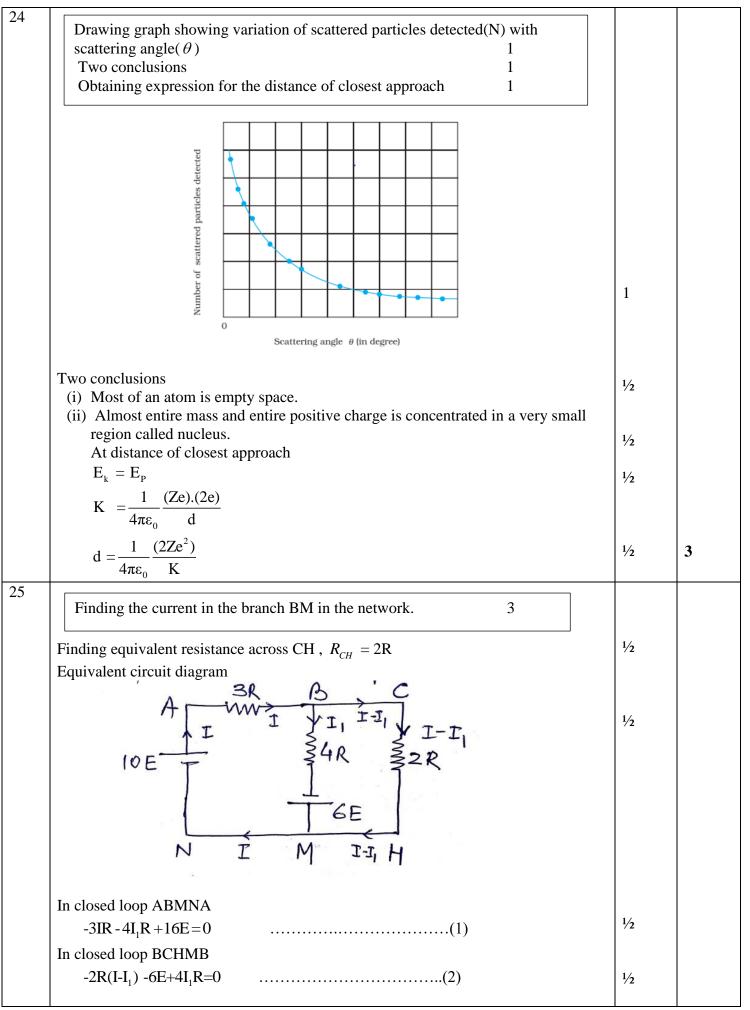
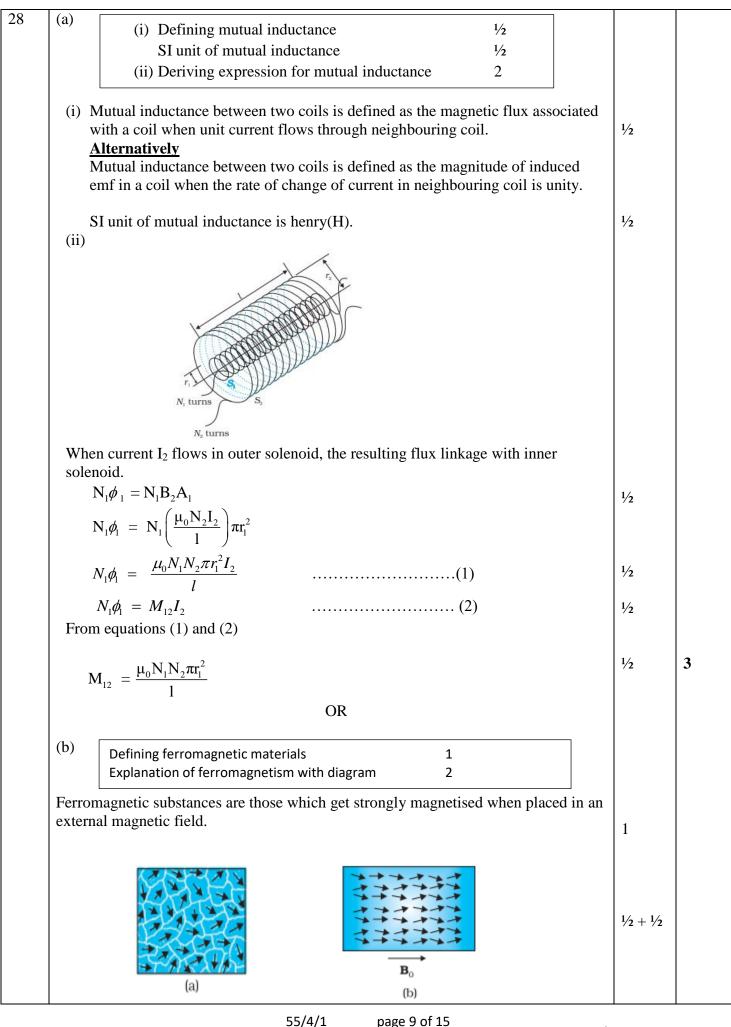
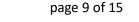

	MARKING SCHEME : PHYSICS (042)		
	Code : 55/04/01	1	1
Q.NO	VALUE POINTS/EXPECTED ANSWERS	MARKS	TOTAL MARKS
_	SECTION - A		
1	$(C) \frac{-7q^2}{8\pi\varepsilon_0 a}$	1	1
2	(B) -3 pC	1	1
3	(A) There is a minimum frequency of incident radiation below which no electrons are emitted.	1	1
4	(C) $r_n \alpha n^2$	1	1
5	(C) North	1	1
<u> </u>	(A) Small and negative.	1	1
0 7	(A) Shian and negative. (B) 1mA	1	1
8	(A) R	1	1
9	$(D) \frac{1}{3}$	1	1
10	(A)Zero	1	1
11	No option is correct, award 1 mark.	1	1
12	(D) Closer together and weaker in intensity.	1	1
13	(D) Both Assertion (A) and Reason (R) are false.	1	1
14	(B) Both assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion(A).	1	1
15	(A) Both assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion(A).	1	1
16	(C) Assertion (A) is true and Reason (R) is false.	1	1
	SECTION – B		
17	Drawing of circuit diagram of p-n junction diode (i) Forward bias ½ (ii) Reverse bias ½ I-V charcteristics in forward and reverse bias ½ + ½ i) i) i) i) ii) ii) iii) iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	1⁄2	
	Microammeter (µA) Switch	1⁄2	



Alternatively		
$\mu = \frac{1}{\sin C}$	1	
$\frac{\mu}{\mu_m} = \frac{1}{\sin 60^0}$	1⁄2	
$\mu_m = \frac{\sqrt{3}}{2}\mu$		
$\mu_m = \frac{\sqrt{3}}{2}\mu$	1⁄2	
20 Finding power consumed by two electric heaters in series combination $1\frac{1}{2}$		
Writing answer for parallel combination ¹ / ₂		
