

Booklet No.:

EE - 16

Electrical Engineering

Duration of Test: 2 Hours		Max. Marks: 120
	Hall Ticket No.	
Name of the Candidate :		
Date of Examination:	OMR A	nswer Sheet No. :
Signature of the Candidate		Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only.
- Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

EE-16-A

ELECTRICAL ENGINEERING (EE)

		1	1	k	
1.	The value of k for which the matrix	1	2	3	is of rank 2 is
		0	1	1	

- (A) 0
- (B) 1 (C) 2
- (D) 3
- 2. If λ is an eigen value of A, then the eigen value of adjoint of A is
- (B) $\frac{1}{\lambda}$ (C) $\frac{|A|}{\lambda}$
- $(D) \quad 0$
- The function $f = x^2 + y^2 + 2(\frac{1}{x} + \frac{1}{y})$ has minimum at the point (A) (1,-1) (B) (1,0) (C) (0,0) (3.

- (D) (1,1)

4. If
$$u = x(1-y)$$
, $v = xy$, then $\frac{\partial(u,v)}{\partial(x,y)} =$

- (A) x
- (B) v
- (C) 1-y
- (D) 1-x
- 5. The real and imaginary parts of a complex analytic function are
 - (A) both non-zero

(B) periodic

(C) orthogonal

- (D) either of them is zero
- If the probability density of a random variable is $\frac{1}{\alpha}e^{-\frac{x}{\alpha}}$, then the variance of it is 6.
- (A) $\frac{1}{\alpha}$ (B) $\frac{1}{\alpha^2}$ (C) $\frac{2}{\alpha^2}$ (D) $\frac{2}{\alpha}$
- If r_{yx} and r_{yy} are the regression coefficients of y on x and x on y then the coefficient of 7. correlation is

 - (A) $r_{yx}r_{xy}$ (B) $(r_{yx}r_{xy})^{\frac{1}{2}}$ (C) $\frac{r_{yx}}{r_{xy}}$ (D) $r_{yx}+r_{xy}$

$$8. \qquad \frac{xdy - ydx}{x^2 - y^2} =$$

 $(A) \quad \frac{1}{2} \log \frac{x+y}{x-y}$

(B) $\log(x^2 - y^2)$

- 9. The differential equation whose auxiliary equation has roots 0, -2, -1 is
 - (A) $\frac{d^3y}{dx^3} + 3y = f(x)$
- (B) $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = f(x)$
- (C) $\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = f(x)$ (D) $\frac{dy}{dx} + 3y = 0$

Set - A

2

- 10. The condition for convergence of the Newton-Raphson method to find a root of f(x) = 0 is
 - (A) $|ff''| < |f'|^2$

(B) |ff''| < 1

(C) |ff''| > 0

- (D) Always converges
- At very high temperatures, extrinsic semiconductor becomes intrinsic semiconductor 11. because
 - (A) Of drive in diffusion of dopants & carriers.
 - (B) Band to band transition dominates impurity ionization.
 - (C) Impurity ionization dominates band to band transition.
 - (D) Band to band transition is balanced by impurity ionisation.
- If a bias voltage of V_t (in Volts) is applied to a forward biased silicon P-N junction diode 12. with a non ideality coefficient of 2, the diode current (in Amps) shall be
 - (A) I_o
- (B) $(\sqrt{e}-1) I_o$ (C) $\sqrt{eI_o}$
- (D) $(e-1) I_0$
- The threshold voltage of an n- channel enhancement mode MOSFET is 0.5V when the 13. device is biased at a gate voltage of 3V. Pinch off would be occurs at a drain voltage of
 - (A) 1.5V
- (B) 2.5V
- (C) = 3.5V
- (D) 4.5V
- The drain current of a MOSFET is constant, given $I_D = K (V_{GS} V_r)^2$, where K is a 14. constant. The magnitude of the trans conductance g_m is
 - (A) $\frac{2(V_{GS}-V_r)^2}{V_{DS}}$

(B) $2K(V_{GS} - V_T)$

(C) $\frac{l_D}{V_{GS}-V_{DS}}$

- (D) $\frac{2(V_{GS}-V_r)^2}{V_{GS}}$
- Find the values of x and y in the following equation 15.

