with increase in adiabatic index (B) Decreases with increase in pressure ratio (C) Decreases with increase in compression ratio (D) None of the above
76.	 The overall efficiency of a reaction turbine is the ratio of (A) Work done on the wheel to the energy (or head of water) actually supplied to the turbine (B) Actual work available at the turbine to the energy imparted to the wheel (C) Power produced by the turbine to the energy imparted to the wheel (D) Power produced by the turbine to the energy actually supplied by the turbine
77.	Any change in load is adjusted by the adjusting the following parameter on turbine (A) Blade velocity (B) Flow (C) Net head (D) Relative velocity at the inlet
78.	The specific speed of a turbine is the speed of an imaginary turbine, identical with the given turbine, which (A) Develops unit power under unit head (B) Delivers unit discharge under unit head (C) Delivers unit discharge under unit speed (D) Develops unit power under unit speed
79.	 Choose the wrong statement (A) Energy is said to be degraded each time it flows through a finite temperature difference. (B) To increase work capacity of energy transferred by heat transfer from high temperature to low temperature, temperature difference should be increased. (C) The actual work which a system does is always less than the reversible work. (D) None of the above.
80.	Freezing temperature of water decreases with (A) None of the following (B) Increases or decreases with pressure (C) Decrease in pressure (D) Increase in pressure
81.	Alloy steel which is work hardenable and which is used to make the blades of bulldozers, bucket wheel excavators and other earth moving equipment contain iron, carbon and (A) Chromium (B) Silicon (C) Manganese (D) Magnesium
82.	During tensile testing of a specimen using universal testing machine, the parameters actually measured include (A) True stress and true strain (B) Poisson's ratio and Young's modulus (C) Engineering stress and engineering strain (D) Load and elongation

11

Set - A

ME

83.	soak	~ .	erature	e and then coo		*	•	ritical temperature rature to form a p	588
	(A)	Hardening	8	Normalizing	(C)	Tempering	(D)	Annealing	
84.	In ca (A) (B) (C) (D)	Cast iron scre Carbon steel s Cast iron scre	w and screw a w and	mild steel nut and phosphor	bronze		s used	for the screw and	nut
85.	whic	h one of the fo	llowing	- 100 - 100	st ach	withfreed the on the	ns of	base structure ma	ade of
	(A) (C)	Low carbon s Grey cast iron			(B) (D)	Nodular iron White cast iro	on		
86.	allov							and moulds. Shri of pattern to that	
	(A)	0.97	(B)	0.99	(C)	1.01	(D)	1.03	
87.	(A) (B) (C) (D)	om gating syste It enables rap It is easier to It provides clo It reduces spla	id fillir provide eaner n ashing	ng of mould ca e in the mould netal and turbulenc	avity l e		ause		
88.	(A) (B) (C) (D)	un is a casting A very high p Insufficient fl Absorption of Improper alig	ouring uidity gases	temperature of of the molten by the liquid	of the metal metal				
89.	Which (A)	ch of the follow Hollow castin Thin castings	gs wit			casting ? Hollow castir Thick casting		h thin walls	
90.		ich one of the f			consis	ts of central sp	rue to	feed metal into ca	avities
	(A)	Centrifuging			(B)			sting	
	(C)	True centrifug	gal casi	ting	(D)	Precision cast	ting		
91.		lling a strip be lepends on	tween	two rolls, the	positi	on of the neutr	al poi	nt in arc of contac	t does
	(A)	Amount of re		n		Diameter of r			
α	(C)	Coefficient of	rolls		(D)	Materials of r	olls		∂ M. #* #**
Set -	A				12				ME

