

Booklet No.:

CE - 16

Civil Engineering

Duration of Test: 2 Hours		Max. Marks: 120
	Hall Ticket No.	
Name of the Candidate :		
Date of Examination:	OMR An	nswer Sheet No. :
Signature of the Candidate		Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only.
- Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

CE-16-A

CIVIL ENGINEERING (CE)

1.	A system of homo (A) $ A = -1$		100		X = 0 has a no $ A = +1$		
2.	If 2, 1+2i are the e (A) 1-2i	11750 Contract Contract	ulues of a third 1 + i			the th	500 - 104 (A) - 74 (A)
3.	$ If f(x) = (x-1)(x \\ c = $	-2) sa	tisfy Lagrange	Mear	Value theore	m at c	in the interval [1,3], then
	(A) 3						0
4.	If $x = r\cos\theta$, $y =$	$r \sin \theta$,	z = z, then th	e valu	e of $\frac{\partial(x,y,z)}{\partial(r,\theta,z)}$		
	(A) r^2	(B)	$\frac{1}{r}$	(C)	rtan $ heta$	(D)	r
5.	If $y = cx - c^3$ is th	e genei	ral solution of	the dif	Terential equat	ion	
	(A) y'' - xy' - y			(B)	$(y')^3 - xy' +$	y = 0	
	(C) y''' - xy' - y	=0		(D)	y' = 0		
6.	The complementar	ry func	tion of $y'' - 2y$	' + y =	$= x^2 e^x \cos x$ is		
	$(A) c_1 \cos x + c_2 s$	in x		(B)	$c_1 e^x + c_2 e^{-x}$ $(c_1 x + c_2) x e^x$		
	$(C) (c_1 x + c_2) e^x$			(D)	$(c_1x+c_2)xe^x$		
7.	If X is a Poisson d	istribut	ed variable and	d <i>P</i> (X	$(T=0) = \frac{1}{e^2}$, the	en the j	probability distribution
	2	(B)	$\frac{e^{-3}3^x}{x!}$	(C)	$\frac{2^x}{x!}$	(D)	1
	x!	(D)	x!	(0)	x!	(D)	x!
8.	If the mean and va			distrib	ution are 4 and	l 3 resp	pectively, then the
	(A) $C_x^8 \left(\frac{3}{4}\right)^x \left(\frac{1}{4}\right)$	8-x		(B)	$C_x^{16} \left(\frac{3}{4}\right)^x \left(\frac{1}{4}\right)^x$	16-x	
	(C) $C_x^8 \left(\frac{1}{4}\right)^x \left(\frac{3}{4}\right)$	8-x		(D)	$C_x^{16} \left(\frac{1}{4}\right)^x \left(\frac{3}{4}\right)^x$	16-x	
	(4)			(~)	-x (4) (4)	Q	
9.	One root of the eq						
	(A) $(0,1)$	(B)	(1,2)	(C)	(-1,0)	(D)	(-2,0)
Set -[A			2			CE

