Andhra Pradesh State Council of Higher Education

Question Paper Name: Nano Technology NT 30th Sep 2020 Shift 2

Subject Name: Nano Technology (NT)
Creation Date: 2020-09-30 17:27:26

Duration:120Total Marks:120Display Marks:NoShare Answer Key With Delivery Engine:YesActual Answer Key:Yes

Nano Technology (NT)

Group Number: Group Id: 29996541 **Group Maximum Duration:** 0 **Group Minimum Duration:** 120 **Show Attended Group?:** No **Edit Attended Group?:** No 0 Break time: Group Marks: 120 Is this Group for Examiner?: No Revisit allowed for group Instructions?: Yes **Maximum Instruction Time:** 0 **Minimum Instruction Time:** 0

Nano Technology (NT)

Section Id: 29996541
Section Number: 1
Mandatory or Optional: Mandatory

Number of Questions :120Section Marks :120Display Number Panel :YesGroup All Questions :YesMark As Answered Required? :YesSub-Section Number :1

Sub-Section Id: 29996541

Question Shuffling Allowed: Yes

Question Number: 1 Question Id: 2999654801 Question Type: MCQ Display Question Number: Yes Is Question

Mandatory: No Single Line Ouestion Option: No Option Orientation: Vertical

The rank of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ is _____.

Options:

- 1. **0**
- 2. 1
- 3 2
- 4. 3

Question Number: 2 Question Id: 2999654802 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Let $A = \begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix}$. Which of the following matrix is similar to A?

Options:

$$\begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}$$

1

$$\begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix}$$

2.

$$\begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix}$$

3.

$$\begin{pmatrix} -1 & 0 \\ 0 & 6 \end{pmatrix}$$

4.

Question Number: 3 Question Id: 2999654803 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

$$\underset{x\to 0}{\text{Lt}} \left(\frac{1}{\sin x} - \frac{1}{x} \right) = ?$$

Options:

- 1 1
- 2. 0
- 3. 2
 - 00
- 4.

Question Number: 4 Question Id: 2999654804 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

The function $f(x) = \frac{1}{3}x^3 - x^2 - 15x + 10$ has local maximum value at x =

Options:

- 1. 5.
- -3 2,
- 3.
 - 4 3

Question Number: 5 Question Id: 2999654805 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Which of the following is the differential equation whose set of independent

solutions are $\{e^x, xe^x\}$.

Options:

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$$

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - y = 0$$

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$$

3.

$$\frac{d^2y}{dx^2} + 2y = 0$$

Question Number: 6 Question Id: 2999654806 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

The inverse Laplace transform of $F(s) = \frac{e^{-3s}}{s+2}$ is

Options:

$$e^{-2(t-3)}$$

$$e^{-2(t+3)}$$

$$e^{-2(t-3)}u(t-3)$$

3.

$$e^{-2(t+3)}u(t-3)$$

4.

Question Number: 7 Question Id: 2999654807 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

If X is a random variable and variance V(X) = 3 then $V(4X + 3) = _____$.

Options:

96 4.

Question Number: 8 Question Id: 2999654808 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

The equations of regression lines are y = 0.5x + a and x = 0.4y + b. Then the correlation coefficient is _____.

Options:

 $\sqrt{0.3}$

 $\sqrt{0.2}$

0.45

 $\sqrt{2}$

Question Number: 9 Question Id: 2999654809 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

What is the first iterative root of the equation $x^3 - 2x - 5 = 0$? If root lies between 2 and 3, using False position method.

Options:

32/17

35/17

33/17

4,37/17

Question Number: 10 Question Id: 2999654810 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

The solution y(1.1) of the initial value problem

$$\frac{dy}{dx} = x + 2y$$
, $y(1) = 1$, $h = 0.1$

using the 2nd order Runge – Kutta method.

Options:

- 1.335
- 2. 1.336
- 3. 1.330
- 4. 1.341

Question Number: 11 Question Id: 2999654811 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Varignon's theorem is used to find _____.

