Set No. 1

Question Booklet No.

00054

14P/205/4

• (4)	(To be fi	iled up b	y the can	didate by	blue/bl	lack b	all-poi	nt pen)		
Roll No.					•					
Reil No. (Write the	digits in	words)		********	*****) 4 4 4 4 4 4 4 4 4 4 1 1		***************************************	
Serial No.	of OMR	hswer S	Sheet	,	*********	******		*************	**********	*********
Day and I	Date	*******	***********		•1 ••• p•••••			(Signatur	e of Invigil	ator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Auswer Sheet)

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigitators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space prvided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Queston Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle
 or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only OMR Answer Sheet at the end of the 'Fest.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 32

[उपर्वुक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK एक कार्य

No. of Questions: 150

प्रश्नों की संख्या : 150

Time: 2 Hours

Full Marks: 450

समय : 2 घण्टे

पूर्णाङ्कः 450

Note: (1) Attempt as many questions as you can. Each question carries 3 (Three) marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 (तीन) अंकों का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जायेगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
 यदि एकाधिक वैकस्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- 01. Most of the groundwater in hard rocks is present in the
 - (1) Pores

(2) Cracks and joints

- (3) Intergranular spaces
- (4) Intragranular spaces
- 02. Limestone terrains are characterized by
 - (1) Few springs with high discharge
 - (2) Many springs with little discharge
 - (3) Many springs with high discharge
 - (4) Few springs with little discharge

- 03. Himalaya is a product of
 - (1) Continent-arc-collision.
 - (2) Continent-continent collision
 - (3) Arc-arc-collision
 - (4) Continent-arc-continent collision
- 04. Most active chemical weathering takes place
 - (1) At the water table
 - (2) Below the water table
 - (3) On the surface
 - (4) Zone of acration above the water table
- 05. Parallel drainage patterns are found on
 - (1) Jointed country
 - (2) Steep slopes with little vegetation cover
 - (3) Granite-gneiss domes
 - (4) Grid like joint systems
- O6. When a stream or river is diverted from its own bed, and flows instead down the bed of a neighbouring stream, the phenomenon is known as
 - (1) Stream piracy
 - (2) Headwater management
 - (3) River shifting
 - (4) Superimposed drainage
- 07. What is a 'nick point' in a river
 - (1) A marked change of slope along flow direction of the channel
 - (2) A sharp bend in the river
 - (3) A sharp meander
 - (4) Point where the river changes its direction of flow suddenly

collegedunia

08.	Wh:	ich of the following is the mo	st cha	racteristic glacial landform
	(1)	Narrow 'V' -shaped valleys		p e
	(2)	Wide 'V' -shaped valleys		
	(3)	Hanging valleys		
	(4)	None of the above		∞ :•
09.		tures developed by accumul osits are known as	ation o	f annual thin layers in glacial
	(1)	Glacial laminations	(2)	Varves
	(3)	Glacial beds	. (4)	Annular rings
10.	From	sted 'millet seed' sand grains	are fo	und in deposits formed by
	(1)	Rivers	(2)	Lakes
	(3)	Winds	(4)	Glaciers
11.		sand dunes with their long a	axes tr	ansverse to the wind direction
	(1)	Sand sheets	(2)	Barchans
	(3)	Parallel dunes	(4)	Longitudinal dunes
12.		marine deposits which forn low tides are known as	ı betwe	en the axtreme levels of high
	(1)	Shallow water deposits	(2)	Littoral deposits
	(3)	Hadal deposits	(4)	Abyssal deposits
13.	The	type unconformity in which	older a	nd younger formations remain
	(1)	Non-conformity	(2)	Disconformity
	(3)	Angular unconformity	(4)	Local unconformity