10.	The	method of succ	essive	e approximatio	$n x_{k+1}$	$=\phi(x_k)$ conver	rges it	f	
	(A)	$ \phi(x) < 1$			(B)	$ \phi(x) > 1$			
	(C)	$ \phi''(x) > 0$			(D)	$ \phi(x) < 2$			
11.		ntilever beam i ram is a	s subj	ected to a mon	nent a	t the free end. 7	The sh	ape of the sh	ear force
	(A)				(B)	Rectangle			
	(C)	Triangle			(D)	Parabola			
12.		simply supporters				79. 556	, the	shapes of the	shear force
	(A)	Uniformly dis	100	2 7	(B)		rving		
	(C)	Exponential			(D)		- , 0		
13.	A nu	imber of forces	acting	g on a point wi	ill be i	n equilibrium i	f		
	(A)	Sum of all the	force	es is zero		16°			
	(B)			_		es in vertical d			
	(C) (D)			he vertical and qually inclined		ontal componer	nts is a	zero	
	(D)	7 III the forces	ui e e	quarry mermea					
14.	The	point of contrat	flexur	e in a fixed bea	am sul	ejected to unifo	rmly	distributed lo	ad
		times the			(C)	0.4	ms	0.5	
	(A)	0.2	(B)	0.33	(C)	0.4	(D)	0.5	
15.	is 0.	rotation at the f .003 radians. If deflection at th	the sa	ıme beam is su					
		1.5mm			(C)	3.5mm	(D)	4.5mm	
	990 8		2 4		25 28		3 50		
16.		symmetrical I s	ection	n, the maximur	n shea	r stress is carri	ed by		
	(A) (B)	•	n of to	op flange and v	veh				
	(C)	Web	11 01 (op nange and s	WCO:				
	(D)	Shear centre							
17.	The	ratio of elongat	ion of	f a conical bar	due to	its own weigh	t and t	that of a prisr	natic bar is
10 T 18		$\frac{1}{2}$		가는 물레는 경험 학생님이 있는데 함께 하는데		within the colors colors with	(D)		
	(/	2	(-)	3	(-)	4	_ /	5	
18.		ccurate express	sion fo	or curvature at	any po	oint along the c	urve (of the deform	ed shape of
	(A)	am is +(dv/dx)/(1+c	d ² v/dx	$(2)^{1/2}$	(B)	$+(d^2v/dx^2)/(1$	+(dv/	$(dx)^2$)3/2	
	(C)	$\pm (dy/dx)/(1+dy/dx^2)/(1+dy/dx^2)/(1+dy/dx^2)$	$+d^2y/d^2$	dx^2) ^{1/2}	(D)	$\pm (dy/dx)/(1+$	d^2y/dx	$(x^2)^2$	
Set -[A				3				CE

19.		Two beams of rectangular section are A and B. Beam A is 300×500 mm and Beam B is 00×300 mm. The ratio of torsional strength of beam A to B is										
	105(11205)	1.0	(B)	3233323		1/2	(D)	3				
20.	The (A) (B) (C) (D)		ction r ion mo ortion	nodulus								
21.	(A)	volumetric stra $\frac{\text{pd}}{2\text{tE}} \left(1 - \frac{1}{\text{m}} \right)$ $\frac{3\text{pd}}{4\text{tE}} \left(1 - \frac{1}{\text{m}} \right)$	ain in t	hin cylindrical	(B)	due to internal $\frac{\text{pd}}{2\text{tE}} \left(\frac{5}{2} - \frac{2}{\text{m}} \right)$ $\frac{3\text{pd}}{4\text{tE}} \left(\frac{5}{2} - \frac{2}{\text{m}} \right)$	pressi	are is				
22.	3 me	slenderness rate etre effective l 120			nn of a	a circular cross	section (D)	on of radius 25 m 480	m and			
23.		(C) Length of column										
24.	A the (A) (C)	ree hinged arcl Curved beam Statically det	in ele	vation	(B) (D)	Quasi static Statically ind	leterm	inate				
25.	A (A) (C)	bean Cantilever Propped cant		nematically de	termir (B) (D)	nate but statica Simply suppo Fixed beam		eterminate.				
26.		leflection unde		pplied load is		$\left(\frac{U}{w}\right)$ where k is		applied at the join stant and its value				
27.	A square , singlebay, fixed portal frame ABCD is subjected to a horizontal load P at the top of column AB towards right. The shear equation is $ \begin{array}{ll} (A) & ((M_{AB}+M_{BA})/L)+((M_{BC}+M_{CB})/L)+P=0 \\ (B) & ((M_{BC}+M_{CB})/L)+((M_{CD}+M_{DC})/L)+P=0 \\ (C) & ((M_{AB}+M_{BA})/L)+((M_{CD}+M_{DC})/L)+P=0 \\ (D) & ((M_{AB}+M_{BA})/L)-((M_{CD}+M_{DC})/L)+P=0 \\ \end{array} $											
Set -[A				4				CE			