92.		open die forging a disc of diameter 200 mm and height 60 mm is compressed without y barreling effect, the final diameter of disc is 400 mm the true strain is								
		1.986	315 - Jan 191 - 414	1.686		1.386		0.602		
93.		operation in v	vhich o	oil is permeat	ed into	the pores of	powde	er metallurgy pro	duct is	
	(A)	0.97	(B)	0.99	(C)	1.01	(D)	1.03		
94.				ng manufactu		42 - 12 10 10 10 10 10 10 10 10 10 10 10 10 10	and a supplied of the supplied	provision of gutter	rs	
	(A) (C)	closed die for investment ca	_		(B) (D)	centrifugal ca impact extrus	7.5			
95.		collapsible too		te tubes are m						
	(A)	direct extrusi			(B)	piercing				
	(C)	impact extrus	sion		(D)	indirect extru	ision			
96.				_		7 .0		onment is require	d ?	
	(A)	Ultrasonic w				Laser beam v		5 0		
	(C)	Plasma arc w	elaing		(D)	Electron bear	m wer	ung		
97.		alloy steel co.		ents are prehea				_		
	(A)	heat affected			(B)	total energy		nption		
	(C)	total time of	weldin	ıg	(D)	welding stres	sses			
98.	Whi	ch one among	the fol	lowing welding	ng proc	esses uses non	-const	ımable electrode	?	
	(A)	Gas metal ard		_	(B)			~		
	(C)	Gas tungsten	arc we	elding	(D)	Flux coated a	arc we	lding		
99.	The	type of coated	electro	ode most wide	ely used	for welding l	ow car	bon steels		
	(A)	Cellulose	(B)	Acidic	(C)	Rutile	(D)	Oxide		
100.	The	strength of a b	razed j	joint						
	(A)					the joining sur				
	(B) increases with increase in gap between the two joining surfaces.									
	(C) (D)	S\$3.				No		ond which it incre ond which it decr		
	(D)	mercases up	io cere	am gap betwe	en me	joining surrace	is ocyc	ma winen it deer	<i>-</i> 4303.	
101.			10 mm			reactive from a substitution of the same	•	of 2 m/sec. If th	e chip	
	thick (A)	tness is 0.75 m 1.33 m/sec		chip velocity 2 m/sec	13	nsider the rake 2.5 m/sec		as zero) 3 m/sec		
	(A)	1.55 m/sec	(D)	2 111/300	(C)	2.5 11560	(D)	5 m/sec		
102.	200000000	· 1000000						chip interface is		
	(A)	30	(B)	42	(C)	58	(D)	70		
103.	The	indexing of the	e turret	t in a single sp	oindle la	athe is done us	sing			
		Geneva mech								
	(C)	Rack and pin	ion me	echanism	(D)	Whit worth r	nechar	nism		
Set -	A				13				ME	

104.	origi	nal. The Taylor	r's tool	life index is			2-L-1	fe to one fourth o	f the
	(A)	1/2	(B)	1/3	(C)	1/4	(D)	1/7	
105.	degre	ee of freedom,	where	the value of 'n	' is	5003	0.40200	ct the work piece i	nʻn'
	(A)	O	(B)	8	(C)	9	(D)	12	
106.	of the	e hole is indica	ted by	- 1000 1000 1000 1000 1000 1000 1000 10				he position of tole	rance
	(A)	Letter G	(B)	Letter f	(C)	Number 7	(D)	Number 8	
107.	For angle measurement in metrology, the following pair can be used in conjunction with each other								
	(A) (C)	sine bar and V slip gauge and			(B) (D)	bevel protracte sine bar and be		1 0	
108.	the b then limit	ore are 25.00 the upper limit of the bore in	mm ar t is 25. mm is	nd 25.021 resp 033 mm. Whe	pectiven the	ely. When the	bore ated a	er (maximum) lim is designated as 2 as 25H6, then the table 25.013	5H8,
	(A)		30 (350)	25.005	(C)		(D)		
109.				nat does not ne		latum for its spe	ecifica	ation is	
	(A) (C)	Concentricity Perpendicular			(B) (D)	Run out Flatness			
110.				5375332			degr	ees drives a lead s	crew
		pitch of 2 mm. 10 microns		asic length uni 20 microns		his drive is 40 microns	(D)	100 microns	
111.	Macl (A) (B) (C) (D)	Simultaneous	contro contro control	l of x, y, z axe l of x, y axes of x, y, z axes	S	nes requires			
112.	For g	generating a coo		59 1 0	e				
	(A)	a set of grid p							
	(B) (C)	a set of grid co		points s defining surf	ace				
	(D)		ÿ	and a set of g		ntrol points			
113.	Cellu	ılar manufactuı	ring is s	suitable for					
	(A)			n large volume					
	(B) (C)			f several varie ilar features m		batches			
	(D)	51 14		ucts in large v					
Set -	A				14				ME
Det -	7.1				T-3				TATES

