	MARKING SCHEME: PHYSICS (042)		
Q.NO.	CODE :55/1/2 VALUE POINT/EXPECTED ANSWERS	MARKS	TOTAL MARKS
	Section A		
1.	(B) Zero	1	1
2.	(A) 1	1	1
3.	(D) 2E and 4r	1	1
4.	(D) $\frac{1}{4}$	1	1
5.	(B) $(-0.8 \text{ mN})\hat{i}$	1	1
6.	(B) $\frac{G}{1000}\Omega$	1	1
7.	(C) _{4πμ} V	1	1
8.	(A) In the same phase and perpendicular to each other	1	1
9.	(C) $\frac{1}{3}$	1	1
10.	(A) momentum	1	1
11.	(B) the number of conduction electrons increases.	1	1
12.	(C) $n_f = 2$ and $n_i = 4$	1	1
13.	(D) Assertion (A) is false and reason (R) is also false	1	1
14.	(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A)	1	1
15.	(D) Assertion is false and Reason (R) is also false.	1	1
16.	(A) Both Assertion (A) and Reason(R) are true and Reason(R) is the correct explanation of the Assertion (A)	1	1
	Section B		
17.	Finding the value of R 2		
	$i = \frac{9}{R+1}$	1/2	
	As potential difference across 6V is zero;	1/2	
	$6 - ir = 0 \Rightarrow 6 - \left(\frac{9}{R+1}\right)(0.8) = 0$	/2	
	On solving;		
	$R=0.2\Omega$	1	2
18.	Obtaining an expression for λ_n/λ_p 2		

$E = \frac{hc}{\lambda p}$ \Longrightarrow $\lambda p = \frac{hc}{E}$	1/2	
λp · E		
h h	1/2	
$\lambda n = \frac{h}{p} = \frac{h}{\sqrt{(2mE)}}$	1/2	
$\frac{\lambda n}{\lambda p} = \frac{h}{\sqrt{(2mE)}} \times \frac{E}{hc}$	72	
$\lambda p \qquad \sqrt{(2mE)} \qquad hc$		
λn L E	17	
$\frac{\lambda n}{\lambda p} = \sqrt{\left(\frac{E}{2mc^2}\right)}$	1/2	
		2
19.		
(a) Finding the wavelength of		
(i) Reflected Light 1		
(ii) Refracted Light 1		
(i)		
$v = \upsilon \lambda$ $3 \times 10^8 = 5 \times 10^{14} \times \lambda$	1	
$\lambda = 600 \text{ nm or } 6 \times 10^{-7} \text{m}$	1	
(ii)		
$\lambda_{medium} = rac{\lambda_{air}}{\mu}$		
μ		
$\lambda_{medium} = \frac{600 nm}{1.5}$		
$\begin{array}{c c} & 1.5 \\ & = 400 \text{ nm or } 4 \times 10^{-7} \text{m} \end{array}$	1	
= 400 nm or 4×10 m		
(b)		
Coloulating the reding of the surred surface.		
Calculating the radius of the curved surface 2		
1 (1)(1 1)		
$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$		
	1	
$\frac{1}{16} = (1.4 - 1)\left(\frac{1}{R} - \frac{1}{\infty}\right)$	1	
$\frac{1}{16} = 0.4 \times \frac{1}{R}$		
$R = 16 \times 0.4$	1	2
R = 6.4 cm	1	<u> </u>

		T	T
20.	Finding the (i) position of the image formed (ii) magnification of the image 1		
	$(i)\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ $\frac{1}{v} + \frac{1}{-30} = \frac{1}{-20}$	1/2	
	On solving v = - 60 cm	1/2	
	$(ii) m = -\frac{V}{I}$	1/2	
	(ii) $m = -\frac{v}{u}$ = $-(\frac{-60}{-30}) = -2$	1/2	2
21.	Variation of conductivity of an intrinsic semiconductor with temperature and it's explanation $\frac{1}{2} + \frac{1}{2}$ Graph showing variation of conductivity with temperature 1		
	Conductivity will increase. As the temperature increase, more thermal energy becomes available to these electrons and some of these electrons may break -away (becoming free electrons contributing to conduction)	½ ½	
	Conductivity +	1	
	Temperature —		2

