M.Sc Greology code No (483)

Set No. 1

Question Booklet No.

16P/205/22

	(To be fit	lled up by	the candid	ate by blu	ie/black b	all-poin	t pen)		
Roll No.									
Serial No.	of OMR A	Answer Sho	eet	201	()				
Day and I					•••••	(Signature	e of Invigil	ator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it
 contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 32

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK रफ़ कार्य

No. of Questions: 150

प्रश्नों की संख्या : 150

Time: 2 Hours

Full Marks: 450

समय : 2 घण्टे

पूर्णाङ्क : 450

Note: (1) Attempt as many questions as you can. Each question carries 3

(Three) marks. One mark will be deducted for each incorrect

answer. Zero mark will be awarded for each unattempted question.

अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 (तीन) अंकों का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जायेगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

 यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- 01. The youngest rocks of the basaltic crust on the sea floor are found along:
 - (1) Abyssal plains

(2) Mid oceanic ridges

(3) Fracture zones

(4) Subduction zone

- 02. The 'Great Boundary Fault' occurs in the region of :
 - (1) Alwar

(2) Chittorgarh

(3) Jaipur

(4) Haridwar

03.	3. The fold in which the axes plunges directly down the dip of the axial surface is termed as :											
	(1)	Normal fold	(2)	Reclined fold								
	(3)	Cascade fold	(4)	Drag fold								
04	D.	1 '1'.										
04.		Permeability is a measure of the ability of the fluid to:										
	(1)	Contract when pressure is a	pplied	d								
	(2)	Flow through a porous rock	1.									
		(3) Produce energy when burned										
	(4)	None of the above										
05.	Who	then the minimum principal stress is vertical, the resultant faul										
	(1)	Strike-slip fault	(2)	Oblique slip fault								
	(3)	Normal fault	(4)	Reverse fault								
06.	The	R . F. of a geological map prep	oared	on a scale of 2cm=1 km. is :								
	(1)	1:50,000	(2)	1:5000								
	(3)	1 :500	(4)	1:100000								
07.	Had	e of a vertical fault will be:										
		90° (2) 45°	(3)	0° (4) 40°								
08.	The	point which separates a conve	ex an	d concave segment of a fold is								
	(1)	Median point	(2)	Inflexion point								
	(3)	Hinge point	(4)	Crest point								
09	Schi	ist represents a material which	n has	mechanical properties as :								
٠.		•		r								
	(1)	Homogeneous and isotropic										
	(2)	Homogeneous and anisotrop										
	(3)	Inhomogeneous and anisotro										
	(4)	Inhomogeneous and isotropic	С									

	10 .	The	thrust fault will be generated	d who	en(where σ_1 is maxi.								
		stress):											
	٠	(1)	σ_1 and σ_2 are horizontal	(2)	σ_1 and σ_3 are horizontal								
£**		(3)	σ_2 and σ_3 are horizontal	(4)	None of the above								
	11.			t witl	h the largest number of active								
		120212	volcanoes on earth is found in :										
4		(1)	Atlantic ocean	(2)	Pacific ocean								
		(3)	African rift valley	(4)	Mid oceanic ridges								
	12.	Lith	Lithosphere comprises of :										
		(1)	Crust and Mantle										
ų.		(2)	2) Crust, Mantle and Outer core										
		(3)	Crust and Upper mantle										
		(4)	Crust and Lower mantle										
	10	000	D 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
40	13.	90°E ridge is located in :											
		(1)	Antartic ocean	(2)	Arabian Sea								
		(3)	Indian ocean	(4)	None of the above								
	14.	Whe	ere do the ophiolite suit of roc	ks oc	cur :								
		(1)	Indus suture zone	(2)	Lesser Himalaya								
		(3)	Brahmaputra valley	(4)	Himalayan foot hill zone								
			•	,	Timalayan 100t mm 20mc								
	15 .	For	obtaining true dip of a bed the	min	imum number of apparent dip								
		925 8555	required is :										
2	29	(1)	One	(2)	Two								
		(3)	Three	(4)	None of the above								

