MARKING SCHEME : PHYSICS (042)					
CODE :55/2/1					
Q.No	VALUE POINTS/EXPECTED ANSWERS	MARKS	TOTAL MARKS		
	SECTION –A		1,1111110		
1.	m	1	1		
	(C) $\sqrt{\frac{p}{m_Q}}$				
2.	(A) $\frac{\mathbf{v}_d}{2}$	1	1		
3.	(B) 1.54 Am ²	1	1		
4.	(C) 31.4µWb	1	1		
5.	(D) Magnetic Flux and Power both	1	1		
6.	(B) 100V	1	1		
7.	(B) Ultraviolet rays	1	1		
8.	(C) 375 nm	1	1		
9.	$(B)\frac{1}{\lambda_1} + \frac{1}{\lambda_2} = \frac{1}{\lambda_2}$	1	1		
10.	$(C) \frac{1}{2}$	1	1		
11	$\frac{K}{K}$	1	1		
11.	$\frac{(C) P}{(D) T L L L L L L L L$		1		
12.	(B) The barrier height increases and the depletion region widens. (A) P_{ch} (A) and P_{ch} (D) are transitioned P_{ch} (D) is the correct	1	1		
13.	(A) Both Assertion(A) and Reason (R) are true and Reason(R) is the correct explanation of the Assertion (A)	1	1		
14.	(B) Both Assertion(A) and Reason (R) are true but Reason(R) is not the	1	1		
	correct explanation of the Assertion (A)				
15.	(A) Both Assertion(A) and Reason (R) are true and Reason(R) is the correct	1	1		
1(explanation of the Assertion (A)	1	1		
10.	(C) Assertion(A) is true, but Reason (R) is faise	1	1		
17	SECTION -B				
1/.	Defining resistivity 1				
	Dependence of resistivity on				
	(a) Number density of free electron $\frac{1}{2}$				
	(b) Relaxation time				
	Resistance offered by a material of unit length and having unit cross-sectional				
	area is called resistivity.	1			
	m				
	$p = \frac{1}{ne^2\tau}$				
	(a) $\rho \alpha \frac{1}{2}$	1⁄2			
	n n	1/	•		
	(b) $\rho \alpha \frac{1}{\tau}$	1/2	2		

18			
10.	Obtaining expression for resultant intensity 2		
	$x_1 = a \cos \omega t$		
	$x_2 = a\cos(\omega t + \phi)$	1/2	
	$x = x_1 + x_2$		
	$= a(\cos \omega t + \cos(\omega t + \phi))$		
	$=a(2\cos(\omega t + \frac{\phi}{2})\cos\frac{\phi}{2})$		
	$= 2a\cos\frac{\phi}{2}\cos(\omega t + \frac{\phi}{2})$	1/2	
	Intensity		
	$I = K (amplitude)^2$ where K is a constant.	1/2	
	$=K(2a\cos\frac{\phi}{2})^2$	72	
	$=4I_0\cos^2\frac{\phi}{2}$	1/2	
	$I_o = Ka^2 =$ intensity of each incident wave.		
	(Note : Award full credit of this part for all other alternative correct methods)		
	OR		
	(b) Effect and justification $(i) \in \mathbb{R}^{n}$		
	(i) Source slit moved closer to plane of slits 1 (ii) Separation between two plate		
	(II) Separation between two sitts I		
	(i)Sharpness of interference pattern decreases		
	$\frac{s}{s} < \frac{\lambda}{s}$	1	
	S d	1	
	As S decreases, interference patterns produced by different parts of the source overlap and finally fringes disappear		
	Alternatively		
	As the source slit is brought closer to the plane of the slits, the screen gets		
	illuminated uniformly and fringes disappear.		
	Alternatively		
	(Note : Award full credit of this part if a student merely attempts this		
	part.)		
		16	
	(ii) $\beta = \frac{\lambda D}{d}$	72	
	As d increases, β decreases and fringes disappear.	1/2	2
19.	Finding focal length 1 ^{1/2}		
	Nature of the lens		
	For convex lens in air		
	$\frac{1}{n} = \left(\frac{n_g}{n} - 1\right) \left(\frac{1}{n} - \frac{1}{n}\right)$		
	$f_a \ (n_a \)(R_1 \ R_2)$	<u> </u>	