28.	The flexibility co-efficient in matrix method of analysis depends on (A) Geometry, loading and elastic properties										
	(B) Geometry and elastic properties	• *************************************									
	(C) Loading and geometry										
	(D) Geometry and loading										
29.	In Stiffness method of Matrix Analysis	of Structures, the unk	knowns to be determined are								
	(A) Stresses	(B) Strains									
	(C) Forces	(D) Displacement	ts								
20	When a concentrated load W mayor ave	n a nailman buidas af	Conon I the agriculant								
30.	When a concentrated load W moves ove uniformly distributed is(W/L	50000000000000000000000000000000000000	span L, the equivalent								
	(A) 1 (B) 2	(C) 4	(D) 8								
	$(A) 1 \qquad (B) 2$	(C) 4	(D) 8								
31.	The approximate compressive strength of	of concrete at 7 days	to 28 days is percent								
	(A) 30 (B) 50	(C) 70	(D) 80								
32.	An RC rectangular slab has the dimensions 'ly' in longer span and 'lx' along the shorter										
	span respectively. The ratio $(l_y/l_x)<2$ and it is supported on opposite longer sides and the										
	other two sides are free. It is to be design	ned as	· · · · · · · · · · · · · · · · · · ·								
	(A) Elastically restrained slab	(B) Flat slab									
	(C) One way slab	(D) Two way slab									
33.	The permissible stress in concrete of an	RC beam under shea	r is computed from								
	percentage of and										
	(A) Tensile steel, Concrete grade										
	(B) Shear reinforcement, Concrete gra	de									
	(C) Compression and tension steel										
	(D) Compression steel and Concrete g	rade									
34.	The short term deflection of an RC bean	n is calculated using	the value of modular ratio 'm'								
	as										
	(A) E_s/E_c (B) $280/3\sigma_{cbc}$	(C) E_c/E_s	(D) $3\sigma_{\rm cbc}/280$								
35.	In an RC element, 8 mm diameter bar	rs are to be provide	ed at 80 mm centre to centre.								
	If 10 mm dia bars are to be used in place	of 8 mm then the sp	pacing ismm.								
	(A) 100 (B) 125	(C) 150	(D) 180								
ì		-									
Set -	A	5	CE								

36.		is the modular tim				10 and 11 0(=m]	then	the elastic neutral	
						$\alpha^2 + \sqrt{\alpha}$			
	(C)	$-\alpha \pm \sqrt{\alpha^2 + 2}$ $mp^2 + \sqrt{mp^2}$	$\frac{1}{2}$ $\pm 2r$	$\frac{1}{n^2n}$	(D)	$mn^2 + \sqrt{\alpha^2}$	- 2mr	_ <u>™</u>	
	(C)	$mp + \sqrt{mp}$	21	πρ	(D)	$mp + \sqrt{a}$	1 2mp	,	
37.	In th	e load balancin	g met	hod applied to	PSC t	beams with para	abolic	cables, the equiva	lent
		ibuted load is_		(Pe/I^2)		1		1	
	(A)		(B)	4	(C)	8	(D)	2	
38.	The	minimum and a	mavin	num nercentage	e of co	mnression rein	force	ment in column is	
20.	THE	of the g			Orco	impression rem	iroreer	nent in column is	
	(A)	0.8% and 4%			(B)	0.8% and 6%			
	(C)	0.8% and 8%			(D)				
	outroe.								
39.	The	maximum spac	ing of	f vertical stirruj					
	(A)	1.0 d			3000			vhichever is less	
	(C)	300 mm			(D)	1.0 d or 300 r	nm wl	nichever is less	
40.	Criti	cal section for	one w	oveheer in foo	ting is	taken from the	a face	of column at a die	tonco
40.	of	cai section for	one w	ay shear iii 100	ting is	taken nom tik	e race	of column at a dis	tance
	(A)	d/2	(B)	d/3	(C)	d	(D)	d/4	
	(, ,)	CU Z	(1)	d/3	(0)	Ci	(D)	CI 1	
41.	In pr	operty class of	8.8 b	olts the first nu	mber	8 and the secon	ıd nun	nber 8 indicate ulti	imate
		le stress of							
	(A)	800/800 MPa			(B)	800/640MPa			
	(C)	88/880 MPa			(D)	64/880 MPa			
10	TC1	1 C 1			c			C 1 1	
42.			tic hir	iges requires to	form	a mechanism i	n case	of propped cantil	ever
	(A)	ected to udl is	(B)	2	(C)	3	(D)	4	
		1	(D)	2	(C)	3	(D)	7	
43.	Lug	angles are used	l to						
	(A)			ngth and shear	lag				
	(B)	Increase the s	trengt	h of joint	10001				
	(C)	Increase the jo	oint le	ength					
	(D)	Increase the s	hear l	ag					
44.	In th	e analysis of be	ann ee	alumne princir	de of	io	nota	alid	
77.		D'Alembert	am c	orannis, princip	(B)		not v	and.	
	(C)	Superposition			(D)	Transmissibil	itv		
	(0)	o apor position			(2)	* * * * * * * * * * * * * * * * * * *	^• <i>J</i>		
45.	The	economical dep	oth of	welded plate g	irder f	or M=6800 kN	lm, (d.	/tw)=180 and	
	$f_y=2$	50MPa is appro				nm		W	
	(A)	1500	(B)	1700	(C)	2000	(D)	1250	
Set -	A				6				CE
100 TOTAL	200				50				