	1/	
$R_1 = \frac{V^2}{P_1} \& R_2 = \frac{V^2}{P_2}$	1/2	
$\mathbf{R}_{eq} = \mathbf{R}_1 + \mathbf{R}_2 = \mathbf{V}^2 \left(\frac{1}{\mathbf{P}_1} + \frac{1}{\mathbf{P}_2} \right)$	1/2	
$P_{\text{series}} = \frac{V^2}{R_{\text{eq}}}$		
$P_{\text{series}} = \frac{V^2}{(1-1)}$		
$P_{\text{series}} = \frac{V^2}{V^2 \left(\frac{1}{P_1} + \frac{1}{P_2}\right)}$		
$\frac{1}{\mathbf{P}_{\text{series}}} = \frac{1}{\mathbf{P}_1} + \frac{1}{\mathbf{P}_2}$	1⁄2	
No 21 (a)	1⁄2	2
21(a)Finding nature and position of image2		
Using refraction formula at spherical surface from denser to rarer medium		
n_1 = refractive index of rarer medium		
n_2 = refractive index of denser medium	1/2	
$\frac{n_1}{n_1} - \frac{n_2}{n_2} = \frac{n_1 - n_2}{n_2}$		
v u R $u = -20 \text{ cm}$, R= - 40 cm , $n_1 = 1$, $n_2 = 1.5$	1/2	
$\frac{1}{v} - \frac{1.5}{(-20)} = \frac{1 - 1.5}{(-40)}$	1/2	
v = -16 cm	⁷² 1/2	2
Nature of image is virtual. OR	72	
(b) Finding the focal lengths of the objective and eyepiece 2		
Distance between objective and eyepiece	1/	
fo + fe = 1.00 m = 100 cm	1/2	
Magnifying power		
$ m = \frac{\text{fo}}{\text{fe}} = 19$	1⁄2	
55/4/1 page 5 of 15	1	<u>I</u>

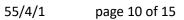
	On solving fo = 95 cm = 0.95 m	1/2	
	fe = 5 cm = 0.05 m	1/2	
	SECTION - C		I
2			
	(a) Difference between nuclear fission and fusion (1)		
	(b) Calculating energy released in fission (2)		
	(a) In nuclear fission, a heavy nucleus splits into two or more lighter nuclei and		
	energy is released.	1/2	