Options:

direction of resultant force

location of resultant force

magnitude of resultant force

nature of resultant force

Question Number: 12 Question Id: 2999654812 Question Type: MCQ Display Question Number: Yes Is

Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

If diameter of a shaft is doubled the power transmitted capacity will be

Options:

Either twice or half

Four times

3. Eight times

4. Same

Question Number: 13 Question Id: 2999654813 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical Moment of inertia of a rectangular section having width (b) and depth (d) about an axis passing through its C.G. and parallel to the width (b), is

Options:

- db^3
- 1. 12
- $\frac{bd^3}{12}$
- $\frac{\mathrm{db}^3}{36}$
- $\frac{bd^3}{36}$

Question Number: 14 Question Id: 2999654814 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Limiting force of friction is the

Options:

Tangent of angle between normal reaction and the resultant of normal reaction and limiting friction

2. Ratio of limiting friction and normal reaction

The friction force acting when the body is just about to move 3.

The friction force acting when the body is in motion

Question Number: 15 Question Id: 2999654815 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

The temperature di	istribution in a large thin plate with uniform surface temperature
will be	as per steady state condition.
Options :	
1. Logarithmic	
Hyperbolic 2.	
3. Parabolic	
Linear 4.	
Question Mandatory : No	uestion Id: 2999654816 Question Type: MCQ Display Question Number: Yes Is Single Line Question Option: No Option Orientation: Vertical following forms of water have the highest value of thermal
conductivity?	
Options:	
Boiling water	
Steam 2.	
Solid ice	
Melting ice	
	uestion Id: 2999654817 Question Type: MCQ Display Question Number: Yes Is Single Line Question Option: No Option Orientation: Vertical
The angle between	n normal stress and tangential stress is known as angle of
Options :	
declination	
2. orientation	
obliquity	

4. 10	otation
-------	---------

Question Number: 18 Question Id: 2999654818 Question Type: MCQ Display Question Number: Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical	Yes Is
A stone of mass 'm' at the end of a string of length ' ℓ ' is whirled in a vertica	l circle
at a constant speed. The tension in the spring will be maximum when the sto	one is
Options:	
at the top of the circle	
half way down from the top	
quarter-way down from the top	
at the bottom of the circle 4.	
Question Number: 19 Question Id: 2999654819 Question Type: MCQ Display Question Number: Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical	Yes Is
During transverse vibrations, shaft is subjected totype of stresses).
Options:	
Tensile stresses	
Torsional shear stress	
3. Bending stresses	
Shear stress 4.	
Question Number : 20 Question Id : 2999654820 Question Type : MCQ Display Question Number : Question Mandatory : No Single Line Question Option : No Option Orientation : Vertical	Yes Is
The magnitude of buoyancy force can be explained by	
Options:	
Newton's Second law of motion	
2. Archimedes' principle	

3. Principle of Moments

Newton's First law of motion

4.

Question Number: 21 Question Id: 2999654821 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Factor of safety is defined as the ratio of ______.

Options:

ultimate stress to working stress

1.

working stress to ultimate stress

breaking stress to ultimate stress

ultimate stress to breaking stress

Question Number: 22 Question Id: 2999654822 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

If μ is the Poisson's ratio then the ratio of Young's modulus E to shear modulus G of elastic material is ______.

Options:

 $_{1.}$ 2(1 + μ)

 $_{2.}$ 2 (1 – μ)

 $\frac{1}{2(1+\mu)}$

 $\frac{1}{2(1-\mu)}$

Question Number: 23 Question Id: 2999654823 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

The magnitude of two forces, which when acting right angle produce resultant force
of $\sqrt{10}$ kg. Then these forces are kg.
Options:
$_{1.}$ 2 and $\sqrt{6}$
3 and 1 2.
$\sqrt{5}$ and $\sqrt{5}$
4. 2 and 5
Question Number: 24 Question Id: 2999654824 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Which of the following equations applies to the fluid flow through a packed bed for
very large Reynolds number?
Options:
1. Fanning equation
Blake-Plummer equation 2.
3. Hagen-Poiseuille equation
4. Kozney-Carman equation
Question Number: 25 Question Id: 2999654825 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Ratio of the square root of inertia force to the elastic force is
Options:
Euler Number
Froude Number 2.
Weber Number

