MATHEMATICS

A variable line $\frac{x}{a} + \frac{y}{b} = 1$ is such that a + b = 4. The locus of the midpoint of the portion of the line intercepted between the axes is

1)
$$x + y = 4$$

2)
$$x + y = 8$$

3)
$$x + y = 1$$

4)
$$x + y = 2$$

2. The point (5, -7) lies outside the circle

1)
$$x^2 + y^2 - 8x = 0$$

$$2) \quad x^2 + y^2 - 5x + 7y = 0$$

3)
$$x^2 + y^2 - 5x + 7y - 1 = 0$$
 4) $x^2 + y^2 - 8x + 7y - 2 = 0$

4)
$$x^2 + y^2 - 8x + 7y - 2 = 0$$

If the circles $x^2 + y^2 = 9$ and $x^2 + y^2 + 2\alpha x + 2y + 1 = 0$ touch each other internally, 3. then $\alpha =$

1)
$$\pm \frac{4}{3}$$

3)
$$\frac{4}{3}$$

4)
$$\frac{-4}{3}$$

The locus of the midpoints of the line joining the focus and any point on the parabola $y^2 = 4ax$ is a parabola with the equation of directrix as

1)
$$x + a = 0$$

$$2) \quad 2x + a = 0$$

3)
$$x = 0$$
.

$$4) \quad x = \frac{a}{2}$$

- The tangents drawn at the extremeties of a focal chord of the parabola $y^2 = 16x$ 5.
 - 1) intersect on x = 0

- 2) intersect on the line x + 4 = 0
- 3) intersect at an angle of 60⁰
- 4) intersect at an angle of 450

- 6. On the set Z, of all integers * is defined by a*b=a+b-5. If 2*(x*3)=5 then x=
 - 1)

2) 3

3) 5

- 4) 10
- 7. Which of the following is false?
 - 1) Addition is commutative in N.
 - 2) Multiplication is associative in N.
 - 3) If $a*b = a^b$ for all $a, b \in N$ then * is commutative in N.
 - 4) Addition is associative in N.
- 8. If $\vec{a} \cdot \hat{i} = \vec{a} \cdot (\hat{i} + \hat{j}) = \vec{a} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$ then $\vec{a} = \vec{a} = \vec{a} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$
 - 1) $\hat{i} + \hat{j}$

2) $\hat{i} - \hat{k}$

3) \hat{i}

- 4) $\hat{i} + \hat{j} \hat{k}$
- 9. If \vec{a} and \vec{b} are unit vectors and $|\vec{a} + \vec{b}| = 1$ then $|\vec{a} \vec{b}|$ is equal to
 - 1) $\sqrt{2}$

2)

3) √5

- 4) $\sqrt{3}$
- 10. The projection of $\vec{a} = 3\hat{i} \hat{j} + 5\hat{k}$ on $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$ is
 - 1) $\frac{8}{\sqrt{35}}$

2) $\frac{8}{\sqrt{39}}$

3) $\frac{8}{\sqrt{14}}$

4) $\sqrt{14}$

11. If $f: R \to R$ is defined by $f(x) = x^3$ then $f^{-1}(8)$	11.	If f	$: R \to R$	is	defined	by	f	(x)	$= x^3$	then	f^{-1}	(8))=
---	-----	--------	-------------	----	---------	----	---	-----	---------	------	----------	-----	----

1) {2}

 $\{2, 2w, 2w^2\}$

3) $\{2, -2\}$

4) {2, 2}

12.
$$R$$
 is a relation on N given by $R = \{(x, y) \mid 4x + 3y = 20\}$. Which of the following belongs to R ?

1) (-4, 12)

2) (5, 0)

3) (3, 4)

4) (2, 4)

13. If
$$Log_{10}7 = 0.8451$$
 then the position of the first significant figure of 7^{-20} is

1) 16

2) 17

3) 20

4) 15

14.
$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots$$
 upto *n* terms =

1) $\frac{n}{4n+6}$

2) $\frac{1}{6n+4}$

 $3) \quad \frac{n}{6n+4}$

4) $\frac{n}{3n+7}$

15. The ten's digit in
$$1!+4!+7!+10!+12!+13!+15!+16!+17!$$
 is divisible by

1) 4

2) 3!