	In nuclear fusion, lighter nuclei combine together a form a heavy nucleus and		
	larger amount of energy is released.	1/2	
	(b) Number of atoms in 1 g of $_{94}$ Pu ²³⁹		
	$=\frac{6.023\times10^{23}}{239}$		
	$= 2.5 \times 10^{21}$	1	
	Energy released in fission of 1 g of $_{94}Pu^{239}$,		
	$E = 180 MeV \times 2.5 \times 10^{21}$		
	$E = 4.5 \times 10^{23} \text{ MeV}$	1	3
3			
	Calculating work done in taking a unit charge from		
	(i) $(5m, 0)$ to $(10m, 0)$ 2		
	(ii) (5m, 0) to (5m, 10m) 1		
	(i)		
		1/2	
	$\Delta V = -\int_{0}^{x_{2}} E dx$		
	x ₁ = =10		
	$\Delta V = -\int_{5}^{10} (10x+4) dx = -\left[\frac{10x^2}{2}+4x\right]_{5}^{10}$		
	$\begin{bmatrix} 2 \\ 5 \end{bmatrix}_{5} \begin{bmatrix} 10x + 1)dx \\ 2 \end{bmatrix}_{5}$	1/2	
	= -395 V		
	$W = q\Delta V = -395 \times 1$	1⁄2	
	= -395 J	1⁄2	
	(ii)		
	$\Delta V = -\int_{v}^{x_2} E dx$		
	5		
	$\Delta V = -\int (10x + 4) dx = 0$	1⁄2	
	$\Delta V = -\int_{5}^{5} (10x+4)dx = 0$ W = q. \Delta V = 0	1/2	3
	$W = q.\Delta V = 0$	12	
	Altomotively		
	<u>Alternatively</u> If a student writes, displacement is perpendicular to electric field then		
	$\Delta V = 0$	1 /	
	$W = q.\Delta V = 0$	$\frac{1/2}{1/2}$	
	Award full credit for part (ii)	72	



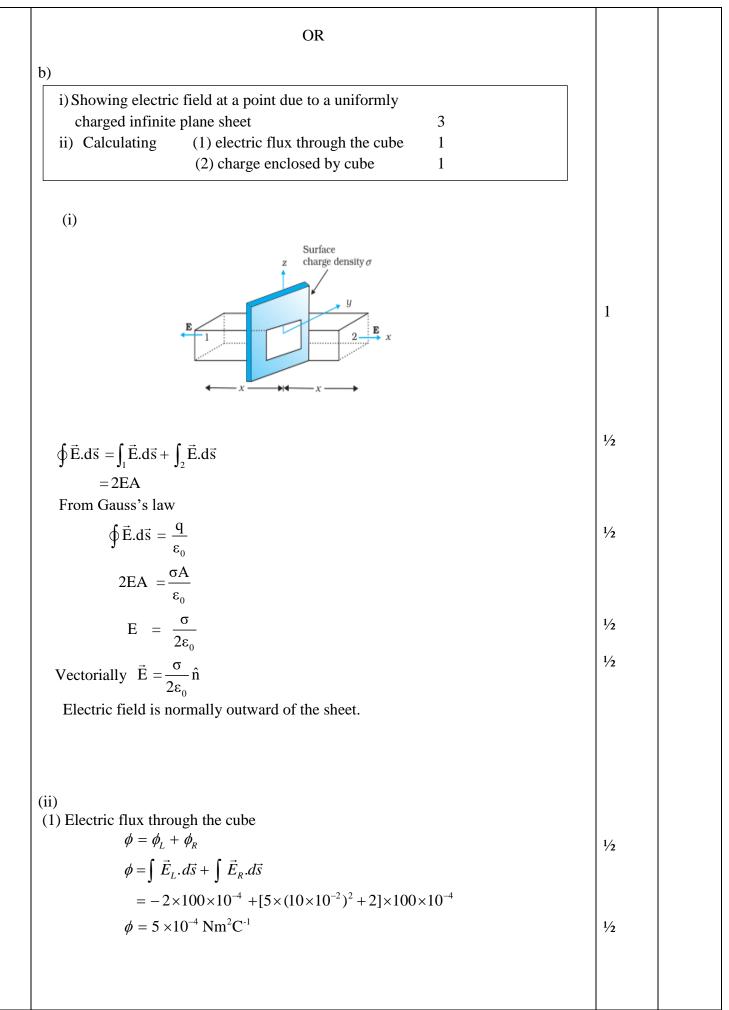


	On solving equations (1) and (2)		
	$I_1 = \frac{25E}{13R}$	1	3
26	Finding value of current in a long straight wire $2\frac{1}{2}$		
	Finding direction of current in a long straight wire 1/2		
	Magnetic field due to circular current loop at its centre O.		