Question Number: 26 Question Id: 2999654826 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical Dynamic head in a fully developed flow can be measured by **Options:** 1. Venturimeter Pitot tube 3. Pitot tube and piezometer _{4.} Dynamometer Question Number: 27 Question Id: 2999654827 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical A cable with a uniformly distributed load per horizontal meter run will take the shape. **Options:** Straight line Parabola 2. 3. Hyperbola Elliptical Question Number: 28 Question Id: 2999654828 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical Navier Stoke's equation represents the conservation of _____. **Options:**

Mach Number

- _{2.} mass
- pressure 3.
- momentum

Question Number: 29 Question Id: 2999654829 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

When is the arithmetic mean temperature difference of heat exchanger used instead of LMTD?

Options:

When the temperature profiles of two fluids of heat exchanger are sloping downward with curve

When the temperature profiles of two fluids of heat exchanger are sloping upward with curve

When the temperature profiles of two fluids of heat exchanger are straight 3.

When the temperature profiles of two fluids of heat exchanger are curve

Question Number: 30 Question Id: 2999654830 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Two flows are specified as

A)
$$u = 2y$$
, $v = -(1/2)x$ B) $u = x^2y$, $v = xy^2$

Which one of the following can be concluded?

Options:

Both flows are rotational

Both flows are irrotational

Flow A is rotational while flow B is irrotational

4. Flow A is irrotational while flow B is rotational

Question Number: 31 Question Id: 2999654831 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

A composite wall consists of two layers of different materials having conductivities

K₁ and K₂. For the equal thickness of the two layers, the equivalent thermal conductivity of the slab is _____.

Options:

$$K_1 + K_2$$

$$_{2.}\,K_{1}K_{2}$$

$$\frac{2K_{1}K_{2}}{K_{1}+K_{2}}$$

$$\frac{K_1 + K_2}{K_1 K_2}$$

Question Number: 32 Question Id: 2999654832 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

There is no direct contact of flame and metal in which of the following type of

furnaces?

Options:

1. Cupola

2. Crucible

3 Electric arc

4. Induction

Question Number: 33 Question Id: 2999654833 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

The continuity equation is the result of application of the following law to the flow
field.
Options:
First law of thermodynamics
Law of conservation of energy
Law of conservation of mass
Law of conservation of momentum 4.
Question Number: 34 Question Id: 2999654834 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Which one of the following has least value of thermal conductivity?
Options:
Iron 1.
Water 2.
Aluminium 3.
Air 4.
Question Number: 35 Question Id: 2999654835 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
A steam pipe is covered with two layers of insulating materials, with the better
insulating material forming the outer part. If the two layers are interchanged, the
heat conducted
Options:
will decrease 1.
will increase

3. will remain unaffected
may increase or decrease depending upon the thickness of each layer
Question Number: 36 Question Id: 2999654836 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
No heat exchange from gas to surroundings occurs if gas expands
Options: Isothermally 1.
In air
Adiabatically 3.
In inertgas 4.
Question Number: 37 Question Id: 2999654837 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical The net positive suction head (NPSH) of a centrifugal pump is defined as the sun
of the velocity head and the pressure head at the
Options:
discharge 1.
2. suction
3. suction minus vapor pressure of the liquid at suction temperature
4. discharge minus vapor pressure of the liquid at the discharge temperature
Question Number: 38 Question Id: 2999654838 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
The processes occurring in an open system which permit the transfer of mass to and
from the system, are known as
Options:

- flow processes
- 2. non-flow processes
- adiabatic processes
- 4. cyclic process

Question Number: 39 Question Id: 2999654839 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

The point of contra-flexure is the point where

Options:

- Bending moment is minimum
- Bending moment changes its sign
- Bending moment is constant
- Bending moment is maximum

Question Number: 40 Question Id: 2999654840 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

A chemical reaction is not feasible if

Options:

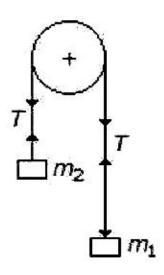
- Δ H is positive and Δ S is negative
- $_2$ ΔH is positive and ΔS is positive
- $_{3}$ ΔH is negative and ΔS is positive
- ΔH is negative and ΔS is negative