10.	A sy	Informal anticline will have :									
	(1)	Upward arching beds having older rocks in core									
	(2)	Downward arching beds having older rocks in core									
	(3)	Upward arching beds having	your	iger rocks in core							
	(4)	Downward arching beds hav	ing yo	ounger rocks in core							
17.	Sta	urolite crystallizes in :									
	(1)	Monoclinic	(2)	Orthorhombic							
	(3)	Hexagonal	(4)	Triclinic							
18.	Syn	abol of Trapezohedron :									
	(1)	hhl	(2)	hll							
	(3)	hkl	(4)	hol							
		7 E		9							
19.	Ske	Skew twin observed in:									
	(1)	Staurolite	(2)	Pyrite							
	(3)	Plagioclase	(4)	Gypsum							
20.	In p	byrite, twinning is present:									
	(1)	Geniculate	(2)	Iron cross							
	(3)	Mimetic	(4)	Swallo							
21.	It re	epresented by only one face :		2							
	(1)	Pinacoid	(2)	Pedion							
	(3)	Prism	(4)	Pyramids							
22	Wh	ich crystal system has one asy	mme	tric class :							
at 64 ·		and the second second	(2)	Trigonal							
	(1)	Isometric Monoclinic	(4)	Triclinic							
	(3)	MOHOCHINE	()								

23.	Whi	h of the following denotes a class that has no symmetry at all:								
	(1)	Pinacoidal	(2)	Pedial						
	(3)	Domatic	(4)	Spheroidal						
24.	The	Bravais lattice of sodium chlo	ride :	structure is :						
	(1)	Primitive cell	(2)	Body centred cube						
	(3)	Face centred cube	(4)	Base centra						
25	In t	he skew twins the twin plain is								
20.			s .							
	(1)	Dome .	(2)	Bipyramid						
	(3)	Prism	(4)	Side pinacoid						
				* .						
26 .	Min	eral which crystallizes in orth	orhoi	nbic form :						
	(1)	Topaz	(2)	Beryl						
	(3)	Quartz	(4)	Tourmaline						
27.	Ena	ntiomorphic crystal forms pos	2242							
			3033							
	(1)	Only a centre of symmetry		2 8						
	(2)	Only a plane of symmetry								
	(3)	Neither a plane nor a centre	of sy	mmetry						
	(4)	Both a plane and a centre of	sym	metry						
28.				prism and a pyramid whose						
	face	s cut the vertical axes and one	e of the	he horizontal axes:						
	(1)	Dome	(2)	Pyramid						
	(3)	Prism	(4)	Diametral Prism						

29.	The	base centred arrangement of	unit	cell is found in :					
	(1)	Orthorhombic crystal	(2)	Triclinic crystal					
	(3)	Cubic crystal	(4)	Hexagonal crystal					
30	Zirc	on crystallizes in :							
00.			(2)	Hayagana1					
	(1)	Isometric	(2)	Hexagonal					
	(3)	Tetragonal	(4)	Triclinic					
31.	An i	nterfacial angle is:							
	 An external angle between a given face and the extension of adjoining face 								
	(2)	An internal angle between tw	joining faces						
	(3) An angle between their faces on the same side of a crystal								
	(4)	None of these							
32.	The	twin plaine is:							
	(1) A plain in a twin crystal which is common to both the halves of the crystal and is essentially a plane of symmetry of one of the twins								
	(2) A plain in a twin crystal which is common to both the halves of the crystal and is never a plane of symmetry of one of the twins								
	(3)	A plain in a twin crystal having no definite bearing with plane of symmetry							
	(4)	1&2 are correct							
33.	Whi	ich of the following properties	can b	be used to distinguish between					
	Plag	gioclase feldspar and quatz?							
	(1)	Lustre	(2)	Streak					
	(3)	Colour	(4)	Cleavage					