	$\mathbf{B}_1 = \frac{\mu_0 \mathbf{I}_1}{2\mathbf{r}}$	1/2	
	$=\frac{\mu_0 \times 1}{2 \times 0.1}$		
		1 /	
	$= 5\mu_0 T$ The magnetic field <i>B</i> is perpendicular to plane of loop and directed inwards	1/2	
	The magnetic field B_1 is perpendicular to plane of loop and directed inwards. Magnetic field due to long current carrying straight wire at O.		
	$\mathbf{B}_2 = \frac{\mu_0 \mathbf{I}_2}{2\pi \mathbf{r}}$	1/2	
	$\mathbf{B}_2 = \frac{\mu_0 \mathbf{I}_2}{2\pi \times 0.2} \mathbf{T}$		
	For net magnetic field at O to be zero, B_1 should be equal and opposite to B_2 .		
	$5\mu_0 = \frac{\mu_0 I_2}{0.4\pi}$	1/2	
	$I_2 = 2\pi A$	1/2	
	= 6.28 A	1/2	
	Direction of current in the straight wire is along +ve x axis. <u>Alternatively</u>		3
	Net magnetic field at O is zero.		
	$\mathbf{B}_{\text{loop}} = \mathbf{B}_{\text{wire}}$	1/2	
	$\frac{\mu_0 I_1}{2r_1} = \frac{\mu_0 I_2}{2\pi r_2}$	1	
	$\frac{\mu_0 \times 1}{2 \times 0.1} = \frac{\mu_0 I_2}{2\pi \times 0.2}$	$\frac{1}{2}$ $\frac{1}{2}$	
	$I_2 = 2\pi A$	72	
	= 6.28 A	1/2	
27	Direction of current is along + x-axis.	/2	
-1	Naming the electromagnetic waves1 ½Writing range of electromagnetic waves1 ½		
	Electromagnetic waves wavelength range		
	(i) Radio waves $> 0.1 \text{ m}$	$\frac{1}{2} + \frac{1}{2}$	
	(ii) X- rays $1nm - 10^{-3} nm$	$\frac{1}{2} + \frac{1}{2}$	
	(iii) Infrared waves 1mm-700nm	$\frac{1}{2} + \frac{1}{2}$	3

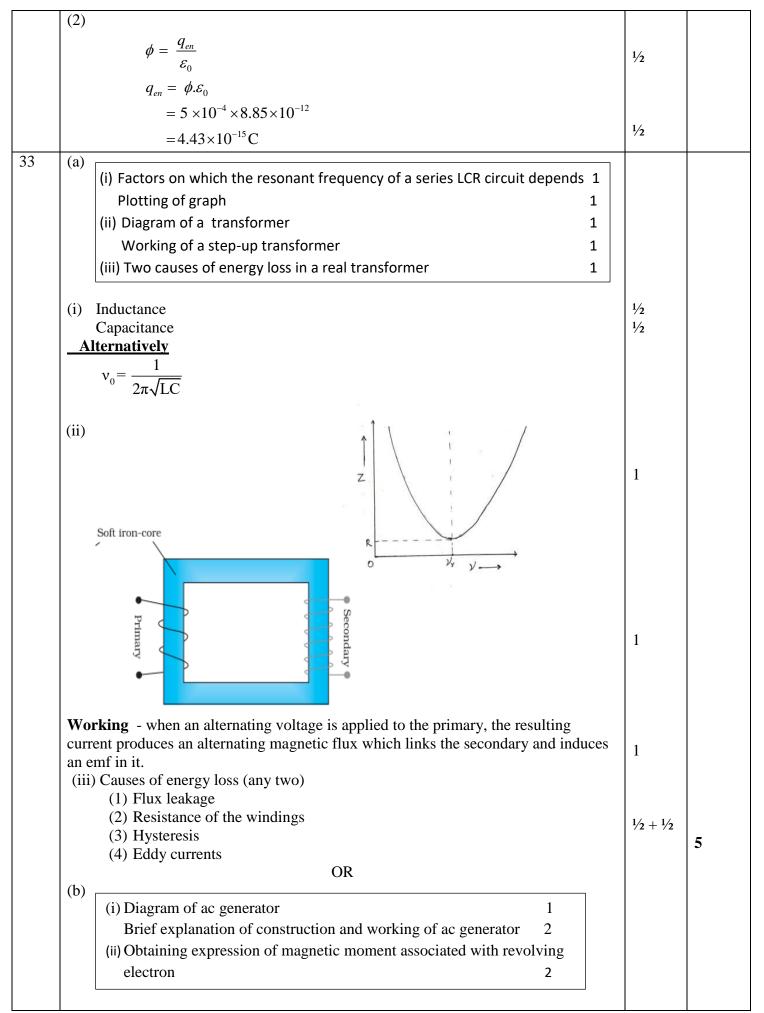
page 8 of 15



	In absence of external magnetic field, domains are randomly oriented and it exhibits weak magnetisation. In the presence of external magnetic field domains orient themselves in the direction of magnetic field and it exhibits strong magnetisation.	1⁄2 1⁄2	
	SECTION - D		1
29	 (i) (B) 0.01 eV (ii) (D) 5×10²² m⁻³ (iii) (a) (C) Electrons diffuse from n-region into p-region and holes diffuse from p-region to n-region. OR 	1 1 1	
	(b) (A) Diffusion current is large and drift current is small.(iv) (D) 50 Hz , 100 Hz.	1	4
30	(i) (B) $\frac{-5}{3}D$ (ii) (C) $\frac{3}{2}$ (iii) (A) increases when a lens is dipped in water. (iv) (a) (B) 10 cm, right from lens. OR	1 1 1 1 1	4