Question Number: 41 Question Id: 2999654841 Question Type: MCQ Display Question Number: Yes Is

Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

In free convection heat transfer, Nusselt number is a function of
Options:
Reynolds's Number
2. Grashoff's Number
Reynolds's Number and Grashoff's Number
Prandtl Number and Grashoff's Number 4.
Question Number: 42 Question Id: 2999654842 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Gibbs free energy ' ΔG ' is given by
Options:
RT ln K
-RT ln K
-R ln K
T ln K
Question Number: 43 Question Id: 2999654843 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Which of the following forced convection heat transfer equation accounts for the
liquid viscosity effect for viscous liquids?
Options:
Dittus-Boeltier equation 1.
Sieder-Tate equation

Nusselt equation


3.

4.

Dittus-Lucii equation

Question Number: 44 Question Id: 2999654844 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

If the masses of both the bodies, as shown in the below figure, are reduced to 50%, then tension in the string will be _____.

Options:

tripled

doubled

2.

same

3.

4. halved

Question Number: 45 Question Id: 2999654845 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical For the same inlet and exit temperatures of two fluids, the LMTD for counter flow is always

Options:

smaller than LMTD for parallel flow

greater than LMTD for parallel flow

3. same as LMTD for parallel flow
4. do not change in LMTD for parallel flow
Question Number : 46 Question Id : 2999654846 Question Type : MCQ Display Question Number : Yes Is Question Mandatory : No Single Line Question Option : No Option Orientation : Vertical
Which of the following has the best resolution?
Options:
1. SEM
_{2.} TEM
Optical Microscope 3.
Inverted microscope 4.
Question Number : 47 Question Id : 2999654847 Question Type : MCQ Display Question Number : Yes Is Question Mandatory : No Single Line Question Option : No Option Orientation : Vertical
Silver nanoparticles can promote wound healing through the modulation of which
of the following?
Options:
1. Lymphocytes
2. Leukocytes
3. Platelets
4. Cytokines
Question Number : 48 Question Id : 2999654848 Question Type : MCQ Display Question Number : Yes Is Question Mandatory : No Single Line Question Option : No Option Orientation : Vertical
The energy gap of semiconductors is
Options:
Constant 1.

Varies with temperature 2.
Varies with voltage
Varies with doping concentration 4.
Question Number: 49 Question Id: 2999654849 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
High stacking - fault energy metal exhibit
Options:
1. same work hardening
low work hardening 2.
do not work hardening 3.
high work hardening 4.
Question Number: 50 Question Id: 2999654850 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Cp of an ideal gas at room temperature is usually
Options:
1. greater than Cv
less than Cv
equal to Cv
4. do not effect Cv

Question Number: 51 Question Id: 2999654851 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

An edge dislocation can move into a different slip plane by
Options:
1. glide
cross-slip 2.
cross-slip and climb 3.
4. climb
Question Number: 52 Question Id: 2999654852 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Gun metal is an alloy of
Options:
Ni, Sn & Cu
2. Mn, Ni & P
3. Cu, P & Ni
4. Cu, Sn & Zn
Question Number: 53 Question Id: 2999654853 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
In face-centered cubic lattice, the most closely packed planes are
Options:
1. (1 0 0)
2. (1 1 2)
3. (1 1 1)
(1 1 0)

Question Number: 54 Question Id: 2999654854 Question Type: MCQ Display Question Number: Yes Is

Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

The dislocation reaction $\frac{a}{2}[1\ 1\ 1] + \frac{a}{2}[1\ 1\ 1] \rightarrow a[1\ 0\ 0]$ is

Options:

- energetically favourable
- energetically unfavourable
- _{3.} vectorially unbalanced
- 4. likely to occur in Tin.

Question Number: 55 Question Id: 2999654855 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical The maximum number of phases that can be in equilibrium in a binary

metal system is _____.