34.	Cho	ose the Diamagnetic Mineral	:							
	(1)	Pyrite	(2)	Ilmenite						
	(3)	Calcite	(4)	Apatite						
35.	Blu	e Beryl is :								
	(1)	Aquamarine	(2)	Agate						
	(3)	Topaz	(4)	(1) & (3) Both						
36.	Whi	Which of the following mineral does not contain silica:								
	(1)	Quartz	(2)	Muscovite						
	(3)	Halite	(4)	Plagioclase						
37.	A m	ineral has pearly luster:								
	(1)	Diamond	(2)	Muscovite						
	(3)	Opal	(4)	Asbestos						
38.	Sch	eelite shows:								
	(1)	Phosphorenscence	(2)	Fluouresence						
	(3)	Triboluminescence	(4)	Thermoluminescenc						
39.	Opti	ically Negative and has low ex	tincti	on angles :						
	(1)	Quartz	(2)	Chlorite						
	(3)	Hornblende	(4)	Acmite						

P.T.O.

Ю.	Qua	rtz is:		5 E.A.
	(1)	Positive Uniaxial	(2)	Negative Uniaxial
	(3)	Negative Biaxial	(4)	Positive Biaxial
11.	•		ins a	re viewed collectively under
	micr	oscope in polarized light:		41.7
	(1)	Play of colours	(2)	Twinkling
	(3)	Pleochroism	(4)	Interference figure
				17.18
42 .	The	minerlogical Phase Rule is given	ren b	y the formula:
	(1)	P+F=C-2	(2)	P-F=C+2
	(3)	F=C+P-2	(4)	P+F=C+2
				. As a .
43.	High	n temperature polymorph of q	uartz	:
	(1)	Coesite	(2)	Cristobalite
	(3)	Tridymite	(4)	Opal
				13
44.	Whi	ich of the following is used to	meas	ure retardation :
	(1)	Bertland lens	(2)	Condenser
	(3)	Berek compensator	(4)	Iris diaphragm
			1	
45.	Dia	phaneity is the property relate	ed to	
	(1)	Dispersion of light	(2)	Transmission of light
	(3)	Reflection of light	(4)	Refraction of light
				•

46.	Dia	mond is exposed to sun, it exl	nibits	:
	(1)	Phosphorescence	(2)	Fluorescence
	(3)	Opalescence	(4)	Pleochroism
47.	Tan	talite and Brookite are examp	les of	`:
	(1)	Polymorphs	(2)	Isomorphs
	(3)	Pseudomorphs	(4)	Paramorphs
48.	High	hest Birefrignence in :		,
	(1)	Plagioclase	(2)	Tourmaline
	(3)	Zircon	(4)	Calcite
49.	Whi	ch of the following is a homop	olar	bond ?
	(1)	lonic bond	(2)	Covalent bond
	(3)	Metallic bond	(4)	Van der Wall's bond
50 .	We	can know internal structure o	f min	erals from their study by :
	(1)	X-rays	(2)	UV rays
	(3)	Cosmic rays	(4)	Visible light
51.	Whi	ch of the following is a high pr	essu	re variety of silica ?
	(1)	Chert	(2)	Chalcedony
	(3)	Cristobolite	(4)	Coesite

52 .	The	mineral constituting an example of omission solid solution is:							
	(1)	Pyrolusite			(2)	Pyrite			
	(3)	Pyrrhotite			(4)	Pigeonite			
53.	Fluc	orite is often o	harac	cterized by l	now r	nany sets of cle	eava	ige ?	
	(1)	5	(2)	1	(3)	None	(4)	4	
54.	The	streak of bar	ite or	barites is :		*			
	(1)	Blue			(2)	Colourless			
	(3)	White			(4)	Yellow			
55.			owing	minerals d		y fluorescence Feldspar	?	-4.	
	(1)	Actinolite Scheelite			(2) (4)	Pyrope			
56.	Whi	ich amongst t	he fo	llowing has	large	st ionic radius	?		
	(1)	Oxygen			(2)	Aluminium		- 1	
	(3)	Silicon			(4)	Magnesium			
57.	Whi	ich of the foll	owing	is an ortho	silica	ate?			
	(1)	Axinite			(2)	Enstatite			
	(3)	Quartz			(4)	Olivine			