$$\sqrt{4425_x + 1750_y} = (40)_x + (25)_y$$

A) 5,8 (B) 6,9 (C) 6,8

- (A) 5,8

- (D) 7,8
- If CS = $A_{15}A_{14}A_{15}$, A_{12} (and its value is 0111) is used as the chip select logic of A 4K 16. RAM in an 8085 system then its memory range will be
 - (A) 3000H 3FFFH
- 7000H -7FFFFH (B)
- (C) 5000H 5FFFH& 6000H 6FFFH (D) 6000H 6FFFH & 7000H 7FFFH
- 17. Which of the following instructions is not available in 8085 microprocessor?
 - (A) LDA 3850

(B) XTHL

(C) push PSW

- (D) LDAXH
- Identify the feedback in the below circuit as shown with unknown feedback resistor from 18. collector to base of BJT.

3

- Current series feed back (A)
- Current shunt feed back (B)
- Voltage series feedback (C)
- Voltage shunt feed back (D)

19. Assertion (A): Wein bridge oscillator is generally used as a variable audio frequency oscillator

Reason (R): by using either capacitor (or) resistor in one of the arms of the bridge, the frequency of a wein bridge oscillator can be varied

- (A) Both (A) & (R) are true & (R) is correct explanation of (A)
- (B) Both (A) & (R) are true but (R) is not the correct explanation of (R).
- (C) (A) is true but (R) is false
- (D) (A) is false but (R) is true
- 20. For an input of $V_s = 5\sin\omega t$, (assuming ideal diode), circuit shown in the figure will becomes as a

- (A) Clipper, sine wave clipped at -2V
- (B) Clamper, sine wave clamped at -2V
- (C) Clamper, sine wave clamped at zero volt
- (D) Clipper, sine wave clipped at 2V.
- 21. The internal resistances of an ideal current source, and an ideal voltage source are, respectively,
 - (A) $0,\infty$
- (B) ∞, ∞
- (C) ∞ , 0
- (D) 0,0
- 22. The equation i(0+) = i(0-) = some finite value, where the notations and symbols have usual meanings (as adopted in transient response analysis of circuits) holds good in the case of
 - (A) a previously unenergized series RL circuit to which a DC voltage source is suddenly applied at t = 0.
 - (B) a previously energized series RL circuit to which a DC voltage source is suddenly applied at t = 0.
 - (C) a previously unenergized series RC circuit to which a DC voltage source is suddenly applied at t = 0.
 - (D) a previously energized series RC circuit to which a DC voltage source is suddenly applied at t=0.
- 23. The Thevenin equivalent circuit of a network consists of an ideal Thevenin voltage source of DC voltage V_{Th} and Thevenin resistance R_{Th} . A load resistance R_L is connected to the terminals of the Thevenin equivalent circuit. Maximum power that can be transferred to the load is
 - $(A) V_{Th}^2 / (R_{Th} + R_L)^2$
- (B) $V_{Th}^2/2R_L$