Options:

- 1. 4
- 2. 3
- 3, 2
- 4. 1

Question Number: 56 Question Id: 2999654856 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

The stacking fault energy of metal A is greater than that of metal B, then

Options:

width of stacking fault will be greater in metal A

width of stacking fault will be greater in metal B

cross-slip of screw dislocation will be easier in metal B

4. metal A will work harden more than metal B

Question Number: 57 Question Id: 2999654857 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Carbon percentage in Razor blades is in the range of
Options:
1. 0.1 - 0.3
2. 0.3 - 0.5
0.6 - 0.8 3.
4. 1.1 - 1.4
Question Number: 58 Question Id: 2999654858 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Hydrogen bonds are stronger than
Options:
1. Vander Walls bonds
2. Ionic bonds
3. Metallic bonds
4. Covalent bonds
Question Number: 59 Question Id: 2999654859 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
For soft magnetic materials magnetic coercivity and saturation magnetization
should be
Options:
low and low
high and high


```
low and high
high and low
Question Number: 60 Question Id: 2999654860 Question Type: MCQ Display Question Number: Yes Is
Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
 Example for a thermosetting polymer is
Options:
<sub>1.</sub> polyethylene
polyester 2.
  cellulose nitrate
4. PVC
Question Number: 61 Question Id: 2999654861 Question Type: MCQ Display Question Number: Yes Is
Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
 In the PTFE (Teflon) monomer, the four side groups are
Options:
  FFFF
1.
   нннн
2.
3. HHHCl
  HHHCH3
```

Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Question Number: 62 Question Id: 2999654862 Question Type: MCQ Display Question Number: Yes Is

The equation PV = nRT is valid for

Options:
1. Low pressure and High temperature
High pressure and Low temperature
3. Low pressure and Low temperature
High pressure and High temperature 4.
Question Number: 63 Question Id: 2999654863 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Unit of fugacity is same as that of the
Options:
1. Temperature
Volume 2.
3. Pressure
4. Molar Concentration
Question Number: 64 Question Id: 2999654864 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical Corrosion resistance of stainless steel is due to
options: presence of Mo
addition of Cr
presence of C
4. addition of Ni

Question Number: 65 Question Id: 2999654865 Question Type: MCQ Display Question Number: Yes Is

Joule-Thomson coefficient is the ratio of
Options: 1. Pressure change to temperature change during adiabatic compression of gas
Temperature change to pressure change during adiabatic throttling of gas 2.
Temperature change to pressure change during adiabatic compression of gas
Pressure change to temperature change during adiabatic throttling of gas 4.
Question Number: 66 Question Id: 2999654866 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical For the constant pressure and heat input, the order of air standard efficiency of gas
power cycle is
Options:
Dual cycle, Diesel cycle, Otto cycle 1.
2. Otto cycle, Diesel cycle, Dual cycle
Dual cycle, Otto cycle, Diesel cycle 3.
Diesel cycle, Otto cycle, Dual cycle 4.
Question Number: 67 Question Id: 2999654867 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
High air-fuel ratio in gas turbines
Options:
increases power output
improves thermal efficiency 2.
3. reduces exhaust temperature


```
do not damage turbine blades
4.
Question Number: 68 Question Id: 2999654868 Question Type: MCQ Display Question Number: Yes Is
Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
 Erichsen cupping test is known as _____.
Options:
  creep test
  torsion test
  fatigue test
   formability test
4.
Question Number: 69 Question Id: 2999654869 Question Type: MCQ Display Question Number: Yes Is
Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
 Overall transformation rate changes with temperature _______.
Options:
monotonically decreases
2. first increases, then decreases
3. initially slow and then picks-up
4. monotonically increases
Question Number: 70 Question Id: 2999654870 Question Type: MCQ Display Question Number: Yes Is
Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
 What is the relation between brake efficiency, internal efficiency and mechanical
 efficiency?
Options:

\eta_{\text{internal}} = \eta_{\text{mech}} * \eta_{\text{brake}}
```



```
\eta_{mech} = \eta_{internal} * \eta_{brake}

\eta_{\text{brake}} = \eta_{\text{internal}} * \eta_{\text{mech}}

3.
\eta_{mech} = \eta_{internal} - \eta_{brake}
Question Number: 71 Question Id: 2999654871 Question Type: MCQ Display Question Number: Yes Is
Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
 Unit of mole fraction is ______.
Options:
Moles/L3
Moles/L<sup>2</sup>
3. Moles/L
<sub>4.</sub> Dimensionless
Question Number: 72 Question Id: 2999654872 Question Type: MCQ Display Question Number: Yes Is
Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
  Which one of the following statements regarding a dynamic equilibrium is false?
Options:
   At equilibrium, there is no net change in the system.
2 At equilibrium, the concentration of reactants and products are the same.
  At equilibrium, the forward and back reactions cease to occur.
At equilibrium, the rates of the forward and back reactions are identical.
```