Page 4 of 16

	For convex lens in liquid.		
	$\frac{1}{f_l} = \left(\frac{n_g}{n_l} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)^2$	1/2	
	1.52 - 1		
	$\frac{f_l}{f_a} = \frac{1}{1.52 - 1.65}$	1/2	
	1.65		
	= -6.6		
	$J_1 = -99$ cm	1/2	
	Nature of the lens: Diverging/ behaves like a concave lens.	1/2	2
20.	Calculation of binding energy 2		
	Binding Energy = $(\text{Zm}_p + (A - Z)m_n - M_N) \times 931.5 \text{ MeV}$	1/2	
	B. E.= $(6 \times 1.007825 + 6 \times 1.008665 - 12.000000) \times 931.5$ MeV	1/2	
	= (0.09894) x 931.5 MeV	1/2	
	B. E. = 92.16 MeV	1/2	2
21.	Effect on energy gap and justification		
	(i) Trivalent impurity $\frac{1}{2} + \frac{1}{2}$		
	(ii) Pentavalent impurity $\frac{1}{2} + \frac{1}{2}$		
	(i) Decreases	1/2	
	valence band.	1/2	
	(ii) Decreases	1/2	
	Justification: A donor level is formed just below the bottom of conduction	1/2	2
	band.	/ -	4
	Alternatively		
	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $		
	E_{q} E_{q} E_{g}		
	E_V E_V $\approx 0.01 - 0.05 \text{ eV}$		
	(Note : Award the credit of justification if a student draws band diagram)		
	SECTION C		
22.	SECTION C		
	Finding magnitude and direction of current in AG, BF and CD 1+1+1		

Page 5 of 16

Page 6 of 16

24.	Calculation of current induced in the coil 3		
	Induced emf (ε) = $\frac{-Nd\phi}{dt}$ = $\frac{-NAdB}{dt}$	1/2	
	$dt = -NA \frac{d}{dt} (\mu_0 nI)$ $= -N \mu n (\pi r^2) \frac{dI}{dt}$		
	$\varepsilon = \frac{100 \times 4\pi \times 10^{-7} \times 250 \times 10^2 \times \pi \times (1.6 \times 10^{-2})^2 \times 1.5}{25 \times 10^{-3}}$	1	
	=0.1530 v	1⁄2	
	$I = \frac{1}{R}$	1/2	
	= 0.03A	1/2	
	Alternatively		
	$\varepsilon = -M \frac{dI}{dt}$	1/2	
	$M = \mu_0 n_1 n_2 \pi r_1^2 l$	1/2	
	$=\mu_0(n_1l)n_2\pi r_1^2$	72	
	$= 4\pi \times 10^{-7} \times 100 \times 250 \times 10^{2} \times \pi \times (1.6 \times 10^{-2})^{2}$	1/	
	$= 2.56 \times 10^{-3} \times (0 - 1.5)$	1/2	
	$=-2.50\times10^{-3}$		
	=0.1536V	$\frac{1}{2}$	
	$I = \frac{\sigma}{R} = \frac{\sigma R^{3/3}}{5}$	/2	
	= 0.03A	1⁄2	3
25.	(a)Explaining nature of force1/2Obtaining expression of force11/2Defining one ampere1		
	Nature of force is repulsive.	1/2	

Page 8 of 16

	$\tau = IAB \sin \theta \qquad (\text{where } A = ab \& m = IA)$	1/	3
26	$\tau = m \times B$	1/2	5
20.	Deriving expression for radius 2		
	Finding numerical value of a_o 1		
	From Bohr's second postulate	1 (
	$m \vee r = \frac{nh}{2\pi} \qquad \dots \dots \dots (1)$	1/2	
	Also $\frac{mv^2}{r} = \frac{e^2}{4\pi\varepsilon_0 r^2}$ (z=1)		
	$v = \frac{e}{1 + e}$	1/2	
	$\sqrt{-\sqrt{4\pi\varepsilon_0 mr}}$	1/2	
	Substituting in (1) and simplifying	72	
	$r = \frac{n^2 h^2 \varepsilon_0}{1 + 1}$		
	$\pi m e^2$	1/2	
	For $n = 1$ $r = a_0$ (Bohr's radius)		
	$a_o = \frac{(6.63 \times 10^{-7})^2 \times 8.854 \times 10^{-7}}{2.14 \times 10^{-31} \times (1.6 \times 10^{-19})^2}$	1/	
	$5.14 \times 9.1 \times 10^{-11} \times (1.6 \times 10^{-1})$ - 5.29x 10 ⁻¹¹ m	1/2	
	$= 0.53 \text{\AA}$		
		1/2	3
27.	(x) Intermediation of allow of line and instification 1/1 + 1/1		
	(a) Interpretation of slope of line and justification $\frac{1}{2} + \frac{1}{2}$		
	(b) Identification and justification $\frac{1}{2} + \frac{1}{2}$		
	(c) Validation of graph and justification $\frac{1}{2} + \frac{1}{2}$		
	(a) $\lambda = \frac{h}{\sqrt{2mK}} = \frac{h}{\sqrt{2m}} \times \frac{1}{\sqrt{K}}$	1⁄2	
	$slope = -\frac{h}{\sqrt{1-\frac{h}{2}}}$	1/2	
	$\sqrt{2m}$	72	
	(b) slope $\alpha \frac{1}{\sqrt{2}}$	1/2	
	\sqrt{m} Slope of m ₂ is more than that of m. Therefore, m ₂ is heavier	1/2	
	(c) No	1/2	
	Momentum (p) = $\sqrt{2mK}$ is not valid for a photon	1/2	3
28.			
	Explaining working of full wave rectifier 2		
	Drawing input and output wave forms I		
	Centre-Tap		
	Diode $1(D_1)$		
		1	
	\square		
	Diode $2(D_2)$ ≤ 12 Output		
	÷ Y		
	When input voltage at A with respect to the centre tap at any instant is	1/2	
	positive, at that instant voltage at B, being out of phase will be negative,		