	SECTION C		
22.			
	Nature of Q_1 will be negative.	1	
	Let, $Q_1 = Q_3 = q$ $\frac{1}{4\pi\varepsilon_0} \left[\frac{qQ_2}{d} + \frac{qq}{2d} + \frac{Q_2q}{d} \right] = 0$	1/2	
	$\frac{1}{4\pi\varepsilon_{0}d} \left[qQ_{2} + \frac{q^{2}}{2} + Q_{2}q \right] = 0$ $2qQ_{2} + \frac{q^{2}}{2} = 0$	1/2	
	$2qQ_2 = -\frac{q^2}{2}$ $Q_1 = q = -4Q_2$	1	3
23.	a) • Defining current density • Whether scalar or vector • Showing $\vec{J} = \alpha \ \vec{E}$ 2		
	Current density is the amount of charge flowing per second per unit area normal to the flow. Alternatively: $j = \frac{I}{A}$	1/2	
	It is a vector quantity.	1/2	
	$\Delta x = v_d \Delta t$ $\Theta \rightarrow \qquad \qquad E$ $\Theta \rightarrow \qquad \qquad E$		

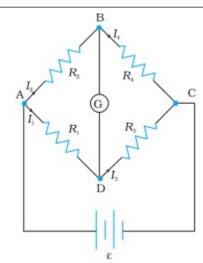
The amount of charge crossing the area A in time Δt is I Δt , where I is the magnitude of the current. Hence,

 $I \Delta t = ne A |v_d| \Delta t$

$$I \Delta t = \frac{e^2 A}{m} \tau n \Delta t |E|$$

I = |j|A

$$|\mathbf{j}| = \frac{ne^2}{m} \tau |\mathbf{E}|$$


 $\vec{j} = \alpha \vec{E}$

OR

b)

Defining Wheatstone bridge
Obtaining balancing conditions

1 2

Alternatively:

If the figure is explained in words full credit to be given.

For loop ADBA:

$$-I_1 R_1 + I_2 R_2 + I_g G = 0$$

(1)

(2)

For loop CBDC:

$$I_4 R_4 - I_3 R_3 - I_g G = 0$$

1/2

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

1

For balanced wheatstone bridge, Ig = 0

And by applying Kirchoff's junction rule to junction D and B,

$$I_1 = I_3 \& I_2 = I_4$$

			I
	From eqn (1) and (2) $\frac{I_1}{I_1} = \frac{R_2}{R} \text{ and } \frac{I_1}{I_2} = \frac{R_4}{R}$		
	$\frac{I_1}{I_2} = \frac{R_2}{R_1} \text{ and } \frac{I_1}{I_2} = \frac{R_4}{R_3}$ $\Rightarrow \frac{R_2}{R_1} = \frac{R_4}{R_3}$	1/2	3
24.			
	(a) Finding the work done to turn the magnet		
	(i) normal to the field direction 1 (ii) opposite to the field direction 1		
	(b) Torque on the magnet for case (i) and (ii) $\frac{1}{2} + \frac{1}{2}$		
	(b) Torque on the magnet for ease (f) and (ff)		
	(a)		
	(i) $W = -mB(\cos\theta_2 - \cos\theta_1)$		
	$= - mB(Cos90^{\circ} - Cos0^{\circ})$		
	= mB		
	$W = 2.5 \times 0.32$	4	
	W = 0.8 J	1	
	(ii)		
	$W = -mB(Cos180^{\circ} - Cos0^{\circ})$		
	= 2 mB		
	$= 2 \times 0.8$	1	
	W = 1.6 J		
	(b)		
	(i)		
	$\tau = mB \sin \theta$	1/2	
	= 0.8 Nm		
	$ \begin{array}{c} \text{(ii)} \\ \tau = 0 \end{array} $	1/2	
	ι – υ	, 2	3
25.			
	(a) Explaining the phenomenon 1		
	(b) Two Factors on which current depends 1		
	(c) Direction of current in coil Q when		
	(i) R is increased ½		
	(ii) R is decreased ½		