114.	quan	tity		n is doubled a				ed, the economic o	orde
	(A) (C)	remains unchais doubled	anged		(B) (D)	increased by f is halved	factor (of V2	
115.	carry	ring cost of ₹ time the comp	100 un	it-year. If the	stock	out costs are	estima	st of ₹ 100 order, ated to be nearly ₹ ed by the carrying	400
	(A)		(B)	20	(C)	40	(D)	100	
116.	Vehi (A)	cle manufactur Product layou	100	sembly line is	an exa (B)	imple of Process layou	t		
	(C)	Manual layou			(D)	Fixed layout			
117.	Prod from		alysis	(PFA) is a m	ethod	of identifying	g part	families that uses	data
	(A) (C)	Engineering d Bill of materia	-	gs	(B) (D)	Production se Route sheets	hedule	2	
118.	fixed varia per p	l cost of ₹ 20 a ble cost of Rs. piece. Process I es to produce	nd var 1 per V has	iable cost of ₹ piece. Process fixed cost of ₹	3 per III ha 10 an	piece. Process as fixed cost of d variable cost	s II has ₹ 40 : t of ₹ 4	II and IV. Process Is fixed cost of ₹ 50 and variable cost of 4 per piece. If compoint of view it sh) and f₹2 pany
	(A)	Process I	(B)	Process II	(C)	Process III	(D)	Process IV	
119.	A du (A) (C)	mmy activity is Precedence re Resource rest	lations	ship	ork to (B) (D)	describe Necessary tim Resource idle		y	

120. The project activities, precedence relationships and durations are described in the table. The critical path of the project is

Activity	Precedence	Duration (in day)	
Р	-	3	
Q		4	
R	Р	5	
S	Q	5	
T	R, S	7	
U	R, S	5	
V	T	2	
W	U	10	

(A) P-R-T-V (B) Q-S-T-V (C) P-R-U-W (D) Q-S-U-W

Set - A 15 ME

SPACE FOR ROUGH WORK

MECHANICAL ENGINEERING (ME) SET-A

Question No	Answer	Question No	Answer
1	D	61	Α
2	Α	62	C
3	С	63	D
4	D	64	Α
5	В	65	С
6	С	66	Α
7	Α	67	С
8	D	68	Α
9	Α	69	D
10	Α	70	Α
11	С	71	В
12	С	72	С
13	В	73	С
14	D	74	А
15	В	75	Α
16	С	76	D
17	В	77	В
18	С	78	Α
19	В	79	В
20	Α	80	D
21	С	81	C
22	Α	82	D
23	С	83	D
24	Α	84	В
25	В	85	C
26	C	86	A
27	D	87	D
28	Α	88	В
29	С	89	В
30	В	90	A
31	В	91	D
32	В	92	C
33	D	93	\mathbf{C}
34	Α	94	A
35	D	95	C
36	Α	96	D
37	В	97	D
38	С	98	C
39	С	99	C
40	С	100	D

41	С	101	A
42	В	102	Α
43	Α	103	A
44	С	104	A
45	Α	105	C
46	В	106	A
47	Α	107	С
48	D	108	D
49	С	109	D
50	Α	110	A
51	D	111	C
52	В	112	$^{\mathrm{C}}$
53	Α	113	C
54	D	114	A
55	С	115	C
56	В	116	Α
57	Α	117	В
58	D	118	В
59	В	119	A
60	В	120	D