(C) $V_{Th}^2/4R_{Th}$

(D) $V_{Th}^2 / 4(R_{Th} + R_L)$

Set - A

24.	A series R-C circuit has constant value of constant applied voltage V at constant free (A) $\left(\frac{V}{R}, 0\right)$ (B) $\left(\frac{V}{2R}, 0\right)$	quency, as C is varied, is	a semi circle with centre at
25.	The current through a linear time-invari $i_L = 0.1 \sin 10^6 t$. The voltage across the (A) $100 \cos(10^6 t)$ (C) $10^{-4} \cos(10^6 t)$		
26.	Which of the following are known as the(A) Z- parameters.(C) Y- parameters.	e short circuit paramete (B) H- parameters. (D) A,B,C,D, param	350
27.	The line current in a balanced delta systematical (A) $30\sqrt{3}$ A (B) $30/\sqrt{3}$ A		Figure 1. The property of the contract of the
28.	Possible maximum value of mutual in L_1 and L_2 is (A) $2L_1 + 2L_2$ (B) $L_1 + L_2$		
29.	The resistance required for critical damp	()	
	(A) $R = 2\sqrt{\frac{L}{c}}$ (B) $R = \sqrt{\frac{L}{c}}$	$(C) R = \frac{1}{2} \sqrt{\frac{L}{C}} (C)$	D) $R = 2\sqrt{LC}$
30.	The impedance of a series resonant circu		
	(A) R (B) $2R$	(C) $R/\sqrt{2}$ (D) $\sqrt{2R}$
31.	Two +ve charges, Q coulomb each, are charges, Q coulomb each in magnitude electric field intensity at the point (2,2,0)	le, are placed at point	
	(A) $\frac{Q}{\pi \epsilon_0 \epsilon_r}$ (B) $\frac{Q}{4\pi \epsilon_0 \epsilon_r}$		D) zero
32.	The magnetic field intensity at the cent The current flowing in the coil is	e55 (C	
	2	(C) $2dH$ (644
33.	Two infinite plane sheets of charge with to each other with a separating distance a point exactly midway between the plan	of d metres. The value ne sheets is	
	(A) σ/ε_0 (B) $\sigma/2\varepsilon_0$	(C) $\frac{2\sigma}{\varepsilon_0}$ (D) zero
34.	Which of the following statements is no(A) It is solenoidal.(C) It has no sinks or sources.	t characteristic of a stat (B) It is conservativ (D) Flux lines are al	e.
35.	The polarization of a dielectric material (A) $P = \epsilon_0 \epsilon_r E$ (C) $\epsilon_0 E(\epsilon_r - 1)$	is given by (B) $(\epsilon_0 \epsilon_r - 1)E$ (D) $(\epsilon_r - 1)\epsilon_0$	
Set -	A	5	EE
2670 F250 1		0000	(#) Tabin

36.	Integration of step signal gives (A) Impulse signal. (B) Ramp function.				
	(C) Parabola.	(D)	Square pulse.		
37.	The period of the function $Cos \frac{\pi}{10}$ $(t -$	· 3) is			
		(C)	Section 1994 And 1994 April 1994		
38.	Fourier series containing	(B)	t's conditions, then $f(t)$ can be expanded in a Only Cosine terms. Sine terms, and a constant term.		
39.	sampled is	avoid	aliasing when the signal $10 \cos 400 \pi t$ is		
17.21	(A) 4000 (B) 40	(C)	200 (D) 400		
40.	constant, is given by		the Fourier transform of $f(at)$, where a is a		
	(A) $\frac{1}{a}F\left(\frac{\omega}{a}\right)$ (B) $aF(\omega)$	(C)	$\frac{F(\omega)}{a}$ (D) $\frac{1}{a}F(a\omega)$		
41.	Laplace transform of $Cos t$ is	. CO.	s s		
	(A) $\frac{s}{(s^2-1)}$ (B) $\frac{s}{(s-1)}$	(C)	$\frac{s}{(s+1)} \qquad \qquad (D) \frac{s}{(s^2+1)}$		
42.	The z-transform of $\sum_{k=0}^{\infty} \delta(n-k)$ is				
	$(A) \frac{z}{z-1} \qquad \qquad (B) \frac{z^2}{z-1}$	(C)	$\frac{z}{(z-1)^2} \qquad \qquad (D) \frac{z-1}{z}$		
43.	The continuous time signal $\sin 25 \pi t + (A) = 50$ (B) 25		πt requires a Nyquist rate of 105 (D) 80		
44.	The Fourier transform of a function $f(x)$				
	(A) $\int_0^\infty f(t)e^{-j\omega t}dt$	(B)	$\int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$		
	(C) $\int_0^\infty f(t)e^{j\omega t}dt$	(D)	$\int_{-\infty}^{\infty} f(t)e^{j\omega t}dt$		
45.		1 for	$-\frac{T}{2} \le t \le \frac{T}{2}$; and 0 elsewhere. Its Fourier		
	Transform is given by $(\Delta) = \frac{2}{3} \sin(\alpha T) \qquad (B) = \frac{2}{3} \sin(\frac{T}{2})$	(C)	$\frac{1}{2} \operatorname{sim} \left(\frac{\omega T}{2} \right)$ (D) $\frac{\omega}{2} \operatorname{sim} \left(\frac{\omega T}{2} \right)$		
(No.	(A) $\frac{2}{\omega} sin(\omega T)$ (B) $\frac{2}{\omega} sin(\frac{T}{2})$	(C)	$\frac{1}{\omega} \sin\left(\frac{1}{2}\right)$ (D) $\frac{1}{2} \sin\left(\frac{1}{2}\right)$		
46.	Consider the following systems: (i) a normal human being walking or	n the ro	and and		
	(ii) servomechanism.	n the re	titi, titi		
	Systems (i) and (ii) are, respectively,	1	1		
	(A) Open loop control system, Open(B) Closed loop control system, Clos		**************************************		
	(C) Open loop control system, Closed	d loop o	control system.		
	(D) Closed loop control system, Open		3		
47.			$\frac{1}{3s+2}$. The steady state errors exhibited by the		
	system, to (i) step, (ii) ramp, and (iii) p. (A) Zero, finite, infinite.				
	(C) Zero, Zero, Zero.	(D)	Finite, infinite, infinite.		
Set -	A	6	EE		
L		70	~~		