58.	The	The co-ordination number of Na ⁺ in NaCl is:										
	(1)	2	(2)	6	(3)	4		(4)	8			
59.	Ca-	bearing oliving	ne is :									
	(1)	Fayalite			(2)	Monticell	ite					
	(3)	Tephroite			(4)	Knebelite	•					
60.	Wh	ich of the follo	wing	is not a m	netam	orphic mine	eral	?	×			
	(1)	Staurolite			(2)	Jasper		×				
	(3)	Olivine			(4)	Garnet						
61.	Mos	st common an	phib	ole is :								
	(1)	Hornblende			(2)	Pigeonite						
	(3)	Anthophyllit	te		(4)	Glaucoph	ane					
62.	Which of the following garnets is used as pathfinder mineral in diamond (kimberlite) exploration ?											
	(1)	Almandine			(2)	Spessartin	ne					
	(3)	Pyrope		3	(4)	Uvaravite						
63.	Chia	astolite is a va	riety	of:								
	(1)	Anorthite			(2)	Anorthocla	ase					
	(3)	Andalusite			(4)	Andradite						

- 64. Which amongst the following minerals crystallize in triclinic system?
 - (1) Sillimanite

(2) Fayalite

(3) Kyanite

(4) Tremolite

- 65. Primary magma:
 - (1) Is formed by magmatic differentiation
 - (2) Is a magma as it exists immediately after separation from its source region
 - (3) Is formed by contamination
 - (4) Is a fractionated magma
- 66. Norite is essentially composed of:
 - (1) Clinopyroxene and plagioclase feldspar
 - (2) Orthopyroxene and Olivine
 - (3) Only orthopyroxene
 - (4) Orthopyroxene and plagioclase feldspar
- 67. Alkali granite is essentially composed of
 - Alkali feldspar and quartz only
 - (2) Alkali and plagioclase feldspars and quartz
 - (3) Alkali and plagioclase feldspars, quartz and alkali mafic minerals
 - (4) Plagioclase feldspar, quartz and hornblende

- 68. Plutonic equivalent of phonolite is:
 - (1) Mela nepheline syenite
- (2) Granite

(3) Syenite

- (4) Gabbro
- 69. Alkali feldspar syenite is essentially composed of:
 - (1) Both alkali and plagioclase feldspars
 - (2) Minerals need microscope to see.
 - (3) Only alkali feldspar
 - (4) Plagioclase feldspar and biotite
- 70. What is phaneritic texture in igneous rocks?
 - (1) Minerals are too large to see with naked eye
 - (2) Minerals need microscope to see
 - (3) Glassy in nature
 - (4) Very fine-grained groundmass
- 71. Mafic minerals in igneous rocks are:
 - (1) Light in colour due to presence of Al and Si
 - (2) Dark in colour due to presence of Fe and Mg
 - (3) Dark in colour due to presence of Al and Si
 - (4) Dark in colour due to presence of Si and Fe

15

P.T.O.

72 .	Colour	Index	(CI)	of a	melanocratic	igneous	rock	varies	between	:
-------------	--------	-------	------	------	--------------	---------	------	--------	---------	---

(1) 0 and 50

(2) 35 and 65

(3) 20 and 65

(4) 65 and 100

73. Silica contents in a felsic igneous rock is:

- (1) Always less than 55%
- (2) Always more than 66%
- (3) Varies between 55% and 66% (4) Varies between 45% and 52%

74. In a peraluminous igneous rock:

- (1) $Al_2O_3 > CaO + Na_2O + K_2O$
- (2) $Al_2O_3 < CaO + Na_2O + K_2O$
- (3) $Al_2O_3 = CaO + Na_2O + K_2O$
- (4) $Al_2O_3 > CaO + K_2O$