14,	In AB	an almost flat te CDEDCBA. It is b	rrain steeply dip	pl	ng beds exhibit repetition as
	(1)	Erosion	(2)	ĺ	Faulting
	(3)	Folding	(4)	I	None of the above
15. ·	A lin	mited area of olde p is called:	r rock surrounded	11	by younger rock on a geological
	(1)	Inlier	(2)		Outlier
	(3)	Offap	(4)		Overlap
16.	List	ric fault is:	¥		
	(1)	Steep dipping r	ormal fault		
	(2).	Gentle dipping	normal fault		N.
	(3)	Steep dipping for	ault at top and ge	מי	tle dipping at bottom
	(4)				ep dipping at bottom
17.	In a	normal stratigner rocks within yo	aphic sequence, ounger rocks. Suc	er :h	rosion can sometimes expose exposure are called
	(1)	Inlier	(2)		Window
20	(3)	Outlier	(4)		Klippe
18.	A m	ajor fold structi clines and having	ure composed of the general form	r	nany smaller anticlines and of an arch is called
	(1)	Geanticlines	. (2)		Anticlinorium
	(3)	Synclinorium	(4)		Geosynclines
19.	The	principal axes of	stress are		
	(1)	Normal to surface	ce on which no sh	le	ar stress acts
	(2)	Direction of app			
	(3)		dmum compressi	01	nt .
	(4)	Direction of max			•
		97 E3 E	vi		36

20.	The	dip of the S-surface is best m	casu	red on:
	(1)	Horizontal	(2)	Vertical plane
	(3)	Inclied plane	(4)	None of above
21.	Whi	ch one is an example of struc	ture l	having quaquaversal dip
6	(1)	Depression	(2)	plateau
	(3)	Dome	(4)	Horse
22.		ANY NEW YORKS ARE NOT ASSESSED.		wer hemisphere of equal area
	net	lie on a circle. This circle is ca	illed a	8.8 ·
	(1)	π-S circle	(2)	Great circle
	(3)	Small circle	(4)	None of the above
23.	The	quadratic elongation (λ) is		200 000
	,(1)	(1+e)	(2)	(1+c) ²
	(3)	$(1+e_1)/(1+e_2)$	(4)	None of the above
24.	Thr	ust faults are developed when	the	maximum compressive Stress
	$\{\sigma_1\}$	is		
	(1)	Vertical	(2)	Horizontal
	(3)	Inclined	(4)	All of the above
25.	The	fold in which the axes plunge	s dir	ectly down the dip of the axial
	sur	face is termed as		28 ES
	(1)	Upright fold	(2)	Reclined fold
	(3)	Cascade fold	(4)	Drag fold

26.	Schist can split into number of thin slabs because of its							
	(1)	Lineation	(2)	Foliation				
¥	(3)	Fracture	(4)	Joints				
27.	Pris	sm and pinacoids are types of		8.				
	(1)	Open forms	(2)	Closed forms				
	(3)	Symmetry operator	(4)	All of the above				
28.	Mill	er indices for octahedral plane	e in c	rubic crystal:				
	(1)	(100)	(2)	(110)				
	(3)	[111]	(4)	None of these				
29.	Rep	catable entity of a crystal stru	cture	is known as:				
**	(1)	Crystal	(2)	Lattice				
	(3)	Unit cell	(4)	Miller Indices				
30.	A fa	mily of direction is represente	d by:					
	(1)	(hkt)	(2)	<นขน>				
	(3)	{hkl}	(4)	[uvw]				
31.	The	atomic diameter of an BCC cr	ystal	(if a is lattice parameter):				
	(I)	а	(2)	a/2				
	(3)	$a/(4/\sqrt{3})$	(4)	$a/(4/\sqrt{2})$				
			400					

32.	In d	iamond the	coordi	nation r	io. of car	bon is:			
	(1)	4 and its ur	nit cell	has 8 c	arbon at	oms			
	(2) 4 and its unit cell has 6 carbon atoms								
	(3) 6 with 4 carbon atoms in unit cell								
	(4)	4 with 4 car	bon a	toms in	unit cell	P.	112		
33.	. A compound formed by elements A and B crystallizes in cubic structure, in which atoms of A are at the corners while that of B are at the face centre. The formula of the compound is:								
	(1)	AB			(2)	AB ₃			
	(3)	A ₃ B			(4)	None of thes	e		
34.	Whi	ch of the folio	wing	mineral	belongs to	orthorhombi	c cry	stel sys	tem:
	(1)	Diopside			(2)	Tourmaline			
	(3)	Topaz			(4)	Benitoite			
35.		angle between	en 11	1] and [112] dire	ections in a cu	ibic c	rystal i	a (in
	(1)	0	(2)	45	(3)	90	(4)	180	
36.	Swa	llow Tail Twi	ns ar	commo	only obse	rved in the m	inera	1:	
	(1)	Gypsum		*	(2)	Orthoclase			
	(3)	Albite		3	(4)	All of these			
37.	But	terfly twinnit	ng is f	ound in	:				
	(1)	Rutile	33		(2)	Gypsum			
	(3)	Aragonite		3/2	(4)	Pyrite			
	i i	ė.	•					<u>,</u>	
83				990	9			P	T.O.