46.	In th	e design of co	olumn b	bases the bear	ring stre	ngth of conc	rete as p	er IS 800 is tak	en as
	(A)	0.7 fck	(B)	5000 fck	(C)	0.45 fck	(D)	0.6 fck	
47.				• 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1				sverse shear equ	ıal
								ot exceed	
	(A)	1/50,180	(B)	1/30,145	(C)	1/40,250	(D)	1/40,145	
48.					gagaran kan matan menalah s	loaded com	pression	member as per	IS
	(A)	2007 is based Euler's	гоп	1011110	на (В)	Merchant F	2 onk ino		
	(C)	Perry Rober	tson		(D)	Secant	Xankine		
	(0)	Teny Rober	13011		(15)	Secun			
49.	The	minimum siz thicknes			t be less	than	mn	n and more than	
	(A)	3, 1 time			(B)	5, 1.5 times	S		
	(C)	6, 2 times			(D)	8, 3 times			
50.		e plastic anal Compatibili	50.0	100	oper bot	and theorem	satisfy_	conditions	•1
	(B)	Mechanism	•						
	(C)	Yield and ed	-						
		Mechanism			capacit	y			
51.	spec	turated undis ific gravity of 1.89	f 2.7. Tl	•	of the c		a moistu (D)	ore content of 30)% and a
52.	respo			3 - 전경하다 1984년 11년 12		or the in-situ	void rat	nditions are 0.4 io of 0.6 will be 80%	
53.	The	field density	and fiel	d moisture co	ontent o	f a soil can h	e detern	nined by	
	1.	Core cutter					0 0000111	mica oj	
	2.	Sand replace							
	3.	Proctor com							
	4.		fi.	ompaction te	et				
	(A)	1, 2, 3 and 4		ompaction to	(B)	1 and 2 onl	V		
	(C)	2 and 3 only			(D)	2 and 4 onl			
	(0)				(~)		9		
54.		liquid limit ar	_						
					ntent is	30%. Its pla	asticity i	ndex and consis	tency
		x will respect	20 (20 miles) 200 4 0 - 10 200 co		(72)	2007 12			
	(A)	20% and 0.			(B)	20% and 2.			
	(C)	30% and 0.7	12		(D)	20% and 0.	.38		
Set -	A				7				CE

	(C)	low volume change	(D)	no volume cha	nge	
56.	Cons	ider the following statements.				
	1.	Organic matter decreases the perm	eabili	ty of soil		
	2.	Entrapped air decreases the permea		(5)()		
		ch of these statements is/are correct		V1 0001		
	(A)	1 only	(B)	2 only		
	(C)	Both 1 and 2	(D)	Neither 1 nor 2)	
	(0)		(2)			
57.	Effec	ctive stress on soil				
	(A)	increases void ratio and decreases	perme	ability		
	(B)	increases both void ratio and perm	- eabilit	.y		
	(C)	decreases both void ratio and perm	eabili	ty		
	(D)	decreases void ratio and increases	perme	ability		
58.	The s	soils most susceptible to liquefaction	n are			
	(A)	saturated dense sands	37. 200.00			
	(B)	saturated fine sands of uniform par	rticle s	size		
	(C)	saturated clays of uniform size				
	(D)	saturated gravels and cobbles				
	(2)	water and gravers and eventure				
59.	Duri	ng consolidation process of clayey	soils,	indicate the seq	uence of the following in	the
	order	from first to last:		•	y (***)	
	1.	Load being taken up by the pore w	ater			
	2.	Load being taken up by the soil gra	ains			
	3.	Drainage of water from the pores of	of the	soil		
	(A)	1, 2 and 3 (B) 2,3 and 1	(C)	1, 3 and 2	(D) 2, 1 and 3	
60.	A bo	rrow pit soil has a dry density of 1	6 kN/	m ³ How many	cubic meters of this sail	ozi11
00.		quired to construct an embankment				YY 111
	(A)	The Asia	(C)	127(0)	(D) 90	
	(* */	(2) 100	(0)		(2)	
61.	If, in	nstead of single drainage, the nu	mber	of drainage fa	aces is increased to two	in
		onding soils, the rate of compression		, — ·		
	(A)	4 times slower	(B)	2 times slower		
	(C)	4 times faster	(D)	2 times faster		
	15 33¢		800 80			
62.	For a	a sample of dry cohesionless soil	with	friction angle,	Ø, the failure plane will	be
		ned to the major principal plane by a		100 miles	\$8 	
	(A)	Ø	(B)	45^{0}		
	(C)	$45^{0} - \emptyset/2$	(D)	$45^{0} + \emptyset/2$		
" Г			-			~~~
Set -	A		8		(CE