Question Number: 73 Question Id: 2999654873 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

The vapour pressure is related to the enthalpy of vaporization in
Options :
Clausius Clapeyron equation
Henry's law
3. Raoult's law
Maxwell's equation
Question Number: 74 Question Id: 2999654874 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Surgical instruments are made of
Options :
super alloys
2. martensitic stainless steels
high carbon steels
austenitic stainless steels
Question Number: 75 Question Id: 2999654875 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical What is the effect of temperature on stiffness of a metal? Options:
Temperature has no effect on stiffness of a metal.
As temperature increases stiffness of metal decreases.
As temperature increases stiffness of metal increases. 3.
As temperature decreases stiffness of metal decreases.

Question Number: 76 Question Id: 2999654876 Question Type: MCQ Display Question Number: Yes Is

Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical Electrical conductivity of the specimen is a requirement for which of the following microscopic examination techniques?

Options:

- Optical microscopy
- Transmission electron microscopy
- Scanning electron microscopy
- Scanning probe microscopy


Question Number: 77 Question Id: 2999654877 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical Which type of crystals generally are good optical reflectors?

Options:

- Metals 1.
- 2. Ionic crystals
- 3. Covalent crystals
- 4. Liquid crystals

Question Number: 78 Question Id: 2999654878 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Which defect does the following figure depict?

Options:


```
Vacancy defect
2. Schottky defect
3. Frankel defect
4. Interstitial defect
Question Number: 79 Question Id: 2999654879 Question Type: MCQ Display Question Number: Yes Is
Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
 The stress-strain curve of single crystal undergoing twinning shows _____.
Options:
   no irregularity
1.
  jagged irregularities
  sudden drop in the curve
4. peaks
Question Number: 80 Question Id: 2999654880 Question Type: MCQ Display Question Number: Yes Is
Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Mild steel is an alloy of iron and carbon with percentage of carbon ranging from
Options:
0-0.2
  0.15 - 0.3
2.
  0.3 - 0.5
  0.5 and above
```

Question Number: 81 Question Id: 2999654881 Question Type: MCQ Display Question Number: Yes Is

Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Nanomaterials are exceptionally strong, hard and ductile at temperatures.
Options:
1. high
low 2.
very low
melting point 4.
Question Number: 82 Question Id: 2999654882 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Which of the following type of composite is not classified under the category of
number of layers? Options:
Unidirectional fibre reinforced 1.
2. Laminar
Sandwich panels
Glass-fibre reinforced 4.
Question Number: 83 Question Id: 2999654883 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
In the intrinsic semiconductors, the Fermi level lies
Options: near conduction band
near valence band
3. at the midway of energy gap

_{4.} in the conduction band Question Number: 84 Question Id: 2999654884 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical Carbon nanotubes, often called the strongest material have which of the following properties? (i) high electrical and thermal conductivity. (ii) very high tensile strength. (iii) higher lifetime. **Options:** (i) only (i) and (ii) only (i) and (iii) only 4. (i), (ii) and (iii) Question Number: 85 Question Id: 2999654885 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical A nanomaterial is a material where some controllable relevant dimensions are of the order of _____. Options: 1. 100 nm _{2.} < 100 nm > 100 nm below 1 nm

Question Number: 86 Question Id: 2999654886 Question Type: MCQ Display Question Number: Yes Is

Question Mandatory: No Single Lin Sol-gel method is a	e Question Option : No Option Orientation : Vertical approach.
Options:	
bottom up	
up bottom	
top down	
down top	
1759	2999654887 Question Type: MCQ Display Question Number: Yes Is e Question Option: No Option Orientation: Vertical cp unit cell is
Options:	
68%	
7 4% 2.	
58% 3.	
62% 4.	
10 TO	2999654888 Question Type: MCQ Display Question Number: Yes Is e Question Option: No Option Orientation: Vertical
Which of the following is a	n example of a soft magnetic material?
Options:	
1. Permalloy	
Strontium 2.	
3. Alnico	