- 38. Stereogram of a crystal shows primarily:
 - (1) The interfacial angle projected on the stereogram in the forms of arcs and straight lines
 - (2) The distribution of faces in the zones
 - (3) A symmetry in the distribution of faces
 - (4) All the above
- 39. The penetrative twin is shown by:
 - (1) Staurolite

(2) Pyrite

(3) Fluorite

(4) All of the above

- 40. The classification of the crystal systems is based on:
 - (1) Angular relationship existing between the crystallographic axes
 - (2) Number of crystallographic axes
 - (3) Relative length of crystallographic axes
 - (4) All the above
- 41. Double reflection phenomenon shown by:
 - (1) Isotropic substances only
 - (2) Anisotropic substances only
 - (3) Both isotropic and anisotropic substances
 - (4) None of the above
- 42. Uniaxial crystal are positive if:
 - (1) Ordinary ray has the greater velocity then the Extraordinary ray
 - (2) Extraordinary ray has the greater velocity then the Ordinary ray
 - (3) Ordinary and Extraordinary rays have same velocity in all direction
 - (4) None of the above

43.	Mar	k the correct one regarding U	ונאפנה	ai minerais:					
	(1)	Basal section are isotropic		¥					
	(2)	Only prismatic sections show pleochroism							
	(3)	Dichroic		W .					
	(4)	All of correct							
44.			7nm	retardation in the interference					
	colo	rur:							
	(1)	Quartz wedge	(2)	Mica plate					
	(3)	Gypsum plate	(4)	None of these					
45.	Whi	ich of the following in Not an i	otra	pic mineral					
	(1)	Halite	(2)	Fluorite					
	(3)	Garnet	(4)	Gypsum					
46.	The	inclined Extinction is sown by	/ :	»*					
	(1)	Hypersthene		*					
	(2)	Hornblende .		<u>M</u>					
	(3)	Biotite							
	(4)	All of these							
47.	Tar	tan plaid' twinning is shown b	ıy:						
	(1)	Albite	(2)	Oligoclage ,					
	(3)	Microcline	(4)	All of these					
ži.									

11

48	. Th	e Bertrand lens is used to:							
	(1)	Determine the interference	Determine the interference colour						
	(2)	Determine the optical sign							
	(3)	Analysis of plane of vibrat	ion of l	ight					
	(4)	None of the above	*	35					
49,	In:	Hypersthene, a well marked	pleoch	roism which shows:					
	(1)	X-pink, Y-green, Z-yellow							
	(2)	X-yellow, Y-pink, Z-green	•	**					
	(3)	X-green, Y-yellow, Z-pink		78					
	(4)	X-pink, Y-yellow, Z-green							
5O,	Wh	ich type of extinction is ofte	n show	n by Quartz mineral:					
	(1)	Straight	(2)	Oblique					
	(3)	Symmetrical	(4)	Wavy					
51.	Wh	ich of the following is a min	eral:						
	(1)	Water -	(2)	Steel					
	(3)	Mercury	(4)	Halite					
52.	The	fundamental building block	cofam	ineral is its					
	(1)	Unit cell	(2)	Crystal system					
	(3)	Size	(4)	Shape					
з.	Iron	-rich olivine is	x.						
	(1)	Foraterite	(2)	Monticellite					
	(3)	Fayalite	(4)	Serpentine					

				. [•
54.	Whi	ch of the following is a typical	mete	amorphic mineral?
	(1)	cordierite	(2)	chert
	(3)	jasper	(4)	chalcedony
	~			
55.	Can	net present in eclogite is		5/0 1/0/0 FF
	(1)	Pyrope	(2)	Almandine
	(3)	Uvaravite	(4)	Spessartite
56.	A cr	ystal form having only one fac	e is	
	(1)	Basal pinacoid	(2)	Pedion
	(3)	Pyramid	(4)	prism
57.	Mos	t abundant element in the ear	th's	crust is
	(1)	Carbon	(2)	Oxygen
	(3)	Hydrogen	(4)	Nitrogen
	LI :-1	. mengalise purcurana is		
5 8 .	Walter to the	i-pressure pyroxene is	(0)	f.1
	(1)	Jadiete	(2)	Johannsenite
	(3)	Jasper	(4)	Zoisite
59.	Calc	tite and aragonite are		
	(1)	Polymorphs	(2)	Isomorphs
	(3)	Paramorphs	(4)	Metamicts
En	*17%:	ch of the following contains w	ater i	n its structure
60.	AA UT	50000044043 (20000400000000000000000000000000000000		
	(1)	Lepidolite	(2)	Hypersthene
	(3)	Anorthoclase	(4)	Fayelite