(B) moderate volume change

If soil is dried beyond shrinkage limit, it will show

(A) large volume change

Set -	(C)	cohesion and	adhesid	on	(D) 9	cohesion or a	anesio	n	CE	
71.	(A)	ce tension is d			(B)	adhesion	11			
		th of these state 1, 2 and 3 2 and 3 only	ements	are correct?	(B) (D)	1 and 2 only 1 and 3 only				
	2. 3.	Minimum nur The group eff 100%	nber of iciency	f piles to qual of a pile gro	ify as a	a pile group is		100% or more tha	an	
70.	Cons	ider the follow Friction piles	V-00-6		ng pile	es				
69.		drains are used reduce the set increase the p	tlemen		(B) (D)	accelerate the transfer the k		olidation		
68.		ngst the clay m Kaolinite Illite	ninerals	s, the one hav	ing the (B) (D)	maximum sw Montmorillor Halloysite		tendency is		
67.	Whice 1. 2. 3. 4. (A)	ch of the follow Density of soi Angle of inter Depth of foot Width of foot 1, 2 and 3	l mal fric ing ing	ction of soil		ng capacity of				
66.	and I	lateral earth pr K ₀ for at rest co K ₀ <k<sub>a<k<sub>p</k<sub></k<sub>	ondit io	n, compare as	; :			ate, K_p for passi $K_0{<}K_p{<}K_a$	ive state	
65.	10 kľ	ver 5 m deep N/m³. The effect 40 kN/m²	ctive ve	ertical stress a	it 5 m t	from the top of	f sand		$m^3, \Upsilon_w =$	
64.	The a (A) (C)	appropriate fiel Standard Pene Static Cone P	etration	Test	(B)	itu undrained : Plate Load To Vane Shear T	est	strength of a soft	clay is	
63.	show confi	-	interna of 200 l	al friction of 3	30^0 . Th	e deviator stre	ess at fa	riaxial compress ailure for the san 800 kPa		

	(A)	both steady an	nd uns	teady flows							
	(B)	real fluids									
	(C)			along a stream							
	(D)	steady flow of	ideal	fluids along a	strean	n tube					
73.		water jet of are		2 m² strikes at	. 10 n	n/s normally o	n a sta	ationary plate, the forc	e		
	(A)	200 N	(B)	1000 N	(C)	2000 N	(D)	20000 N			
74.	The l	oss of head in a	a pipe	carrying turbu	lent fl	ow varies					
	(A)	82.53		are of the veloc							
	(B)			are of the diam							
	(C) directly as the square of the velocity of flow(D) directly as the velocity of flow										
	(D)	directly as the	veloc	ny or now							
75.	It is proposed to increase the discharge by 20% in a circular pipe carrying oil in laminar regime. If all other factors remain unchanged, power consumption to maintain the modified flow relative to the original flow would increase by (A) 10% (B) 20% (C) 44% (D) 52%										
76.	The average drag coefficient for a laminar boundary layer over a flat plate was obtained as 0.018. If all other factors remain unchanged, and the length of the plate is increased by 4										
		s its original va			_				4		
		0.0036	(B)	0.0056	(C)	0.008	(D)	0.009			
77.	70000000	ing of telephone						Ψ.,			
	(A)	vibrations cau	8.5	/ birds	(B)	tensioning at t					
	(C)	Magnus effect			(D)	generation of	Karma	an vortex street			
78.	In an	open-channel	flow,	for a given disc	charge	,					
	1.	alternate depth	ns are	the depths hav	ing sa	me kinetic ene	rgy				
	2.	alternate depth	ns are	the depths hav	ing sa	me specific en	ergy				
	3.			2000 174 TO 100 TOUR	120	ame specific fo					
	4.			*	1000	ame momentui	n forc	e			
		ch of the above			30/3123600	Land 4	(D)	2 and 4			
	(4)	1 and 3	(D)	2 and 3	(C)	I and 4	(D)	2 and 4			
79.	For a flow		efficie	nt triangular cl	nanne	, the ratio of h	ydraul	ic radius to depth of			
	(A)	$1/2\sqrt{2}$	(B)	$2\sqrt{2}$	(C)	$\sqrt{2}$	(D)	1/2			
Set -	A				10			CE	2		