3) 5

4) 7

16. The equation $\frac{x^2}{2-\lambda} - \frac{y^2}{\lambda-5} - 1 = 0$ represents an ellipse if

1) $\lambda > 5$

2) $\lambda < 2$

3) $2 < \lambda < 5$

4) $2 > \lambda > .5$

17. The equation to the normal to the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ at (-4, 0) is

1) 2x - 3y = 1

2) x = 0

3) x = 1

4) y = 0

18. The converse of the contrapositive of the conditional $p \rightarrow \neg q$ is

1) $p \rightarrow q$

2) $\sim p \rightarrow \sim q$

3) $\sim q \rightarrow p$

4) $\sim p \rightarrow q$

19. The perimeter of a certain sector of a circle is equal to the length of the arc of the semicircle.

Then the angle at the centre of the sector in radians is

1) $\pi - 2$

(2) $\pi + 2$

3) $\frac{\pi}{3}$

4) $\frac{2\pi}{3}$

20. The value of $Tan \ 67\frac{1}{2}^{0} + Cot \ 67\frac{1}{2}^{0}$ is

- 1) $\sqrt{2}$
- 2) $3\sqrt{2}$

3) $2\sqrt{2}$

4) $2-\sqrt{2}$

21.	If e_1	and e_2	are the eccentricities	s of a hyperbola	$3x^2 - 3y^2 = 25$	and its conjugate,	the
-----	----------	-----------	------------------------	------------------	--------------------	--------------------	-----

1) $e_1^2 + e_2^2 = 2$

2) $e_1^2 + e_2^2 = 4$

3) $e_1 + e_2 = 4$

4) $e_1 + e_2 = \sqrt{2}$

22. If p and q are prime numbers satisfying the condition $p^2 - 2q^2 = 1$, then the value of $p^2 + 2q^2$ is

1) 5

2) 15

3) 16

4) 17

23. If A(adj A) = 5I where I is the identity matrix of order 3, then |adj A| is equal to

1) 125

2) 25

3) 5

4) 10

24. The number of solutions for the equation Sin 2x + Cos 4x = 2 is

1) 0

2)

3) 2

4) Infinite

25. $\int e^x \cdot x^5 dx$ is

1)
$$e^x \left[x^5 + 5x^4 + 20x^3 + 60x^2 + 120x + 120 \right] + C$$

2)
$$e^{x} \left[x^{5} - 5x^{4} - 20x^{3} - 60x^{2} - 120x - 120 \right] + C$$

3)
$$e^{x} \left[x^{5} - 5x^{4} + 20x^{3} - 60x^{2} + 120x - 120 \right] + C$$

4)
$$e^{x} \left[x^{5} + 5x^{4} + 20x^{3} - 60x^{2} - 120x + 120 \right] + C$$

26. If f(x) is an even function and f'(x) exists, then f'(e)+f'(-e) is

1) > 0

2) (

 $3) \geq 0$

4) < 0

27. If α is a complex number satisfying the equation $\alpha^2 + \alpha + 1 = 0$ then α^{31} is equal to

1) a

 α^2

3) 1

4) i

28. The derivative of $Sin(x^3)$ w.r.t. $Cos(x^3)$ is

1) $-Tan(x^3)$

2) $Tan(x^3)$

3) $-Cot\left(x^3\right)$

4) $Cot(x^3)$

29. A unit vector perpendicular to both the vectors $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is

 $1) \quad \frac{-\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$

 $2) \quad \frac{\hat{i} + \hat{j} - \hat{k}}{3}$

3) $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$

4) $\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$

30. If $A = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ and $B = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ then

1) A = -B

A = B

3) B = 0

 $4) \quad B = A^2$

- 31. The locus of a point which moves such that the sum of its distances from two fixed points is a constant is
 - 1) a circle

2) a parabola

3) an ellipse

- 4) a hyperbola
- **32.** The centroid of the triangle ABC where $A \equiv (2, 3)$, $B \equiv (8, 10)$ and $C \equiv (5, 5)$ is
 - 1) (5, 6)

2) (6, 5)

3) (6, 6)

- 4) (15, 18)
- 33. If $3x^2 + xy y^2 3x + 6y + K = 0$ represents a pair of lines, then K =
 - 1) 0

2) 9

3) 1

- 4) -9
- 34. The equation of the smallest circle passing through the points (2, 2) and (3, 3) is
 - 1), $x^2 + y^2 + 5x + 5y + 12 = 0$
- 2) $x^2 + y^2 5x 5y + 12 = 0$
- 3) $x^2 + y^2 + 5x 5y + 12 = 0$
- 4) $x^2 + y^2 5x + 5y 12 = 0$
- x + y + 3x 3y + 12 = 0
- The characteristic roots of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix}$ are
 - 1) 1, 3, 6

2) 1, 2, 4

3) 4, 5, 6

4) 2, 4, 6

36. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, then $A^{-1} =$

 $1) \quad \frac{-1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$

 $2) \quad \frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$

 $4) \quad \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$

37. The set {-1, 0, 1} is not a multiplicative group because of the failure of

1) Closure law

2) Associative law

3) Identity law

4) Inverse law

38 The angle of elevation of the top of a TV tower from three points A, B and C in a straight line through the foot of the tower are α , 2α and 3α respectively. If $AB = \alpha$, the height of the tower is