57.	ime constant of a first order system is defined as the time taken to reach $x\%$ of the final eady state value in the step response. The value of x is (A) 100 (B) 36.2 (C) 63.2 (D) 90				
58.	In Torque-Voltage analogy, the Moment of Inertia of a mechanical rotational system is analogous to (A) Capacitance C. (B) Inductance L. (C) Resistance R. (D) Inductive reactance X_L				
59.	The bridge most suited for accurate measurement of relative permittivity of dielectric materials is (A) Carey Foster Bridge (B) Anderson's bridge (C) Heaviside Bridge modified by Campbell. (D) Schering Bridge.				
60.	 The operation of a ramp type Digital Voltmeter is based on the principle of (A) Voltage-to-current conversion. (B) Voltage-to-time conversion. (C) Current-to-time conversion. (D) Current-to-frequency conversion. 				
61.	The vertical deflection of an electron beam on the screen of a CRO is measured to be 8 mm. Now, the potential difference between the Y-plates is doubled, and simultaneously the pre-accelerating anode voltage is reduced to half of its previous value. Then, the vertical deflection of the beam on the screen would become (A) 64 mm (B) 32 mm (C) 8 mm (D) 1 mm				
62.	Gross errors occur in measurements because of (A) disturbances about which we are unaware. (B) human mistakes. (C) inherent shortcomings in the instrument. (D) loading effects on the meters.				
63.	 An induction type energy meter is found to run fast. Correction for this error can be made by (A) Over-load compensation. (B) Voltage compensation. (C) Moving the brake magnet away from the centre of the disc. (D) Moving the brake magnet towards the centre of the disc. 				
64.	Standardization of potentiometers is done so that (A) They become accurate and direct-reading. (B) They become accurate and precise. (C) They become accurate and take zero current when null condition is reached. (D) Power consumption is reduced during operation.				
65.	The meter which does not have any component in it to provide control torque is (A) Electrodynamometer for current measurement (B) Electrodynamometer for voltage measurement (C) Electrodynamometer for power measurement. (D) Electrodynamometer for power factor measurement.				
Set -	A 8 EE				

66.	In a single-phase transformer, the magnetizing current is (A) in phase with the no-load current (B) in quadrature with the no-load current (C) the product of no-load current and power factor (D) in phase with the flux in the core					
67.	A 230 V/460 V single-phase transformer operating at 20 A and unity power factor has primary referred resistance of 0.2 Ω and reactance of 0.5 Ω . The approximate primary induced emf is (A) 216 V (B) 226 V (C) 234 V (D) 236 V					
68.	A transformer at 25 Hz develops 20 W hysteresis loss and 50 W eddy current loss. If the applied voltage and frequency are doubled, the new core losses are (A) 140 W (B) 180 W (C) 240 W (D) 480 W					
69.	A 3-phase transformer possible 3-phase connection by a combination of star (Y or y) and delta (D or d) with 30° lead phase displacement corresponding to watch clock-face hour is (A) Dy0 (B) Dy1 (C) Yd1 (D) Dy11					
70.	Two transformers of voltage ratio 1 kV/500 V, with impedances $z_1 = j0.04~\Omega$ and					
	$z_2 = j0.06 \Omega$, respectively, connected in parallel share a total load of 200 kVA. The kVA carried by each transformer is					
	(A) $S_1 = 40$, $S_2 = 160$ (B) $S_1 = 80$, $S_2 = 120$					
0.0000000	(C) $S_1 = 120, S_2 = 80$ (D) $S_1 = 160, S_2 = 40$					
71.	A two winding transformer is connected as an auto-transformer with the same voltage ratio of 2:1. If primary and secondary winding resistances of auto-transformer are $0.03~\Omega$ and $0.02~\Omega$, respectively, the primary equivalent resistance of auto-transformer is (A) $0.035~\Omega$ (B) $0.05~\Omega$ (C) $0.11~\Omega$ (D) $0.14~\Omega$					
72.	In a duplex lap winding, if y_b and y_f are back-pitch and front-pitch, respectively, then					
	(A) $y_b = y_f \pm 2$ (B) $y_b = 2y_f$ (C) $y_f = 2y_b$ (D) $y_b = y_f \pm 4$					
73.	 In a 4-pole wave winding connected dc motor, the cross-magnetizing AT/pole for a brush shift of θ radians (A) Armature amp-conductors × (θ/360°) (B) Armature amp-turns × (θ/360°) (C) Armature amp-conductors × (1/4 - θ/360°) (D) Armature amp-conductors × (1/8 - θ/360°) 					
74.	The magnetic neutral plane shifts in a dc machine (A) in the direction of motion of motor (B) in the direction of motion of generator (C) due to increase in the field flux (D) cause reduction of flash over between commutator segments					
75.	The terminal characteristics of a dc generator suitable for electric welders is (A) separately excited generator (B) shunt generator (C) series generator (D) differentially compounded generator					
Set -	A 9 EE					