61.	Glaucophane is considered to be a characteristic mineral of						
	(1)	Collision zones	(2)	Subduction zones			
	(3)	Mantle plumes	(4)	Alteration-zones			
62.	Asto	erism in a property displayed l	y wi	nich group of minerals?			
	(1)	Alumino silicates	(2)	Olivine			
	(3)	Mica	(4)	Feldspar			
63.	Whi	ch of the following minerals ca	in co	-exist with free silica?			
	(1)	Forsterite	(2)	Leucite			
	(3)	Nepheline	(4)	Fayalite			
64.	Clea	wage is absent in					
	(1)	Orthoclase	(2)	Garnet			
	(3)	Enstatite	(4)	Actinolite			
65.	The	most abundant of pyroxene g	roup	of minerals is			
	(1)	Diopside	(2)	Augite			
	(3)	Enstatite	(4)	Aegerine			
66.	Wha	t is primitive magma?					
	(1)	It is a speculative magma der	ived :	from a mantle source			
	(2)	It is magma as it exists impassure region	redia	tely after séparation from its			
	(3)	S					
v	(3)	It is a derivative magma					
	(4)	It is a fractionated magma					

- 67. Which of the following systems explains peritectic reaction mechanism-
 - (1) Albite-Anorthite system
 - (2) Forsterite-Silica system
 - (3) Diopsite-Anorthite system
 - (4) Forsterite-Olivine system
- 68. Eutectic in any binary system is-
 - (1) Tri-variant point
 - (2) Bi-variant point
 - (3) Uni-variant
 - (4) Invariant point
- 69. What is liquid immiscibility-
 - (1) Homogeneous mixing of two liquids of different composition
 - (2) The unmixing of two liquids of different composition
 - (3) The mixing of two liquids of same composition
 - (4) The unmixing of two liquids of same composition
- 70. In general magma flow is laminar and depends on-
 - (1) Viscosity.
 - (2) Shape of the conduit
 - (3) Pressure gradient
 - (4) All of three above

- 71. Glomeroporphyritic texture is-
 - (1) Distinct clusters of phenocrysts in a fine-grained groundmass
 - (2) Equigranular in size
 - (3) Phenocrysts are absent
 - (4) A single big crystal embedded in fine grained groundmass
- 72. Ophitic texture may be explained as
 - (1) Large pyroxene grains enclose small random plagioclase laths
 - (2) Small pyroxene grains enclose large random plagioclase laths
 - (3) Large homblende grains enclose small random biotite laths
 - (4) Large pyroxene grains enclose small random pyroxene grains
- 73. Micrographic intergrowth of quartz and alkali feldspar is known as-
 - (1) Myrmekite texture
- (2) Granophyre texture
- (3) Variolitic texture
- (4) Symplectite texture
- 74. Ultramafic igneous rocks contain-
 - (1) 30-50% mafic minerals
- (2) >90% mafic minerals
- (3) >90% felsic minerals
- (4) <90% matic minerals
- 75. Mineral composition of Norite is
 - (1) Hypersthene and plagioclase feldspar
 - (2) Augite and plagioclase feldspar
 - (3) Olivine and plagioclase feldspar
 - (4) Hornblende and plagiociase feldspar

76.	Pho	nolite is volcanic equivalent o	f-	
	(1)	Granite	(2)	Grabbro
	(3)	Syenite	(4)	Nepheline syenite
77.	Whie	ch of the following textures is	typic	al observed in komatiite?
	(1)	Cumulate texture	(2)	Poikilitic texture
	(3)	Spinifex texture	(4)	Spherulitic texture
78.	Whi	ch of the followings is not a m	ono-:	mineralic igneous rock?
	(1)	Granite	(2)	Dunite
	(3)	Anorthosite	(4)	Pyroxenite
79.	Obsi	dian is composed of-		
	(1)	Entirely of crystals	(2)	Entirely of glassy material
	(3)	Mixture of glass and crystals	(4)	All sizes of crystals
B O.	Inter	granular and intersertal textu	ires (are commonly observed in-
	(1)	Basalts	(2)	Gabbro
	(3)	Pyroxenite	(4)	Trachyte
81.	Coar	se-grained sediments are trai	ıspor	ted by:
	(1)	Traction process	(2)	Saltation process
	(3)	Suspension process	(4)	None
	AP OF STATE OF			