Page 9 of 16

	during the positive half cycle diode D ₁ gets forward biased and conduct	ts		
	while diode D_2 gets reverse biased and does not conduct.			
	Hence during positive half cycle an output current and output voltage a	cross		
	R _L is obtained.			
	During second half of the cycle when voltage at A becomes negative w	ith		
	respect to centre tap, the voltage at B would be positive hence D ₁ would	d not 1	6	
	conduct but D_2 would be giving an output current and output voltage.	a not ,	2	
	We get output voltage in both positive and negative half cycles.			
	Waref			
	m			
	Mar National Action of the second sec			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	2 Continut.			2
20	(i) (P) The internal registering of a call degrees on with the degrees of		L	3
29.	(1) (D) The internal resistance of a cell decreases with the decrease i temperature of the electrolyte	Ш <u>,</u>	L	
	(ii) (B) 2.8 V	-	1	
	(ii) (b) 2.5 V (iii) (A) $\varepsilon - V + V > 0$	-	1	
	(iii) (ii) $v = v_+ + v > 0$ (iv) (a) (D) 0.2A	-	-	
	(IV) (a) (D) 0.2/Y			
	(b) (A) 1.0Ω			
			1	4
30.	(i) Since no option is correct, award 1 mark to all students.	-	1	
	(11) (D) 800 nm	-		
	(iii) (a) (A) $\frac{\sqrt{3}}{2}$			
	(4)			
	(b) (B) $\sin^{-1}\left(\frac{1}{5}\right)$	-	1	
	(1V) (A) $\sin^2 \sqrt{n^2 - 1}$		1	4
31.	(i) Obtaining expression for electric potential 3			
	(a) (ii) Finding the value of n 2			
	(i) 5			
	9			
	a			
	$\begin{bmatrix} 2\alpha & \mathbf{p} \end{bmatrix} \begin{bmatrix} \mathbf{O} & \mathbf{r}_2 \end{bmatrix}$			
	a		,	
	* <u>•</u>		2	
	Potential due to the dipole is the sum of notentials due to charges a and	-0		
	rotential due to the apole is the sum of potentials due to charges q and	·Ч		
		1	/2	