76.	A 220 V separately excited motor with $R_a = 0.5 \ \Omega$ running at 500 rpm draws a current of
	20 A. The value of additional resistance in armature circuit to reduce the speed to 300 rpm at constant flux is (A) 4.0Ω (B) 4.2Ω (C) 4.4Ω (D) 7.67Ω
77.	The layout pattern of 3-phase double-layer stator winding in an induction motor in the anticlockwise direction of rotating magnetic field (A) $c-a'-b-c'-a-b'$ (B) $c-a'-b'-c'-a-b$ (C) $c'-b-a'-c-b'-a$ (D) $c-b-a'-c'-b'-a$
78.	The mechanical power developed by a 3-phase induction motor if the total rotor I^2R losses are 200 W and the slip is 4 $\%$
79.	(A) 576 W (B) 625 W (C) 4800 W (D) 5000 W Slot harmonics are reduced in induction motors by using (A) fractional-pitch windings (B) fractional-slot windings
80.	 (C) integral-slot windings (D) distributed windings The armature reaction in a synchronous generator supplying leading power factor load is (A) magnetizing (B) demagnetizing (C) demagnetizing and cross-magnetizing (D) magnetizing and cross-magnetizing
81.	Torque angle for the synchronous machine is the angle between (A) stator magnetic field and rotor magnetic field (B) stator magnetic field and net magnetic field in the air gap (C) rotor magnetic field and net magnetic field in the air gap (D) excitation voltage and impedance voltage drop
82.	The power factor angle and torque angle of a salient pole synchronous generator drawing a current of 1.0 pu from a lagging load are 45° and 15°, respectively. The direct axis and quadrature axis currents, respectively, are (A) 0.5 pu, 0.866 pu (B) 0.866 pu, 0.5 pu (C) 0.707 pu, 0.707 pu (D) 0.5 pu, 0.5 pu
83.	The maximum reluctance power of a salient-pole synchronous motor having direct-axis reactance, 1.0 pu and quadrature-axis reactance, 0.5 pu, and input voltage, 1.0 pu is (A) 0.25 pu (B) 0.5 pu (C) 1.0 pu (D) 1.5 pu
84.	In a single-phase induction motor when the rotor is stationary and voltage is applied to the stator, then (A) the flux is constant (B) the flux first decreases and then increases in the same direction (C) the flux increases and decreases in the opposite direction with the same magnitude (D) current flows through the rotor
85.	In a split-phase induction motor, the resistance/reactance ratios of windings are such that (A) current in the auxiliary winding leads the current in the main winding (B) current in the auxiliary winding lags the current in the main winding (C) both windings develop the same starting torque (D) both windings develop high starting current
Set -	A 10 EE