82. Ripple marks occur on the:

(3) Internal structure

(1) Lower surface

83.		ole marks with bifurcated creerated by:	est a	nd ripple index from 2-5 are
	(1)	Wave	(2)	Current
	(3)	Tide	(4)	Storm
84.	Gra	ded beds form in marine envi	ronm	ents:
	(1)	By traction currents		×
	(2)	By turbidity currents		©:
	(3)	By suspension fall out		ed.
	(4)	By debris flow		
85.	Ark	oses are sandstones which con	ntain	: *
	(1)	Appreciable amount of feldsp	ЭАГ	•
	(2)	Low percentage of feldspar		
	(3)	Negligible amount of feldspar	•	3
	(4)	No feldspar		±. •
86.	Lith	ic arenites are:		52
	(1)	Quartz rich sandstones		
	(2)	Feldspar rich sandstones		

(2) Upper surface

(4) None

Rock fragments rich sandstones

(4) Clay rich sandstones

87.	Arg	illaceous sediments containin	g cla	y between 33-66%are known
	as:			
	(1)	Mudstone	(2)	Siltstone
	(3)	Claystone	(4)	Dropstone
		1.25 22		
88.	Ooli	tes from in:	29	
	(1)	Agitated	(2)	Calm water
	(3)	Cool water	(4)	None
89.	Min	eralogically mature sandstone	s are	
	(1)	Quartz	(2)	Feldspar
	(3)	Mica	(4)	Rock fragments
	-m/11			58
90.	Тию	ids are of	2000000	The second of the second secon
	(1)	Glacial origin	(2)	Non glacial origin
	(3)	Fluvial origin	(4)	None
91.	Con	volute bedding forms along:		
	(1)	Coast		
	(2)	In rivers		
	(3)	Slopes		
	(4)	Deep marine part		SI SI
92	Cros	s-beds are:		
<i>3</i> 4 .	27 27	_	(2)	Upper surface
	(1)	Lower surface	55 3058	
	(3)	Internal structure	(4)	None
		£		

Heavy minerals are used for deciphe	ciphering:	decir	for	used	are	minerals	Heavy	93.
---	------------	-------	-----	------	-----	----------	-------	-----

(1) Provenance

(2) Environment

(3) Diagenesis

- (4) None
- 94. Conversion of chlorite into illite is known as:
 - (1) Chloritization

(2) Illitization

(3) Fluidization

- (4) None
- 95. Foliation is an important characteristic of most metamorphic rocks and its indicate that the rocks formed in an environment of:
 - (1) High water content in the minerals
 - (2) Very high temperature and low pressure
 - (3) Directed pressure
 - (4) Partial molten rocks
- 96. Low temperature high pressure metamorphic rocks are the characteristic of
 - (1) Metamorphic zones around granitic intrusions
 - (2) Mountain building events at continental collisions
 - (2) Volcanic eruptions
 - (4) Areas adjacent to subduction zone
- 97. Which of the following does not occur during metamorphism?
 - (1) Mineral orients themselves in a parallel alignment
 - (2) Water flower through the rocks and helps transport elements
 - (3) Radical changes in mineral composition
 - (4) Minerals breakdown and the element recombine to form new minerals