75. Which of the followings is not an ultramafic igneous rock?

(1) Troctolite

(2) Komatiite

(3) Peridotite

(4) Dunite

76. Which of the followings is a best criterion to classify plutonic igneous rocks?

- (1) Textures
- (2) Essential mineral constituents
- (3) Nature of groundmass
- (4) Mode of occurrences

	(1)	Orthopyroxene and olivin	e	
	(2)	Clinopyroxene and olivine	;	
	(3)	Orthopyroxene and clinor	yroxei	ne ;
	(4)	Hornblende and biotite		
				v.
78	. Fo	llowing oxides are used in TA	AS clas	sification:
	(1)	Al_2O_3 and SiO_2	(2)	MgO, CaO and SiO ₂
	(3)	Na ₂ O, K ₂ O and MgO	(4)	SiO ₂ , Na ₂ O and K ₂ O
79	. Gra	anularity in an igneous rock	define	s:
	(1)	Degree of crystallization	W)	Si .
	(2)	Absolute and relative sizes	of crys	stals
	(3)	Relationship between cryst	tals an	d groundmass
	(4)	Shape of crystals:		
80.	Coa	rse-grained sediments are to	ranspo	rted by :
	(1)	Traction process	(2)	Saltation process
	(3)	Suspension process	(4)	None
81.	Part	ticle size range of arenaceous	s rocks	is:
	(1)	2-4 mm	(2)	1/16-2 mm
	(3)	1/256-1/16 mm	(4)	<1/256 mm
		17	,	

77. Mineral composition of websterite is:

32.	Ripp	le marks occur on the :		*
	(1)	Lower surface	(2)	Upper surface
	(3)	Internal structure	(4)	External structure
83.	Sole	marks occur on the:		
	(1)	Lower surface	(2)	Upper surface
	(3)	Internal structure	(4)	External structure
84.	Ripp	ole marks with bifurcated cr	est a	nd ripple index from 2-5 are
	gene	erated by:		
	(1)	Wave	(2)	Current
	(3)	Tide	(4)	Storm
85.	Her	ringbone cross-bedding indica	ate se	edimentation in :
	(1)	Fluvial environment	(2)	Lacustrine environment
	(3)	Tidal environment	(4)	Deep marine environment
				- · ·
86	Gra	ded beds form in marine envi	ironn	
	(1)	By traction currents	(2)	By turbidity currents
	(3)	By suspension fall out	(4)	By debris flow
		'mtoin '		
87	. Qu	artz arenites contain:		FO FEN/ Occarts
	(1)	<50% Quartz	(2)	
	(3)	75-95% Quartz	(4)	>95% Quartz

	(1)	Appreciable amount of felds	spar	
	(2)	Low percentage of feldspar	3	
	(3)	Negligible amount of feldspa	ar	
	(4)	No feldspar		
89	San	detones containing 150/		
٠.	as:		LTIX 8	and <75% quartz are classified
	(1)	Arkose	(2)	Greywacke
	(3)	Lithic arenite	(4)	Quartz arenite
90.	Lith	ic arenites are :		
	(1)	Quartz rich sandstones		
	(2)	Feldspar rich sandstones		
	(3)	Rock fragments rich sandsto	ones	
	(4)	Clay rich sandstones		
91.	Clay	stones contain:		
	(1)	<33% clay	(2)	33-66% clay
	(3)	>66% clay	(4)	>100% clay
92.	Argi	llaceous sediments containing	a cla	y between 33-66% are known
	as:		g Cla	y between 33-00% are known
	(1)	Mudstone	(2)	Siltstone
	(3)	Claystone	(4)	Dropstone
		10		