Neody	millim
ricody	********

Question Number: 89 Question Id: 2999654889 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Fugacity is most helpful in
Options: representing actual behaviour of real gases 1.
2. representing actual behaviour of ideal gases
3. the study of chemical equilibria involving gases at atmospheric pressure
not representing the actual behaviour of ideal gases 4.
Question Number: 90 Question Id: 2999654890 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
While driving, a driver suddenly find bug splatters on wind screen of car. Which
among the following undergoes greater change in momentum? Options:
Momentum for bug and car is same
_{2.} Car
3. Driver
Bug 4.
Question Number: 91 Question Id: 2999654891 Question Type: MCQ Display Question Number: Yes Is

Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

In the Ellingham diagram of oxides, the reaction that is parallel to the temperature

axis is

Options:

$$_{1.}$$
 2C + O₂ = 2CO

$2Zn + O_2 = 2ZnO$
$_{3.} C + O_2 = CO_2$
$_{4.}$ 2CO + O ₂ = 2CO ₂
Question Number: 92 Question Id: 2999654892 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
In the lattice of alpha iron, carbon atoms occupy
Options:
substitutional sites
interstitial sites 2.
3. tetrahedral sites
4. octahedral sites
Question Number: 93 Question Id: 2999654893 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
The relation between slope and maximum bending moment is
Options:
Directly proportion
Inversely proportion 2.
3. Relative proportion

Question Number: 94 Question Id: 2999654894 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical Ellingham diagram of oxides does not give any idea about

4. Mutual incidence


```
Options:
  Reduction of metal sulphides
  oxidation of metals
  Rate of reaction
  reduction of metal oxides
Question Number: 95 Question Id: 2999654895 Question Type: MCQ Display Question Number: Yes Is
Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Lattice frictional stress is known as ____ stress.
Options:
1. Shear
  Normal
  Peierls and Nabbaro
4. Isotropic
Question Number: 96 Question Id: 2999654896 Question Type: MCQ Display Question Number: Yes Is
Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
 What is twinning plane in FCC metals?
Options:
  \{1\ 1\ 1\}
2. {1 0 0}
3. {1 1 0}
4. {2 1 1}
```


Question Number: 97 Question Id: 2999654897 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
process is used to convert larger sections, such as ingots into smaller
sections.
Options:
1. Hot rolling
Hot forging 2.
3. Hot spinning
Hot extrusion 4.
Question Number: 98 Question Id: 2999654898 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical High elastic modulus in materials arises from
Options:
High strength of bonds
Weak bonds 2.
3. combination of bonds
deformation bonds
Question Number: 99 Question Id: 2999654899 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
The work done by a closed system in a reversible process is always that
done in an irreversible process.
Options:
less than or more than 1.
equal to

less than
3.
more than 4.
Question Number: 100 Question Id: 2999654900 Question Type: MCQ Display Question Number: Yes I Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Which of the following is true?
Options:
Q for reversible > Q for irreversible and work for reversible < work for irreversible
Q for reversible < Q for irreversible and work for reversible > work for irreversible 2.
Q for reversible < Q for irreversible and work for reversible < work for irreversible
Q for reversible > Q for irreversible and work for reversible > work for irreversible 4.
Question Number: 101 Question Id: 2999654901 Question Type: MCQ Display Question Number: Yes I Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Ternary stage creep is associated with
Options:
1. Strain hardening
Recovery 2.
3. Necking
Deformation 4.

Question Number: 102 Question Id: 2999654902 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Which property of a system in constant in reversible adiabatic process?