1) a Tan α

2) a Sin α

3) a Sin 2α

4) a Sin 3α

39. The angles A, B and C of a triangle ABC are in A.P. If $b:c=\sqrt{3}:\sqrt{2}$, then the angle A is

1) 300

2) 15⁰

3) 75^{0}

4) 450

40. $Sin\left(2Sin^{-1}\sqrt{\frac{63}{65}}\right) =$

1) $\frac{2\sqrt{126}}{65}$

2) $\frac{4\sqrt{65}}{65}$

 $3) \quad \frac{8\sqrt{63}}{65}$

4) $\frac{\sqrt{63}}{65}$

41. The general solution of |Sin x| = Cos x is (when $n \in \mathbb{Z}$) given by

1)
$$n \pi + \frac{\pi}{4}$$

2)
$$2n \pi \pm \frac{\pi}{4}$$

3)
$$n \pi \pm \frac{\pi}{4}$$

4)
$$n \pi - \frac{\pi}{4}$$

42. The real root of the equation $x^3 - 6x + 9 = 0$ is

$$1) -6$$

$$4) -3$$

43. The digit in the unit's place of 5834 is

44. The remainder when $3^{100} \times 2^{50}$ is divided by 5 is

$$45. \quad \int \frac{\sin x \cos x}{\sqrt{1 - \sin^4 x}} \, dx =$$

1)
$$\frac{1}{2} Sin^{-1} \left(Sin^2 x \right) + C$$

2)
$$\frac{1}{2} Cos^{-1} \left(Sin^2 x \right) + C$$

3)
$$Tan^{-1}(Sin^2x)+C$$

4)
$$Tan^{-1}(2 Sin x)+C$$

46. The value of $\int_{0}^{2} (ax^3 + bx + c) dx$ depends on the

1) value of b

2) value of c

3) value of a

4) values of a and b

The area of the region bounded by $y = 2x - x^2$ and the x-axis is

1) $\frac{8}{3}$ sq. units

2) $\frac{4}{3}$ sq. units

3) $\frac{7}{3}$ sq. units

4) $\frac{2}{3}$ sq. units

The differential equation $y \frac{dy}{dx} + x = c$ represents

- 1) a family of hyperbolas
- 2) a family of circles whose centres are on the y-axis
- 3) a family of parabolas
- 4) a family of circles whose centres are on the x-axis

49. If $f(x^5) = 5x^3$, then f'(x) =

1) $\frac{3}{\sqrt[5]{r^2}}$

 $2) \quad \frac{3}{\sqrt[5]{x}}$

3) $\frac{3}{z}$

50. f(x) = 2a - x in -a < x < a=3x-2a in $a \le x$.

Then which of the following is true?

- 1) f(x) is discontinuous at x = a 2) f(x) is not differentiable at x
- 3) f(x) is differentiable at all $x \ge a$ 4) f(x) is continuous at all x < a

- The maximum area of a rectangle that can be inscribed in a circle of radius 2 units is (in square units) 8π
 - 1) 4
 - 3) 8 4) 5
- If Z is a complex number such that $Z = -\overline{Z}$, then
 - 1) Z is purely real
 - 2) Z is purely imaginary
 - 3) Z is any complex number
 - 4) Real part of Z is the same as its imaginary part
 - The value of $\sum_{K=1}^{6} \left[Sin \frac{2K \Pi}{7} i Cos \frac{2K \Pi}{7} \right]$ is 1) i
- **54.** $\underset{x \to \infty}{Lt} x Sin\left(\frac{2}{x}\right)$ is equal to
 - 1)

3)

- 4) $\frac{1}{2}$ 2
- A stone is thrown vertically upwards and the height x ft. reached by the stone in t seconds is given by $x = 80t - 16t^2$. The stone reaches the maximum height in

2) 0

- 1) 2 seconds 2) 2.5 seconds
- 3) 3 seconds 4) 1.5 seconds

56. The maximum value of $\frac{Log x}{x}$ in $(2, \infty)$ is

1) 1

 $\frac{2}{e}$

3) e

4) $\frac{1}{6}$

57. If $f(x) = be^{ax} + ae^{bx}$, then f''(0) =

) (

2) 2ab

3) ab(a+b)

4) ab

58. If $\sqrt{\frac{1+\cos A}{1-\cos A}} = \frac{x}{y}$, then the value of Tan A =

1) $\frac{x^2 + y^2}{x^2 - y^2}$

 $\frac{2xy}{2} = \frac{2xy}{x^2 + y^2}$

3) $\frac{2xy}{x^2-y^2}$

4) $\frac{2xy}{y^2 - x^2}$

 $59. \quad \int \frac{Sec \, x}{Sec \, x + Tan \, x} \, dx =$

1) Tan x - Sec x + C

2) Log (1+Sin x)+C

3) Sec x + Tan x + C

4) Log Sin x + Log Cos x + C

60. If $\int f(x) dx = g(x)$, then $\int f(x) g(x) dx =$

1) $\frac{1}{2}f^2(x)$

2) $\frac{1}{2}g^2(x)$

3) $\frac{1}{2} \left[g'(x) \right]^2$

4) f'(x) g(x)