The Bernoulli's equation is applicable to

	(A)	M_1 , S_1 , C_1			(B)	M_2 , S_2 , H_2 , A_3	2		
	(C)	M_3 , S_3 , H_3 , A_3	3		(D)	none of these			
81.	A hy	draulic jump o	ccurs	when there is a	a break	t in grade from	a		
	(A)	mild to steep			(B)	steep to mild			
	(C)	steep to steep	er		(D)	mild to milde	r		
82.		ss the flow whi						ip readings varied only direction flow. The type	*
	(A)	uniform irrota	ational		(B)	uniform rotat	ional		
	(C)	non-uniform i	irrotat	ional	(D)	non-uniform	rotatio	onal	
83.		100 model of a otype in m ³ /s is		way, the discha	rge is	$0.1 \text{ m}^3/\text{s}$. The	corres	ponding discharge in the	e
	(A)	10	(B)	100	(C)	1000	(D)	10000	
84.	Cons	ider the follow	ing ty	pes of turbines	3				
	1.	Francis							
	2.	Pelton with a	single	e jet					
	3.	Kaplan							
	The:	sequence of the	ese tur	bines in the inc	creasir	ig order of thei	r spec	ific speeds is	
	(A)	1, 3 and 2	(B)	2, 1 and 3	(C)	1, 2 and 3	(D)	2, 3 and 1	
85.		identical pum ected in paralle					c agai	nst a head of 30 m, are	e
	(A)	0.4 cumec aga	ainst a	head of 30 m					
	(B)	0.4 cumec aga	ainst a	head of 60 m					
	(C)	0.2 cumec aga	ainst a	head of 30 m					
	(D)	0.2 cumec aga	ainst a	head of 60 m					
86.	The	rainfall on fou	ır suc	cessive days c	over a	catchment are	2, 6,	, 9 and 5 cm. If $\emptyset = 3$	5
	cm/d	ay, the direct r	unoff	from the catch	ment i	S			
	(A)	2 cm	(B)	5 cm	(C)	6 cm	(D)	9 cm	
87.		e peak of a 2 h effective rainf				1950° (2. – 23)		f a flood hydrograph du 5 m³/s is	e
	(A)	$25 \text{ m}^3/\text{s}$	(B)	$30 \text{ m}^3/\text{s}$	(C)	$40 \text{ m}^3/\text{s}$	(D)	$45 \text{ m}^3/\text{s}$	
Ē									
Set -	A				11			CE	

Which of the following GVF profiles are drawdown profiles?