Options:		
pressure		
2. volume		
temperature 3.		
entropy 4.		
Question Mandatory: No Single Line The relationship of electric a are known as Options: Kirchhoff's equations Millman's equations Maxwell's equations 3.	Question Option: No Option	ACQ Display Question Number: Yes Is Orientation: Vertical Overned by physical laws, which
4. Arithmetic equations		
Question Number: 104 Question Id: 2 Question Mandatory: No Single Line	" [11] [12] [13] [13] [13] [13] [13] [13] [13] [13	ACQ Display Question Number: Yes Is Orientation: Vertical
Boiling occurs at	temperature and	pressure, the process appears
as a point in diagram.		
Options: 1. constant, constant, P-T		
variable, constant, P-T		
3. constant, variable, V-T		
4. variable, variable, V-T		

Question Number: 105 Question Id: 2999654905 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Triple point of a pure substance is a point at which
Options:
liquid and vapour exit together 1.
solid and liquid exit together 2.
solid and vapour exit together 3.
solid, liquid and vapour exit together 4.
Question Number: 106 Question Id: 2999654906 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical A piston-cylinder device initially contains air at 150 kPa and 27°C. At this state, the
volume is 400 litres. The mass of the piston is such that a 350 kPa pressure is
required to move it. The air is now heated until its volume has doubled. Determine
the total heat transferred to the air.
Options:
747 kJ
757 kJ
_{3.} 767 kJ
777 kJ 4.
Question Number: 107 Question Id: 2999654907 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
The process of formation of new grains is known as
Options:
Pre-crystallization

2. Re-crystallization
Crystallization 3.
Post-crystallization 4.
Question Number: 108 Question Id: 2999654908 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
Where is the necking region? Options:
The area between lower yield point and upper yield point 1.
The area between the plastic limit and elastic limit
3. The area between the ultimate point and initial point
The area between the ultimate point and rupture
Question Number: 109 Question Id: 2999654909 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical
The Increased surface area would
Options:
increase the rate of evaporation 1.
decrease the rate of evaporation 2.
3. not affect the rate of evaporation
4. disturb the rate of evaporation

Question Number: 110 Question Id: 2999654910 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

An equation in Gibbs energy is be given by **Options:** $_{1}$ dG = Vdp + SdT + Σ (molal chemical potential)*dn $_{2}$ dG = Vdp - SdT - Σ (molal chemical potential)*dn $_{3.}$ dG = Vdp + SdT – Σ (molal chemical potential)*dn $_{4.}$ dG = Vdp - SdT + Σ (molal chemical potential)*dn Question Number: 111 Question Id: 2999654911 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical The quantity of effectiveness of the energy emitted known as ______. **Options:** Refraction 1. Reflectivity **Emissivity** 4. Luminance Question Number: 112 Question Id: 2999654912 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical Which element causes cementite to behave in a stable manner? **Options:** 1. Silicon Sulphur 2. Manganese 3. 4. Carbon

$Question\ Number: 113\ Question\ Id: 2999654913\ Question\ Type: MCQ\ Display\ Question\ Number: Yes\ Is\ Question\ Mandatory: No\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$
Which aluminium alloy is known as aircraft aluminium?
Options:
1. 6061
2. 6063
_{3.} 7068
4. 7075
Question Number: 114 Question Id: 2999654914 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical Which one of the following is a chemically neutral refractory? Options:
1. Quartz 2. Sand
Silica brick 3.
4. Silicon carbide
Question Number: 115 Question Id: 2999654915 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical The insulating capacity of material against high voltages is known as
Options:
dielectric strength
thermoelectricity 2.
electromechanical effect

Question Number: 116 Question Id: 2999654916 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical The ability of a substance to neutralize the acidic nature of the material is known as _____. **Options:** corrosion resistance chemical composition alkalinity 4. chemical equilibrium Question Number: 117 Question Id: 2999654917 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical Nano sized polymers built from branched units are called **Options:** Dendrimers 2. Composites 3. Carbon-based materials 4. Metal-based materials Question Number: 118 Question Id: 2999654918 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical The most important element which controls the physical properties of steel is _____. **Options:** 1. silicon

electrochemical effect

manganese 2.
3. carbon
tungsten 4.
Question Number: 119 Question Id: 2999654919 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical Quantum dots can be used in
Options: Crystallography 1.
Optoelectronics 2.
Mechanics 3.
4. Quantum physics
Question Number: 120 Question Id: 2999654920 Question Type: MCQ Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical The energy released on dissociation of perfect dislocation into partial dislocations is
Options:
Stacking fault energy 1.
2. Dislocation energy
Elastic energy
Core energy