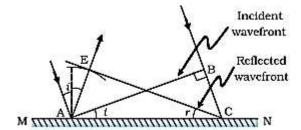
	(a) Mutual Induction When an alternating voltage is applied to the primary, the resulting current produces an alternating magnetic flux which links the secondary and induces an emf in it.	1	
	(b) Factors on which the current produced in coil Q depends will be: (Any two) (i) Number of turns in coil P and Q (ii) Current flowing through coil P. (iii) Resistance of coil Q. (iv) Mutual Induction between the two coils.	1/2 + 1/2	
	(c) The direction of current through coil Q:(i) Clockwise when R is increased.(ii) Anticlockwise when R is decreased.	1/ ₂ 1/ ₂	3
26.	 Drawbacks of Rutherford's atomic model Bohr's explanation Showing different orbits are not equally spaced Drawbacks: i) According to classical electromagnetic theory, an accelerating charged particle emits radiation in the form of electromagnetic waves. The energy of an accelerating electron should therefore, continuously decrease. The electron would spiral inward and eventually fall into the nucleus. Thus, such an atom cannot be stable. ii) As the electrons spiral inwards, their angular velocities and hence their frequencies would change continuously. Thus, they would emit a continuous spectrum, in contradiction to the line spectrum actually observed. Bohr postulated stable orbits in which electrons do not radiate energy Alternatively: Bohr's postulates (Any ONE of the three) (i) An electron in an atom could revolve in certain stable orbits without the emission of radiant energy. (ii) The electron revolves around the nucleus only in those orbits for which the angular momentum is some integral multiple of h/2π (iii) An electron might make a transition from one of its specified non-radiating orbits to another of lower energy. When it does so, a photon is 	1	

	The radius of the n th orbit is found as $r_n = \left(\frac{n^2}{m}\right) \left(\frac{h}{2\pi}\right)^2 \frac{4\pi\varepsilon_0}{e^2}$ $r_n \alpha n^2$ Alternatively: Difference in radius of consecutive orbits is $r_{n+1} - r_n = k \left[(n+1)^2 - n^2 \right]$	1	
	= k(2n + 1) which depends on n, and is not a constant		3
27.	a) Two examples 1 b) (i) Reason for use of short waves bands 1 (ii) Reason for x-ray astronomy from satellites 1		
	 a) (Any Two) Gamma radiation having wavelength of 10⁻¹⁴ m to 10⁻¹⁵ m, typically originate from an atomic nucleus. X-rays are emitted from heavy atoms. Radio waves are produced by accelerating electrons in a circuit. A transmitting antenna can most efficiently radiate waves having a wavelength of about the same size as the antenna. b) (i) Ionosphere reflects waves in these bands (ii) Atmosphere absorbs x-rays, while visible and radio waves can penetrate it. Note: Full credit to be given for part (b) for mere attempt. 	1/ ₂ + 1/ ₂ 1 1	
28.	(a) Two properties of nuclear force (b) Plotting graph between potential energy as a function of separation. 1 Two important conclusions. 1 (a) Properties of nuclear forces (Any two): (i) The nuclear force is much stronger than the Coulomb force acting between charges or the gravitational forces between their masses. (ii) The nuclear force between two nucleons falls rapidly to zero as their distance becomes more than a few femtometres. (iii) The nuclear force between neutron- neutron, proton- neutron		3

		ı
and proton-proton is approximately same.	17 . 17	
(iv) The nuclear force is charge independent.	$\frac{1}{2} + \frac{1}{2}$	
(b) Optimized Properties (MeV) Logical Pro	1	
Note: Evil anodit to be sixten if valves are not montred on the growth		
Note: Full credit to be given if values are not marked on the graph.		
Conclusions:-		
(i) The potential energy is minimum at a distance r_0 .		
(ii) The force between the nucleons is attractive for distances larger	.,,.,	
than r_0 and repulsive if they are separated by distance less than r_0 .	$\frac{1}{2} + \frac{1}{2}$	3
Section D		3
$\begin{array}{ c c c c c }\hline 29. & & & & & & & & & & & & & & & & & & &$	1	
(ii) (B) half cycle of the input signal	1	
(iii) (C) One is forward biased and the other is reverse biased at the same time	1	
(iv) a) (B) 50 Hz	1	
OR b) (D) + 5 V		4
30. (i) (A) $\frac{2(n-1)}{R}$ (ii) (D) $\frac{P/2}{R}$	1	
(iii) (B) P	1	
(iv) a) (C) 2P OR	1	
b) (A) 6.6 D	1	4