98.	. Gr	Grain growth and size in metamorphic rock are a function of:								
	(1)	Nucleation kinetics								
	(2)	Material transfer processes								
	(3)	Growth rate and P-T crystal	Growth rate and P-T crystallization							
	(4)	All the above								
99.	Ret	rograde metamorphism is als	o kno	wn as:						
	(1)	Diapthoresis	(2)	Additive metamorphism						
	(3)	Injective metamorphism	(4)	None of these						
100	100. The predominant agents in contact metamorphism is:									
	(1)	Temperature	(2)	Pressure						
	(3)	Chemical fluids	(4)	All the above						
101	. Star	urolite forms by the reaction o	of:							
	(1)	Chlorite and sillimanite	(2)	Muscovite and chloritoid						
	(3)	Chlorite and Muscovite	(4)	Chloritoid and muscovite						
102	. Qua	rtz microcline hypersthene is	the a	assemblage of:						
	(1)	Khondalite	(2)	Charnockite						
	(3)	Gondite	(4)	Kudurite						
03.	Wha	it minerals cannot be shown i	n AK	F diagram:						
	(1)	Na-bearing minerals	(2)	K-bearing minerals						
	(3)	Ca-bearing minerals	(4)	None of these						

104. Mis	ematites ar	e the	rock which	are	characterized	by
----------	-------------	-------	------------	-----	---------------	----

- (1) Granitic nature
- (2) High grade regional metamorphism
- (3) Low grade regional metamorphism
- (4) Both (1) and (2)

105. The correct sequence of metamorphic zones is:

- (1) Chlorite, Biotite, Garnet, Staurolite, Kyanite and Sillimanite
- (2) Biotite, Chlorite, Staurolite, Garnet, Kyanite and Sillimanite
- (3) Chlorite, Biotite, Garnet, Staurolite, Sillimanite and Kyanite
- (4) Chlorite, Biotite, Staurolite, Garnet, Sillimanite and Kyanite

106. Eskola's ACF and AKF diagrams are used only for the rocks with:

(1) Excess SiO₂.

- (2) Low SiO,
- (3) Excess CaCO₃
- (4) Low CaCO_a

107. In enderbite the dominant feldspar is:

(1) Plagioclase

(2) Microcline

(3) Orthoclase

(4) Bytownite

108. The greenschist facies include the:

- (1) Chlorite zone
- (2) Chlorite and Biotite zone
- (3) Biotite and Garnet zone
- (4) Garnet and Kyanite zone

	23		P.T.O.							
(3)	Moulting	(4)	All of these							
(1)		(2)	Addition of new parts							
114. Whi	1000 €00 0	ost-e	mbryonic growth of skeletons?							
(3)	Neanic	(4)	Gerontic							
(1)	Ephebic	(2)	Nepionic .							
52720404	individual after the larval stag	e?								
			ly found during the growth of .							
(3)	Plastotype	(4)	Cotype.							
(1)	Neotype	(2)	Topotype							
loca	lity) is called:									
112. The	specimen selected to replac	e the	lost holotype (from the same							
(3)	Either (1) or (2)	(4)	None of these							
(1)	Italics	(2)	CAPITAL LETTERS							
5523454	biological names should/may	be w	125							
	****** * * **		53 508 G MGA I							
(3)	Trigonia	(4)	Patella							
(1)	Nautilus	(2)	Crania							
	cite?	·	and the second of							
110. Wh	110. Which of the following organism's skeleton is made up entirely of									
(3)	Palaeontology	(4)	Palichnology.							
(1)		(2)	Planetology							
2000 (2000) 20	ological ages is called:									
109. The science of the study of remains of all organisms from the past										

115	.A m	odern organism that has des	cend	ed from a very ancient stock
	with	comparatively a little change	, is k	nown as:
	(1)	Extant Organism	(2)	Living Fossil
	(3)	Derived Fossil	(4)	None of these.
116	. Deri	ved Fossils:		
	(1)	can not be used as an index	fossil	· ·
	(2)	can be used as an index foss	il	
	(3)	are marker fossils		
	(4)	are trace fossils.		
117	, Whi	ch of the following is a cemen	ting l	brachiopod?
	(1)	Crania	(2)	Richthofenia
	(3)	Both (1) and (2)	(4)	None of these
118	. In w	hich of the following bivalvian g	gener	a the beaks are opisthogyrous?
•	(1)	Trigonia	(2)	Nucula
	(3)	Both of these	(4)	None of these
119	.In w	hich of the following gastropo	d ger	era the 'elit band' is present?
	(1)	Cypraea	(2)	Bellerophon
	(3)	Planorbis	(4)	Patella.
120	.In a	n endogastric cyrtocone (ceph	alopo	od), the siphuncle (si) and the
		nomic sinus (hs) are:		
	(1)	both located ventrally	(2)	both located dorsally
	(3)	si dorsally but he ventrally	(4)	si ventrally but he doreally
		*		