88.		of concer				and of intensity			_
	(A) 0.4		(B) 4	$1 \text{ m}^3/\text{s}$	(C)	$36 \text{ m}^3/\text{s}$	(D)	$40 \text{ m}^3/\text{s}$	
89.		ume of wat		can be extr	acted	by force of gr	ravity	from a un	it volume of
	(A) spe	ecific yield			(B)	specific retent	ion		
	(C) spe	ecific storag	ge		(D)	specific capac	eity		
90.	reservoir (A) att (B) att (C) inc	r. The outflo enuated pea enuated pea creased peak	ow hydr ik with i ik with i k with ii	wn inflow hy ograph will le reduced time increased time ncreased time educed time	nave base le base base	caph is routed	throu	gh a large	uncontrolled
91.	applicati		cy is 8			nent of a crop i conveyance			
	(A) 25	cm	(B) 2	20 cm	(C)	18.67 cm	(D)	17.5 cm	
92.	discharg	and the second s	to grov	w them are (o grow sugarend 0.27 respec			Than an are the state of the second
	(A) = 0.3	36 cumec			(B)	0.40 cumec			
	(C) 0.6	63 cumec			(D)	0.70 cumec			
93.		ran garan di Santa and Santa and Santa		ere is nearly anspiration is		drop in the av	vailab	le moisture.	, the ratio of
	(A) 1.0)	(B) 0).7	(C)	0.5	(D)	0.2	
94.	theory, t	o carry the n that of N.	same q	uantum of d	ischarg	fferent sites arge. But the bed		~	
	(B) Ch	nannel N wi	ll have s	steeper longi steeper longi	tudina	l slope			
		ting is more		n have same han in N	longit	udinai siope			
95.	If the do	wnstream f	ace of t maximu	he dam has a	a slope	cal stress at the of 0.707 horizat the toe of the 3.6 MPa	zontal e dam	: 1 vertical	
Set -	A		্য ক		12		,		CE
~** [o r				

96.		e treatment of ual chlorine af		7.0					_	
	(A)	10	(B)	5	(C)	12	(D	9) 7		
97.	filtra	order of mentation(PS), tion(RSF) (firs PS→RSF→F	seco t to las	st) commonly	entatio used in	on(SS), n a conv	chlorinati	on(C) er treatr	and rapid ment plant is	
	(C)	$PS \rightarrow F \rightarrow SS -$			2000.000.00		RM→F→SS			
98.	MPN index is a measure of one of the following:									
	(A)	Coliform bact	eria		(B)	BOD_5				
	(C)	Dissolved oxy	/gen c	ontent	(D)	Hardne	ess			
99.	Aera	tion of water is	done	to remove						
	(A)	suspended im	puritie	es	(B)	colour				
	(C)	dissolved salts	S		(D)	dissolv	ved gases			
100.	Blue	baby disease in	n chile	lren is caused	by the	presenc	ce of excess	5		
	(A)	chlorides			(B)	nitrate	s			
	(C)	fluoride			(D)	lead				
101.	The	water distributi	on ma	ins are design	ed for					
	(A)	maximum hou	ırly de	emand	(B)	averag	e hourly de	mand		
	(C)	maximum dai	ly den	nand	(D)	averag	e daily den	nand		
102. The alkalinity and the hardness of a water sample are 250 mg/l and 350 mg/l as respectively. Then water has							mg/l as CaC	Ю3,		
	(A)	A) 350 mg/l carbonate hardness and zero non-carbonate hardness								
	(B)	250 mg/l carbonate hardness and zero non-carbonate hardness								
	(C)	250 mg/l carbonate hardness and 350 mg/l non-carbonate hardness								
	(D)	250 mg/l carb	onate	hardness and	100 mg	g/l non-	carbonate h	ardness	S	
103.	A co	A combined sewer is one which carries								
	(A)	(A) domestic sewage and storm water								
	(B)	domestic sewa	age an	d industrial w	astes					
	(C)	domestic sewa	age an	d overhead flo)W					
	(D)	domestic sewa	age, in	ndustrial waste	s and s	storm w	ater			