88. Arkoses are sandstones which contain:

93.	Micrites are orthochems containing crystals:								
	(1)	<4 µ m	(2)	$4-10\mum$	(3)	>10 µ m	(4)	>100 p	ı m
94.	Oolit	tes form in :							
	(1)	Agitated wat	ter		(2)	Calm water			
	(3)	Cool water			(4)	None			
2002			v v	1.		and with in	oreo.	se in 1	noth
95.						ated with inc	lca	50 111 1	30011
	tem	perature and	press	sure best de	efines	:			
	(1)	Contact met	tamor	phism	(2)	Burial metar	norp	hism	
	(3)	Partial melt	ing		(4)	Regional me	tamo	rphism	ı
						×			
96.	Alka	ali amphibole	:						
	(1)	Glaucophar	ne		(2)	Albite	1.		
	(3)	Muscovite			(4)	Jadeite	è		
97	. Wh	ich one of the	e follo	wing is not	an aş	gent of metam	orph	ism?	
	(1)	Fluid			(2)	Time			
	(3)	Rock type			(4)	Heat-temper	ratur	e	
98					is a	associated w	ith	the ze	olite
	me	tamorphic fa	cies ?						
	(1)	High grade	2		(2)	Low grade			
	(3)	Rock melt			(4)	Intermediat	e gra	ade	**

99	. W	hich of the following meta	morphic	facies is characterized by the			
		pyrope rich garnet+ omphacite assemblage :					
	(1)	Blue Schist	(2)	Granulite			
	(3)	Eclogite	(4)	Greenschist ,			
100	n Mi	amatite is an arrawal	•				
10	O. 1V11	gmatite is an example of:					
	(1)	Non foliated rock	(2)	Weakly foliated rock			
•	(3)	Strongly foliated	(4)	None of above			
10	1 . Ca	-poor pyroxene is :					
	(1)	Pigeonite	(2)	Omphacite			
	(3)	Enstatite	(4)	Jadiete			
102	2.A a	mphibole which is charact	eristic of	high temperature ·			
	(1)	Edenite	(2)	Hornblende			
	(3)	Tremolite	(4)	Paragasite			
103	۸ -	haar 1'					
100	. А р	mase diagram with a speci	fied bulk	composition is known as :			
	(1)	Isograde diagram	(2)	AFM diagram			
	(3)	ACF diagram	(4)	Pseudosection			
04.	Cha	racteristic mineral of charr	ockites	:			
	(1)	Hypersthene	(2)	Pyroxene			
	(3)	Garnet	(4)	Sillimanite			

105	Stre	ess minerals which are produ	iced	in metamorphic rocks under
	the s	stress factor?		
	(1)	Kyanite	(2)	Sillimanite
	(3)	Cordierite	(4)	Olivine
106	.Low	grade schist are :	(0)	Garnet schist
	(1)	Staurolite schist	(2)	
	(3)	Chlorite schist	(4)	Cordierite schist
107	. In	high grade metamorphism, bi	otite	
	(1)	Rock cooling	(2)	Rock hydration
	(3)	Rock uplifting	(4)	Rock dehydration
108	3.The	metamorphic facies diagnosti	c of	
	(1)	Granulite	(2)	Blueschist
	(3)	Pyroxene hornfels	(4)	Hornblende hornfels
10	9 .Wh	o proposed the first geologic-t	ime-	scale amongst the following?
	(1)	Darwin	(2)	Hutton
	(3)	Steno	(4)	Holmes
11	0 . Wh	nich is the oldest era of the ge	ologi	c- time-scale ?
	(1)	** 1 m	(2)) Archean
	(3)	Proterozoic	(4) Palaeozoic

111	l. The	basic unit of lithostra	atigraphic cla	assification	is:	
	(1)	Supergroup	(2)	Group		
	(3)	Formation	(4)	Bed		
			2			
112	In s	tratigraphic classifica	ation which o	f the follow	ing units is used f	or
	igne	eous and metamorphi	ic rocks?			
	(1)	System	(2)	Period		
	(3)	Eon .	(4)	Lithoden	ne	
113	In a	transgressive seque	nce which of	the followi	ng type of sedime	nt
		imulation exist?				
	(1)	Coarsening upward				
	(2)	Homogeneous sized	sediments			
	(3)	Alternating coarse a	nd fine sedir	nents		
	(4)	Fining upward seque	ence			
114	.In w	hich part of India full	marine Mes	ozoic succ	ession is exposed	5
	(1)	Eastern Ghat	(2)	Western		
	(3)	Outer Himalaya	(4)	Tethyan I	Himalaya	
115	The	toal geologican span o	of Mesozoic E	Cra is :		
	(1)	175 16	5 Ma (3)	195 M a	(4) 205 Ma	