		84							
121	.The	Class Crinoidea(is):		Transfer of the control of the contr					
	(1)	confined in Middle Cambrian							
	(2)	confined in middle Palaeozoi	С						
	(3)	ranges from Middle Cambria	n to l	Holocene					
	(4)	found in Holocene only.							
122	122. The fresh water bryozoans are found in:								
	(1)	Late Palaeozoic only							
	(2)	Jurassic to Cretaceous beds							
	(3)	Early Tertiary times							
	(4)	Recent time only.							
123	.Whie	ch of the following is a three	-toed	1 horse found in the Siwalik					
	(1)	Hipparion	(2)	Equus					
	(3)	Ramapithecus	(4)	Bos.					
124	. Whi	ch of the following is a fossil e	xcret	æ?					
	(1)	Coprolite	(2)	Gastrolith					
	(3)	Dendrite	(4)	Stromatolite					
125.	Molo	and cast are:		St.					
	(1)	-ive impressions							
	(2)	+ive imp rasions		1911					

-ive and +ive impressions

+ ive and -ive impressions

(3)

(4)

126	126. The sub-branch of palaeontology which deals with the impressions								
	produced due to behavioural activities of ancient organism is called:								
	(1)	Ichnology	(2)	Palaeoecology					
	(3)	Taphonomy	(4)	Micropalacontology					
127. Select a pseudofossil from the following									
	(1)	Chondrites	(2)	Dendrites					
	(3)	Stylolites	(4)	Uncolites					
128. In Corbula lyrata, the first and second names respectively stand for									
	(1)	Genus and species	(2)	Species and genus					
	(3)	Genus and subgenus	(4)	Subgenus and species					
129	.Whi	ch of the following has aggluti	nate	d shell?					
	(1)	Conodonts	(2)	Radiolarian .					
	(3)	Foraminifera	(4)	Pollen and spores					
130	.In th	ne bivalves the prosogyrous un	nbon	es point towards:					
	(1)	Anterior margin	(2)	Posterior margin					
	(3)	Dorsal margin	(4)	Ventral margin					
131,	131. The pallial sinus in the bivalves are usually situated at								
	(1)	Anterior side of the valve							
	(2)	Posterior side of the valve		•					
	(3)	Dorsal side of the valve							
	(4)	Ventral side of the valve	ŧ:	60					

132	i. Sek	ect a bivalve genus from the	folio	wing having taxodont type o
	den	tition: .		
	(1)	Venus	(2)	Pholadomya
	(3)	Mytilus	(4)	Arca
133	l. If a	brachiopod shell is concavo-c	onvex	in the early growth stages but
	reve	rses to convexo-concaye in m	aturi	tyit is known as:
	(1)	Dorsibiconvex	(2)	Convexo-concave
	(3)	Resupinate	(4)	Concavo-convex.
134	.In o	ephalopods the chambered p	art is	known as
	(1)	Body whori	(2)	Phragmocone
	(3)	Siphuncle	(4)	Aperture
135	.The	cylindrical siphuncle with	simp	le of straight septal neck in
	cept	salopoda is called:		19
	(1)	Holochoanitic	(2)	Ellipochoanitic
	(3)	Orthochoanitic	(4)	Cyrtochoanitic
136.	.The	biogenetic law *Ontogeny	recap	oitulates phylogeny" is best
	illus	trated by:		
	(1)	Gastropods	(2)	Bivalves
	(3)	Brachiopods	(4)	Ammonoids

127	Whic	h of the following are plant fo	naails	only of Lower Gondwana in						
	age?		J							
	(1)	Ptillophyllum, Glossopeteris								
1	(2)	Glossopeteris, Dicrodium.								
	(3)	Dicrodium, Ptülophyllum								
	(4)	Glossopeteris, Gangamopteris		•3						
138.	Grap	hite deposits form largely by:								
95	(1)	Magmatic concentration	(2)	Sedimentation						
7100	(3)	Metamorphism	(4)	Residual concentration						
139.	Chro	mite deposits of Sukinda is fo	rme	i by:						
	(1)	Magmatic concentration	(2)	Contact metasomatism						
	(3)	Hydrothermal processor	(4)	Metamorphism						
140.	Bori	' is the term used for:		.						
	(1)	Gem diamond	(2)	Industrial diamond						
	(3)	Variety of corundum	(4)	Variety of garnet						
141.	Rho	dochrosite is an ore of:								
	(1)	Copper	(2)	Iron						
	(3)	Maganese	(4)	Lead						