Page 10 of 16

Page 11 of 16

Page 12 of 16

	The charge enclosed by surface is σA , where σ is surface charge density		
	According to Gauss's theorem	1/	
	$2EA = \sigma A / \varepsilon_0$	1/2	
	$E = \sigma / 2\varepsilon_0$		
	$\vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$ where \hat{n} is unit vector directed normally out of the plane	1/2	
	(ii) $\vec{E} = \frac{\lambda}{2\pi\varepsilon_0 r} \hat{r}$		
	According to question		
	E_1 (at point P) = $\frac{\lambda_1}{2\pi\varepsilon_0 r_1}$		
	$\vec{E} = \frac{10 \times 10^{-6}}{2\pi\epsilon_0 (10 \times 10^{-2})} \ (-\hat{j}) \ N / C$	1/2	
	E_2 (at point P) = $\frac{\lambda_2}{2\pi\varepsilon_0 r_2}$		
	$\vec{E} = \frac{20 \times 10^{-6}}{2\pi\varepsilon_0 (20 \times 10^{-2})} (-\hat{j}) \ N/C$	1/2	
	$E_{net} = \frac{10 \times 10^{-6}}{2\pi\varepsilon_0} \left(\frac{1}{0.1} + \frac{2}{0.2} \right) \ (-\hat{j}) \ N/C$		
	$=3.6 \times 10^{6} (-\hat{i}) N/C$	1/2	
	$\vec{F}_{ref} = q \times \vec{E}_{ref}$		
	$\vec{F} = -1.6 \times 10^{-19} \times 3.6 \times 10^{6} (-\hat{j}) N$		
	$=5.76 \times 10^{-13} N(\hat{i})$	1/2	5
37		72	5
.14.			
34.	(a) (i) Showing helical path $1\frac{1}{2}$]	
J 4 .	(a)(i) Showing helical path1 ½Obtaining frequency of revolution1 ½		
32.	(a)(i) Showing helical path1 ½Obtaining frequency of revolution1 ½(ii) Finding magnetic moment of electron2		
34.	(a) (i) Showing helical path 1 ½ Obtaining frequency of revolution 1 ½ (ii) Finding magnetic moment of electron 2	1/2	
	(a) (i) Showing helical path $1 \frac{1}{2}$ Obtaining frequency of revolution $1 \frac{1}{2}$ (ii) Finding magnetic moment of electron 2	1/2	
	(a) (i) Showing helical path $1 \frac{1}{2}$ Obtaining frequency of revolution $1 \frac{1}{2}$ (ii) Finding magnetic moment of electron 2 $\sqrt[4]{t+q}$ $v_{\perp} = v \sin \theta$ is perpendicular to \vec{B} and $v_{\parallel} = v \cos \theta$ is parallel to \vec{B}	1/2	
	(a) (i) Showing helical path $1 \frac{1}{2}$ Obtaining frequency of revolution $1 \frac{1}{2}$ (ii) Finding magnetic moment of electron 2 $v_{\perp} = v \sin \theta$ is perpendicular to \vec{B} and $v_{\parallel} = v \cos \theta$ is parallel to \vec{B} Due to v_{\perp} the charge describes circular path and v_{\parallel} pushes it in the direction	1/2	
	(a) (i) Showing helical path $1 \frac{1}{2}$ Obtaining frequency of revolution $1 \frac{1}{2}$ (ii) Finding magnetic moment of electron 2 $v_{\perp} = v \sin \theta$ is perpendicular to \vec{B} and $v_{\parallel} = v \cos \theta$ is parallel to \vec{B} Due to v_{\perp} the charge describes circular path and v_{\parallel} pushes it in the direction of \vec{B} . Therefore under the combined effect of two components the charged particle describes helical path, as shown in the figure.	1	

Page 13 of 16

$\frac{mv_{\perp}^{2}}{r} = B qv_{\perp}$	1/2	
$v_{\perp} = \frac{Bqr}{m} \qquad (v_{\perp} = v\sin\theta)$	1/2	
Time period = T = $\frac{2\pi r}{r}$		
$=\frac{2\pi m}{R_{\pi}}$		
bq $frequency v = \frac{1}{2} = \frac{Bq}{2}$	1/2	
$T T 2\pi m$		
(ii) Magnetic moment $m = I A$		
$I = \frac{e}{T} = ev$	1/2	
$=1.6 \times 10^{-19} \times 8 \times 10^{14}$	14	
$= 1.20 \times 10^{-4} \times 3.14 \times (2 \times 10^{-10})^2$	$\frac{72}{1/2}$	
$M = 1.26 \times 10^{-24} \text{ Am}^2 - 1.6 \times 10^{-23} \text{ Am}^2$	1/2	
-3.12 <i>tt</i> ×10 Am -1.0×10 Am OR		
(b)		
(i) Definition of current sensitivity		
Showing dependence of current sensitivity & explanation $1+1$		
(11) Calculation of resistance 2		
(i) Deflection produced per unit current is called its current sensitivity.		
$I_{-} = \frac{\theta}{\theta} = \frac{NBA}{\theta}$	1	
^{-s} I K Current consistivity can be increased by		
(a) increasing number of turns in coil		
(b) increasing area of coil in magnetic field	1	
(c) decreasing <i>K</i> (Torsional Constant)		
(any one)		
$V_s = \frac{\theta}{V} = \frac{NBA}{KR}$		
If current sensitivity is increased by increasing number of turns of the coil, the	_	
resistance of the galvanometer will also increase. Thus voltage sensitivity	1	
may not increase.		
(11) $V = I_G(R+G)$		
$R = \frac{V}{L} - G$	1/2	
1 _G		
$=\frac{100}{20\times 10^{-3}}-15$	1/	
=5000-15	1/2	
$=4985\Omega$	1/2	
By connecting 4985Ω in series with galvanometer it is converted to voltmeter	, <u>-</u>	
of range (0-100V)	1/2	5

Page 14 of 16

Page 15 of 16