116.	Dur	ing which of the followin	g er	as, the largest number of		
	palaeogeographic reconstructions took place?					
	(1)	Palaeozoic .	(2)	Cenozic		
	(3)	Mesozoic	(4)	Proterozoic		
	m)	1 6 . 6		wing Forly Triossic is mainly		
117		buted to:	a du	ring Early Triassic is mainly		
			n (2)	Abnormal salinity		
	(1)	Sudden marine transgression				
	(3)	Magnetic reversal	(4)	Unusual tectonism		
118	. Dur	ing which of the following tir	nes t	the cretaceous sea was on its		
	peal	k of transgression as well as h	avin	g maximum temperature?		
	(1)	Maastrichtian	(2)	Albian		
	(3)	Campanian	(4)	Turonian		
119	. The	"cyclotheme" sedimentation i	s bes	st observed in		
	(1)	Jurassic sediments	(2)	Triassic sediments		
	(3)	Cretacaceous sediments	(4)	Gondwana sediments		
120).Raj	mahal Formation consists of :				
	(1)	Sedimentary rocks only				
	(2)	Volcanic rocks only				
	(3)	Both sedimentary and volca	nic r	rocks		
	(4)	Volcanic and plutonic igneo	us ro	ocks		
		2	4			
		4	•			

121	Wh	ich of the following represe	nts	a Lower Gondwana Marine			
	inte	ercalation :					
	(1)	Umaria marine bed	(2)	Athgarh Sandstone bed			
	(3)	Umia beds	(4)	Raghavpurum shale beds			
122	122. The completete Triassic succession of Spiti region is known as						
	(1)	Lilang Group	(2)	Spiti shales			
	(3)	Kioto Limestone	(4)	Tagling Stage			
123	.The	modern concepts of stratigrap	hy is	applicable to:			
	(1)	Sedimentary rocks only					
	(2)	Sedimentary and volcanic Ign	eous	rocks			
	(3)	Sedimentary and low grade metamorphic rocks					
	(4)	Sedimentary Igneous and met					

124. A stratum is a :

- (1) Smallest layered unit of sedimentary rock
- (2) Two layered unit of sedimentary rock
- (3) The whole sedimentary unit of a basin
- (4) Can be a sedimentary rock of any dimension

125.	" Pre	esent is key to past" is related	to:			
	(1)	Principle of superposition				
	(2)	Principle of original horizonta	lity			
	(3)	Principle of original continuit	y			
	(4)	Principle of uniformitarrianism	m			
126	. Sele	ct a lithodernic unit from the	follov	ving:		
	(1)	System	(2)	Suite		
	(3)	Period	(4)	Formation		
127	.The	complete palaeozoic successio	n is	found in:		
	(1)	Kashmir Himalaya	(2)	Eastern ghat		
	(3)	Western ghat	(4)	Andman Islands		
128	. Find	d a chronostratigraphic unit :				
	(1)	Erathem	(2)	Era		
	(3)	Supergroup	(4)	Complex		
129	129. Precambrian / cambrian boundary is found at :					
	(1)	580 Ma (2) 520 Ma	(3)	540 Ma (4) 600 Ma		
130	0 .Wh	o gave the basic concept of fac	cies?			
	(1)	Walther	(2)	Gresley		
	(3)	Steno	(4)	Hutton		