- (1) Magmatic deposits
- (2) Pegmatitic deposits
- (3) Placer deposits
- (4) Sedimentary deposits

	(1)	Iron	deposit	s		(2)	Bauxite deposit
	(3)	Mica	deposi	t		(4)	Tungsten deposit
144						f miner	als are prominently associated
	wit	h the l	ocach sa	and of	Kerala:		
	(1)	mon	azite-m	agneti	te-wolfra	ımite	***
	(2)	Mon	azite- ca	ssiter	ite- rutil	е.	
	(3)	Mona	azite-ch	romite	-zircon		y .
	(4)	Mon	azite-iln	nenite	+rutile		
145	.Wh	ich of	the foll	owing	cconom	ic mine	eral is used in the refractory
		ustry:	53 - 5				
	(1)	Orth	oclase			(2)	Tourmaline -
	(3)	Chro	mite			(4)	Aragonite
146	. Mac	h the	list-I wi	th list	-II and s	elect th	e correct answer using the
			n below				
			it-I		Li	st-II	
	A.	Abras	ive		1. Kyr.	aite	× ×
9	B.	Cerar	nic		2. Sul	phur	are a
	C.	Refra	ctory		3. Orti	hoclase	
	D.	Chen	nical		4. Cor	undum	
		Α	В	C	D		
	(1)	1	3	4	2		
	(2)	4	3	1	2		
	(3)	4	2	1	3		
	(4)	3	1	2	4		
							(**)

143. India is deficient in:

	(3)	80% CaSO4.2H2O	(4)	85% Ca8O4.2H2O				
148	.Gua	no is:						
	(1)	An organic calcareous rock	18					
	(2)	An organic phosphatic rock	×					
	(3)	An organic ferruginous rock	9					
	(4)	None of the above						
149		ch amongst the following is to Gossan:	he n	ain constituent mineral of a				
	(1)	Hematite	(2)	Magnesite				
	(3)	Limonite	(4)	Pyrite				
150	150. Which one of the following is single largest deposit of iron ores in India:							
	(1)	Chiria	(2)	Noamundi				
	(3)	Kiriburu	(4)	Bailadila				
				. 1				

(2) 75% CaSO4.2H2O

147. Gypusm to be used as fertilizers should have:

(1) 70% CaSO4.2H2O

ROUGH WORK रफ़ कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुत्तिका के प्रवम आवरण एक वर तथा उत्तर-पत्र के दोनों एकों पर केवल नीली-काली बाल-म्वाइंड पेन से डी लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-यह के आतिरिक्त,* लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-यत्र आलग से विद्या गया है। इसे व हो बोड़ें और य ही विकृत करें। वूसरा उत्तर-यत्र नहीं विद्या जायेगा।
 केवल उत्तर-यत्र का ही यूल्यांकम किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-यत्र के प्रथम पृष्ट पर पेन से अपना अनुक्रमांक निर्मारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाड़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थापों पर लिखें।
- 6. ओ० ६म० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुरितका संख्या व सेंड संख्या (यदि कोई हो) तथा प्रश्नपुरितका पर अनुक्रमांक और ओ० ६म० आर० पत्र संख्या की प्रविश्विमों में उपरितेखन की अनुमति नहीं है।
- उपर्युक्त प्रविद्यियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रवाणित होना वाहिये अन्यका यह एक अनुवित साथन का प्रणेग माना वायेगा।
- 8. प्रस्त-पुश्चिका में प्राचेक प्रश्न के बार बैकल्पिक उत्तर दिये गये हैं। प्राचेक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सावने दिये गये दुश को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गावा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाड़ा करें। एक से अधिक वृत्तों को गाड़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना आवेगा।
- 10. ध्यान वें कि एक बार स्वादी द्वारा ऑकत उत्तर बदला नहीं का सकता है। बदि आप किसी द्वान का उत्तर नहीं देना धाइते हैं, तो संबंधित पंक्ति के सामने दिवे गये सभी दृतों को खाली छोड़ हैं। ऐसे प्रश्नों पर शून्य अंक दिवे जावेंगे।
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुख्यपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल औ एव आर अतर-वन परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा पवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अध्यर्थी भीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह दिश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