	(b) (A) real, 24 cm		4
	SECTION - E	ł	•
31	a) i) Drawing of ray diagram 1 Obtaining mirror equation 2 ii) Reason for using multi-component lenses 1 iii) Finding magnification produced by the objective 1		
	i)	1	
	For paraxial rays MP can be considered to be a straight line perpendicular to CP, Therefore right angled triangles ABF and MPF are similar $\frac{BA}{PM} = \frac{BF}{FP}$		
	Or $\frac{B'A'}{BA} = \frac{B'F}{FP}$ (\therefore PM = AB)(1) Since \angle APB = \angle A'PB', the right angled triangles A'PB' and ABP are also similar	1/2	
	55/4/1 page 10 of 15		



Therefore, $\frac{B'A'}{BA} = \frac{B'P}{BP}$ (2)	1/	
BA BP	1⁄2	
Comparing eq (1) and (2), we get		
B'F B'P		
$\frac{BF}{FP} = \frac{BP}{BP}$		
PF-PB' B'P		
$\frac{PF - PB'}{FP} = \frac{B'P}{BP}$		
Using sign convention		
PF = f, PB' = +v, $PB = -u$	1⁄2	
1 1 1	1/2	
on solving $\frac{1}{v} + \frac{1}{v} = \frac{1}{f}$	/2	
ii) To improve image quality by minimizing various optical aberrations in lenses.		
	1	
iii) Magnification produced by compound microscope		
$m = m_o \times m_e$	1/-	
	1/2	
$m_o = \frac{m}{m_e} = \frac{m}{\left \frac{D}{fe}\right }$		
$\frac{1}{f_{e}}$		
		_
$m_0 = \frac{200}{25} = 16$	1/2	5
$m_{o} = \frac{200}{\frac{25}{2}} = 16$		
2 OR		
Ŭ K		
(b) i) Difference between a wavefront and a ray 1		
ii) Statement of Huygens' principle 1		
Verification of the law of reflection $1 \frac{1}{2}$ 11 11		
iii) Finding wavelength of light 1 ¹ / ₂		
i) Wavefront is a surface of constant phase.	1/2	
<u>Alternatively</u> Locus of points, which oscillate in phase	72	
<u>Ray -</u> The straight line path along which light travels (or energy propagates).	1/2	
<u>Alternatively</u> – Ray is normal to wave front.	, 2	
ii) Huygens' Principle Each point of the wave front is the source of secondary		
disturbance and the wavelets emanating from the points spread out in all		
directions with speed of wave. The wavelets emanating from wave front are	1	
usually referred to as secondary wavelets. A common tangent to all these spheres		
gives the new position of the wave front at a later time.		