13

Set - A

 $\mathbb{C}\mathbb{E}$

104.	The relationship between theoretical oxygen demand (TOD), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) is given by											
	(A) TOD>BOD>COD (B) TOD>COD>BOD											
	(C) COD>BOD>TOD (D) BOD>COD>TOD											
	(c) cobrbobrios (b) bobreobrios											
105.	Critical factors for the activated sludge treatment process are (A) maximum hourly flow rate											
	(B) maximum and minimum flow rates											
	(C) maximum hourly flow rate and maximum daily organic load											
	(D) minimum hourly flow rate and minimum daily organic load											
106.	The main constituents of gas generated during the anaerobic digestion of the sludge are											
	(A) carbon dioxide and methane											
	(B) methane and ethane											
	(C) carbon dioxide and carbon monoxide											
	(D) carbon monoxide and nitrogen											
107.	During temperature inversion in the atmosphere, air pollutants tend to											
	(A) accumulate above inversion layer (B) accumulate below inversion layer											
	(C) disperse laterally (D) disperse vertically											
108.	Ozona lavor doplation is bassage of											
100.	Ozone layer depletion is because of (A) hydrocarbons (B) carbon monoxide											
	(C) chlorofluro carbons (D) carbon dioxide											
	(C) Chloronaro carbons (D) Carbon dioxide											
109.	The presence of organic matter as the significant portion of a solid waste indicates its suitability for											
	(A) land filling (B) composting											
	(C) incineration (D) pyrolysis											
G 6000 P												
110.												
	of these noise levels on the human ear is (A) <90 dB (B) 90 dB (C) 94 dB (D) >94 dB											
	(A) $<90 \text{ dB}$ (B) 90 dB (C) 94 dB (D) $>94 \text{ dB}$											
111.	The rate of super elevation for a horizontal curve of radius 500 m in a national highway for											
	a design speed of 100 kmph is											
	(A) 0.04 (B) 0.063 (C) 0.07 (D) 0.70											
112.	Bitumen of grade 80/100 means											
	(A) Its penetration value is 8 mm											
	(B) its penetration value is 10 mm											
	(C) its penetration value is 8 to 10 mm											
	(D) its penetration value is 8 to 10 cm											
Set -	A 14 CE											
oct -	A CE											

Set -	<u>/1</u> %_				15				Œ
_{50.4} [A			<u> Carlonnal III. Carl</u>	1 <i>E</i>	············		×.	ale.
120.	upsid	of a floor is 20 de down agains 3.5 m	t the bo		of is 3			Reading on the staff he ceiling is 6.0 m	eld
119.	station The	r fixing the pla on are 1. Levell correct sequenc 3, 1, 2	ing 2. C	Orientation 3 ese operations	. Cent is	ering		eded at each plane ta	ble
118.	The (A) (B) (C) (D)	rise and fall me Intermediate s back sights an back sights, in back sights an	ights or d fore s termed	nly sights iate sights and	i fore	NASC 32	des ari	thmetic check on	
117.	B fro	whole circle be om AB to BC is 50 ⁰				d of line BC is	s 120 ⁰ .	The deflection angle 120^0	t at
116.	origi	F1	ng now	measures 9 c survey in m ²	m. Th			in such a way that a l d plan is measured as 10,000	
115.		number of pote		ajor conflict p		would be	(D)	ntrolled intersection, 32	the
	(A) (B) (C) (D)		nicles of m ne to ac	ccupying a un	iit leng ne veh	gth of road wa	y at a ;	given instant expresse	:d
114.									
	(C) (D)	over the sub-g					eded		
	(A) (B)	over the sub-b	-base						

The position of base course in a flexible pavement is

SPACE FOR ROUGH WORK

CIVIL ENGINEERING (CE) SET-A

Question No	Answer	Question No	Answer
1	D	61	С
	A	62	D
2 3	С	63	В
	D	64	D
4 5	В	65	В
6	\mathbf{C}	66	В
7	A	67	D
8	D	68	В
9	Α	69	В
10	Α	70	A
11	Α	71	A
12	C	72	D
13	C	73	
14	Α	74	C C
15	D	75	C
16	C	76	A
17	В	77	D
18	В	78	В
19	A	79	A
20	D	80	В
21	В	81	В
22	В	82	D
23	D	83	D
24	\mathbf{C}	84	В
25	D	85	A
26	В	86	В
27	C	87	D
28	В	88	В
29	D	89	A
30	D	90	В
31	С	91	A
32	C	92	D
33	Α	93	A
34	A	94	В
35	В	95	C
36	A	96	D
37	C	97	D
38	В	98	A
39	В	99	D
40	С	100	В

41	В	101	A
42	В	102	D
43	A	103	A
44	C	104	В
45	В	105	C
46	D	106	A
47	D	107	В
48	C	108	С
49	A	109	В
50	В	110	D
51	D	111	C
52	В	112	C
53	В	113	С
54	A	114	A
55	D	115	D
56	В	116	D
57	C	117	В
58	В	118	C
59	С	119	A
60	В	120	C