13	131. The oldest palaeozoic sediments of kashmir Himalaya belongs to :						
	(1)	Dogra slate	(2)	Salkhala group			
	(3)	Haimanta group	(4)	Thango formation			
13		e igneous activity during pa atigraphically known as :	laeozo	ic era in Kashmir Himalaya is			
	(1)	Deccan Trap	(2)	Panjal Trap			
	(3)	Rajmahal Trap	(4)	Bhimtal volcanics			
133. The youngest palaeozoic sediments in Kashmir Himalaya is grouped as:							
	(1)	Syringothyris limestone	(2)	Fenestella shale			
	(3)	Zewan formation	(4)	Lipak formation			
134	4 . Um	aria marine beds are marine	interc	calatons in :			
	(1)	Karewa Group	(2)	Siwalik Group			
	(3)	Lower Gondwana	(4)	Middle Gondwana			
135	135: The beging of Gondwana sedimentation is characterised by deposition of:						
	(1)	Laccustrine sediments	(2)	Marine sediments			
	(3)	Deltaic sediments	(4)	Glacial sediments			

	(1)	Baraker formation	(2)	Raniganj formation
	(3)	Barren measure	(4)	karharbari formation
137	.Epig	genetic deposits are formed:		
	(1)	After the formation of host ro	ck	
	(2)	Before the formation and the	host	rock
	(3)	At the time of formation of ho	st ro	ck
	(4)	All of the above		
138	.Syn	gentic deposits are formed:		
	(1)	At the time and formation of	host	rock
	(2)	After the formation of host ro	ck	
	(3)	Both of the above		
	(4)	None of the above		
		1 ' C - 1 by machan	ical i	concentration process is also
139	.Ore	deposits formed by mechan	icai	concentration process is also
	call	ed:		
	(1)	Placer deposit	(2)	Sedimentary deposits
	(3)	Evaporation deposit	(4)	All of the above
140	0 .The	e temperature range for the for	rmati	on of hypothermal deposit is:
	(1)	300-500°C	(2)	300-450°C
	(3)	300-700°C	(4)	300-400°C
	. '		¥	
		2:	8	
		_		

136. The lower most subdivision of Damuda group is known as:

(1) Four divisions (2) Three divisions (3) Six divisions (4) None of them							
(1) None of them							
140 m							
	140 m						
142. The lowest temperature range for the formation of hydrothermal ore deposits is:							
(1) <50°C (2) <100°C							
(3) <200°C (4) None of the above							
143. 'Porphyry' type copper deposit is found in our country:							
(1) Malauj khand (2) Khetri							
(3) Mosaboni (4) Dariba-Rajpura							
144. In the cavity filling structure which term is very common:							
(1) Vug (2) Vein							
(3) Veinlet (4) None of them							
145. Placer deposits are formed as a result of :							
(1) Mechanical concentration (2) Residual concentration							
(3) Magneatic concentration (4) All of the above							
146. Replacement structure is very common in :							
(1) Hydrothermal deposit (2) Pegmatitic deposit							
(3) Pyrometasomatic deposit (4) Magneatic deposit							

147	147. Sedimentary magnesite deposit is found:					
	(1)	Pithoragarh	(2)	Almora		
	(3)	Chamoli	(4)	All of the above		
148. Important polymetallic sulphide deposit is found to occur in :						
	(1)	Rajpura-Dariba	(2)	Sukindha		
	(3)	Khetri	(4)	None of the above		
149. Economic point of view which type of pegmatite is very important:						
	(1)	Complex pegmatite	(2)	Simple pegmatite		
	(3)	Both	(4)	None of them		
150. Which copper ore is showing peacock colour:						
	(1)	Bornite	(2)	Braunite		
	(3)	Malachite	(4)	Azurite		

ROUGH WORK एफ कार्य

P.T.O.

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई 1. प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। 3. केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें। 4.
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को 5. गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- ओ ॰ एम ॰ आर ॰ पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ ० एम ० आर ० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित 7. साधन का प्रयोग माना जायेगा।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए 8. आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने 9. पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