Incident		
1 wavefront		
Reflected	1	
wavefront		
M mmmmmmmmmmmmmmm N		
Triangles EAC and BAC are congruent therefore $\angle i = \angle r$	1⁄2	
	1	1



	iii) Position of 4 th bright fringe		
		1/2	
	$x_{4(\text{bright})} = 4 \frac{D\lambda}{d}$		
	Position of 2 nd dark fringe	1/2	
	$x_{2(dark)} = \frac{3}{2} \frac{D\lambda}{d}$	72	
	$x_{4(\text{bright})} - x_{2(\text{dark})} = 5\text{mm}$		
	$4\frac{D\lambda}{d}-\frac{3}{2}\frac{D\lambda}{d}=5\times10^{-3}$		
		1/2	
32	$\lambda = 6 \times 10^{-6}$ m		
32	(i) Obtaining expression for capacitance 3		
	(ii) Finding capacitance of capacitors 2		
	a) (i) Electric field in air between plates		
		1/2	
	$E_0 = \frac{\sigma}{\varepsilon_0}$ Electric field inside the dielectric		
	Electric field inside the dielectric		
	$F = \frac{\sigma}{\leftarrow t \rightarrow}$	1/2	
	$E = \frac{\sigma}{\varepsilon_0 K} \qquad $	/2	
	Potential difference between the plates		
	$V=E_0(d-t)+Et$	1/2	
	$V = \frac{\sigma}{\varepsilon_0} \left[d - t + \frac{t}{K} \right]$		
	$\mathbf{V} = \frac{\mathbf{q}}{\mathbf{A}\boldsymbol{\varepsilon}_0} \left[\mathbf{d} \cdot \mathbf{t} + \frac{\mathbf{t}}{\mathbf{K}} \right]$	1/2	
	Capacitance		
	$C = \frac{q}{q}$	1/2	
	$C = \frac{q}{V}$ $C = \frac{A\varepsilon_0}{d - t + \frac{t}{K}}$		
	$C = -\frac{A\varepsilon_0}{2}$		
	$d-t+\frac{t}{V}$		
	$C = \frac{A\varepsilon_0}{d - t\left(1 - \frac{1}{K}\right)}$	1/2	
	$d-t\left(1-\frac{1}{K}\right)$		
	ii) Total energy stored in series combination		
		1/2	
	$\frac{1}{2} \left(\frac{C_1 C_2}{C_1 + C_2} \right) V^2 = 40 \times 10^{-3} \text{ J}(1)$	1/2	
	Energy stored in parallel combination		
	$\frac{1}{2} (C_1 + C_2) V^2 = 250 \times 10^{-3} J(2)$	1⁄2	
	Substituting value of V=100 V in eq (1) and (2), on solving		
	$C_1 = 4 \times 10^{-5} F \text{ or } 40 \mu F$	1⁄2	
	$C_2 = 1 \times 10^{-5} F \text{ or } 10 \mu F$	1⁄2	5

	1	T
(i)	1	
 <u>Construction</u> – It consists of a coil placed in a magnetic field. The coil is mounted on a rotor shaft. The ends of the coil are connected to an external circuit by means of slip rings and brushes. <u>Alternatively</u> If a student draws only a labeled diagram of ac generator give 2 marks for construction and diagram. 	1	
Working – The coil is rotated in the uniform magnetic field by some external means. The rotation of the coil causes the magnetic flux through it to change, so an emf is induced in the coil. Alternatively If a student derives $e = e_0 \sin \omega t$ give one mark for working.	1	
(ii) The equivalent current $I = \frac{q}{t} = \frac{e}{\frac{2\pi r}{v}} = \frac{ev}{2\pi r}$ Mangetic moment of revolving electron	1⁄2	
$m = IA$ $= \frac{ev}{2\pi r} \times \pi r^{2}$	1/2	
$=\frac{1}{2} \text{evr}$	1/2 1/2	
		1