- 86. Two synchronous generators operating in parallel supply a common load of 2.5 MW. The frequency-power characteristics have a common slope of 1 MW/Hz and the no-load frequencies of the generators are 51.5 Hz and 51.0 Hz, respectively. Then the system frequency is
 - (A) 50 Hz
- (B) 51 Hz
- 51.25 Hz (C)
- (D) 51.5 Hz
- 87. The speed of a 2-pole, 3-phase stepper motor operated by 1200 pulses/min
 - (A) 100 rpm
- (B) 200 rpm
- (C) 400 rpm
- (D) 800 rpm
- If the constants, A = D = 1 + YZ/2 of a transmission line by nominal π model, then the 88. constants B and C, respectively, are
 - (A) $Y \text{ and } Z \left(1 + \frac{YZ}{4} \right)$
- (B) $Z \text{ and } Y \left(1 + \frac{YZ}{4} \right)$
- (C) YZ and $\left(1 + \frac{YZ}{4}\right)$
- (D) $Y\left(1+\frac{YZ}{4}\right)$ and Z
- 89. In a per unit system of a transmission line
 - (A) the P_{base} is different from S_{base}
 - (B) $Z_{\text{base}} = R_{\text{base}} + j X_{\text{base}}$
 - (C) $Y_{base} = G_{base} j B_{base}$
 - (D) angle of per unit quantity = angle of the actual quantity
- The insulation resistance per metre length of a single core cable of conductor radius, r, 90. sheath inside radius, R and resistivity, p is

 - (A) $\rho \frac{1}{\pi} \ln \frac{r}{R}$ (B) $\rho \frac{1}{2\pi} \ln \frac{r}{R}$ (C) $\rho \frac{1}{\pi} \ln \frac{R}{r}$ (D) $\rho \frac{1}{2\pi} \ln \frac{R}{r}$
- A single core lead sheathed cable with two dielectrics of permittivity 4 and 3, respectively, 91. are subjected to same maximum stress. If the conductor diameter is 1.5 cm, the outer diameter of the first dielectric is
 - (A) = 1.125 cm
- (B) 1.5 cm
- (C) 2 cm
- (D) 8 cm
- The Y_{bus} representation of the line between the nodes p and q shown in figure is 92.

(A) $\begin{vmatrix} 2 & Z_s \\ -\frac{1}{Z_s} & \frac{\gamma}{2} \end{vmatrix}$

- (C) $\begin{bmatrix} \frac{1}{Z_s} + \frac{Y}{2} & \frac{1}{Z_s} \\ \frac{1}{Z_s} & \frac{1}{Z_s} + \frac{Y}{2} \end{bmatrix}$ (D) $\begin{bmatrix} \frac{1}{Z_s} + \frac{Y}{2} & -\frac{1}{Z_s} \\ -\frac{1}{Z_s} & \frac{1}{Z_s} + \frac{Y}{2} \end{bmatrix}$

Set - A 11

- 93. In a large power system for n x n matrix, the sparsity is defined as
 - $\frac{\text{Total number of zero elements}}{\text{Total number of zero elements}} \times 100$ (A)
 - $\frac{\text{Total number of elements}}{n^2} \times 100$ (B)
 - $\frac{\text{Total number of nonzero elements}}{n^2} \times 100$ (C)
 - $\frac{\text{Total number of zero elements}}{n^2} \times 100$ (D)
- The Jacobian for the following set of power flow equations, where $X = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix}$ 94.

$$f_1(\mathbf{X}) = 1.0 - 100x_2 + 200x_2^2 - 100x_2x_3$$
$$f_2(\mathbf{X}) = 0.5 - 100x_3 - 100x_3x_2 + 200x_3^2$$

(A)
$$100\begin{bmatrix} -1+4x_2-x_3 & -x_3 \\ -x_2 & -1-x_2+4x_3 \end{bmatrix}$$

(B) $\begin{bmatrix} 400 & 0 \\ -100 & 400 \end{bmatrix}$
(C) $\begin{bmatrix} 1.0 & 100x_2 \\ 0.5 & -100x_3 \end{bmatrix}$
(D) $100\begin{bmatrix} -1+4x_2-x_3 & -x_2 \\ -x_3 & -1-x_2+4x_3 \end{bmatrix}$

(B)
$$\begin{bmatrix} 400 & 0 \\ -100 & 400 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 1.0 & 100x_2 \\ 0.5 & -100x_3 \end{bmatrix}$$

(D)
$$100\begin{bmatrix} -1+4x_2-x_3 & -x_2 \\ -x_3 & -1-x_2+4x_3 \end{bmatrix}$$

- 95. If non-linear loads are connected to the power system, then
 - displacement power factor is same as the total power factor (A)
 - displacement power factor is not equal to the total power factor (B)
 - displacement power factor is due to harmonic currents (C)
 - total power factor is due to fundamental component of current (D)
- 96. The benefit of power factor correction in a power system is
 - (A) lower power consumption
 - (B) increased demand charge
 - (C) reduced load carrying capabilities in existing lines
 - (D) reduced voltage profile
- 97. The power flow problem mathematical model for a linear transmission network
 - (A) is non-linear
 - is linear (B)
 - considers time variation of generation (C)
 - does not consider tap-changing transformers

- 98. The sequence components of current of a single-phase load connected to a 3-phase system are
 - (A) equal positive and negative sequence components
 - (B) equal positive, negative and zero sequence components
 - (C) vector sum of sequence currents is zero
 - (D) algebraic sum of sequence currents is zero
- The phase voltages of an unbalanced system are expressed as zero, positive and negative 99. sequence voltages, V₀, V₁, V₂, respectively, as

$$\begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \begin{bmatrix} -- \end{bmatrix} \end{bmatrix} \begin{bmatrix} V_0 \\ V_1 \\ V_2 \end{bmatrix}$$

If $a = 1 \angle 120^{\circ}$, then the missing sub-matrix is

(A)
$$\begin{bmatrix} a & a^2 \\ a^2 & a \end{bmatrix}$$
 (B) $\begin{bmatrix} a & -a^2 \\ -a^2 & a \end{bmatrix}$ (C) $\begin{bmatrix} a^2 & a \\ a & a^2 \end{bmatrix}$ (D) $\begin{bmatrix} a^2 & -a \\ -a & a^2 \end{bmatrix}$

- In a 3-phase balanced neutral grounded star-connected load, phase b is open. If $I_a = 10 \angle 0^0$ 100. and $I_c = 10 \angle 120^0$ then
 - (A) Zero sequence current = neutral current
 - (B) Zero sequence current = 1/3 neutral current
 - (C) Zero sequence current = $3 \times$ neutral current
 - (D) Positive sequence current = negative sequence current
- The value of capacitor used for power factor improvement in a feeder with V volts at 50 101. Hz and capacitor current I_c, is

(A)
$$100 \pi I_c V$$
 (B) $\frac{100 \pi V}{I_c}$ (C) $\frac{100 \pi V^2}{I_c}$ (D) $\frac{I_c}{100 \pi V}$

A double-line-to-ground fault from phase b to phase c occurs through the fault impedance, 102. Z_F to ground. The fault conditions are

(A)
$$I_b = I_c = 0$$
, $V_a = Z_F I_a$ (B) $I_a = 0$, $I_b = -I_c$, $V_b + V_c = Z_F I_b$ (C) $I_a = 0$, $V_b = V_c = Z_F (I_b + I_c)$ (D) $I_a = 0$, $I_b = -I_c$, $V_b - V_c = Z_F I_b$

(B)
$$I_{k} = 0$$
, $I_{k} = -I_{k}$, $V_{k} + V_{k} = Z_{k}I_{k}$

$$(C)$$
 $I = 0$ $V = V = Z_{-}(I + I)$

(D)
$$I_{\mu} = 0$$
, $I_{b} = -I_{c}$, $V_{b} - V_{c} = Z_{F}I_{b}$

- A solid state relay 103.
 - (A) withstands voltage transients
- (B) does not require auxiliary dc supply
- provide low burden on CT and P (D) does not provide earth fault protection
- In the induction type directional over current relay, when a short-circuit occurs in the 104. circuit
 - power flows in reverse direction (A)
 - power flows in normal direction (B)
 - directional power element does not operate (C)
 - over current element is not energized

105.	In a differential protection scheme of a generator winding with a fault, the secondary currents of CTs are $I_{s1} = 2.2 + j 0$ A and $I_{s2} = 1.8 + j 0$ A. The % bias setting, K of the					
	relay is	.31	.,2		ed Principal (Herita - Version - Version distribution in the Green American (Herita America	
	(A) 5 %	(B) 10 %	(C)	20 %	(D) 40 %	
106.	(A) phase angle of (B) supply frequency (C) magnitude of		nput vol er ac inp put volt	tage ut voltage	system the active po	ower is
107.	(A) Inter-phase p(B) Static Compe(C) Combination	ower controller		8	oltage source converter	based
108.	An SCR without ar (A) two diodes in (C) two n-p-n tra	T)	(B)	three diodes i	n series nsistors in series	
109.	The device which a (A) GTO (C) IGBT	illows reverse powe	(B)	AND THE PART OF A STATE OF A STAT	highest switch frequen	cy is
110.	and with large R-L (A) sinusoidal cu	load, the input sour	rce curro (B)	ent is constant de ci	ating at a firing delay a urrent ctangular pulses	ingle, α
111.	In a bi-phase half voltage drop, V _d ac				angle, α and considers	ing the
	(A) $\frac{2\sqrt{2}V_{ac}}{\pi}\cos$	$\alpha - v_d$	(B)	$2(\frac{\sqrt{2}V_{ac}}{\pi}\cos\theta)$	$(\alpha - v_d)$	
	(C) $\frac{2V_{ac}}{\pi}\cos\alpha$ –	\mathcal{V}_d	(D)	$(\frac{2\sqrt{2}V_{ac}}{\pi} - V_{ac})$	$(\cos \alpha)$	
112.	firing delay angle,	αis	<u> </u>	37 32	ge voltage across R-L l	oad at a
	(A) $\frac{3\sqrt{3} V_{line(max)}}{2\pi}$	$\cos \alpha$		$\frac{3V_{line(max)}}{2\pi}\cos$		
2	(C) $\frac{3\sqrt{3}V_{line(\max)}}{\pi}$	$(1+\cos\alpha)$	(D)	$\frac{3V_{line(\max)}}{2\pi}(1+$	$\cos \alpha$)	
Set -	A		14			EE

- 113. In a dc-dc step-down converter, the minimum inductance required for continuous current operation, if D, f, and R are duty ratio, switching frequency and load resistance, respectively, then

- (A) $\frac{(1-D)R}{2f}$ (B) $\frac{(1-D)R}{f}$ (C) $\frac{DR}{2f}$ (D) $\frac{1}{R} \frac{(1-D)}{2f}$
- 114. If D is the duty ratio of a dc-dc step-up converter, the relation between the input and out currents is
 - (A) $I_{in} = D I_{out}$
- (B) $I_{in} = \frac{1}{D} I_{out}$
- (C) $I_{in} = \frac{1}{(1-D)} I_{out}$
- (D) $I_{in} = (1 D) I_{out}$
- A 230 V, 50 Hz phase controlled single-phase full-controlled SCR bridge converter draws 15 A constant dc current. If the source inductance is 3 mH, the drop in dc output voltage is
 - (A) 4.5 V
- (B) 6.75 V
- (C) 9 V
- (D) 13.5 V
- The direction of rotation of an inverter fed 3-phase ac motor is reversed by 116.
 - (A) a mechanical reversing switch
- (B) reversing the input dc link voltage
- (C) operating the inverter as a rectifier (D) changing the sequence of switching
- 117. The no-load speed of a single-phase SCR bridge converter fed separately excited dc motor operating at a firing delay angle, α and flux, Φ
 - (A) directly proportional to α and Φ
 - (B) inversely proportional to α and Φ
 - (C) directly proportional to α and inversely proportional to Φ
 - directly proportional to Φ and inversely proportional to α
- 118. The PWM pulses for the gate control circuit of an IGBT inverter fed 3-phase induction motor drive are generated by using a triangular wave of frequency, fe and
 - (A) a modulating wave of frequency, f_m
 - (B) a constant dc signal
 - (C) an alternating rectangular wave of frequency, f_r
 - an alternating trapezoidal wave of frequency, f,
- In electric traction for a trapezoidal speed-time curve, the time period is 119.
 - (A) free running speed period = constant speed period
 - (B) free running period = coasting period
 - (C) free running period + coasting period = constant speed period
 - average speed period = scheduled speed period
- Specific energy consumption of an electric train is the ratio between 120.
 - Specific energy output at driving wheels and efficiency of the traction motor
 - Specific energy output at driving wheels and efficiency of the transmission gear
 - Specific energy output of driving motor and efficiency of the driving wheels (C)
 - Specific energy output at driving wheels and efficiency of the (motor + transmission gear) (D)

Set - A 15 EE

SPACE FOR ROUGH WORK