(a) (i) Graph showing variation of angle of deviation with angle of incidence 1 Defining angle of minimum deviation 1 (ii) Proof of refractive index $n = \frac{\sin(A + \delta)}{\sin A}$ 1 (iii) (1) Finding angle of minimum deviation 1 (2) Angle of Incidence 1	
(i) (2) Angle of Incidence 1	
Angle of deviation (6)	
Angle of incidence (i)	1
Minimum deviation angle is defined as the angle at which angle of incidence is equal to the angle of emergence.	1
Alternatively At minimum deviation refracted ray inside the prism becomes parallel to the base of the prism.	

(ii) At the face XZ:- $\frac{1}{2}$ $\mu \sin i = 1 \times \sin r$ ---- (1) ---- (2) $r = i + \delta$ [from diagram] In Δ XMN; A+(90-i)+90=180 ---- (3) $\frac{1}{2}$ \Rightarrow A = i Putting eq. (3) & (2) in eq. (1) $\mu \sin A = \sin (A + \delta)$ $\mu = \frac{\sin\left(A + \delta\right)}{\sin A}$ (iii) $\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\frac{A}{2}}$ $\sqrt{2} = \frac{\sin\left(\frac{60 + \delta_m}{2}\right)}{\sin 30^{\circ}}$ $\frac{1}{2}$ $\Rightarrow \sin\left(\frac{60+\delta_m}{2}\right) = \frac{1}{\sqrt{2}} = \sin 45^{\circ}$ $\frac{1}{2}$ $\frac{60 + \delta_m}{2} = 45^\circ \Rightarrow \delta_m = 30^\circ$ $i = \frac{A + \delta_m}{2}$ (2) $\frac{1}{2}$ $\Rightarrow i = \frac{60 + 30}{2}$ $\frac{1}{2}$



OR

(b)

(i) Statement of Huygens' Principle	1/2
Construction of reflected wave front	1/2
Proof of angle of reflection is equal to angle of incidence	1
(ii) Definition of coherent sources	1/2
Explanation	1
(iii) Finding the unknown wavelength	1 ½

(i) Each point of the wavefront is the source of a secondary disturbance and the wavelets emanating from these points spread out in all directions with the spread of the wave. Each point of the wavefront is the source of a secondary disturbance and the wavelets emanating from these points spread out in all directions with the speed of the wave. These wavelets emanating from the wavefront are usually referred to as secondary wavelets and if we draw a common tangent to all these spheres, we obtain the new position of the wavefront at a later time.

 $\triangle EAC$ is congruent to $\triangle BAC$; so $\angle i = \angle r$

(ii) Two sources are said to be coherent if the phase difference between them does not change with time.

No, two independent sodium lamps cannot be coherent.

Two independent sodium lamps cannot be coherent as the phase between them does not remain constant with time.

(iii)

$$4\beta_2 = 5\beta_1$$

$$4 \times \frac{\lambda D}{d} = 5 \times \frac{\lambda_{known} D}{d}$$

1/2

 $\frac{1}{2}$

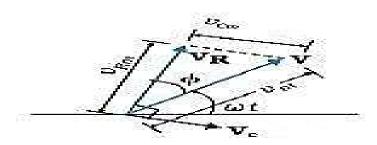
1/2

1

$\Rightarrow \lambda = \frac{5}{4} \times \lambda_{becomes}$ $= \frac{5}{4} \times 520$ $= 650 \text{ nm}$ 32. (a) (i) • Deriving the expression for potential energy 2 • Maximum & Minimum value of potential energy ($\frac{y_2}{y_2} + \frac{y_2}{y_2}$) (ii) Finding the torque. 2 (i) The amount of work done in rotating the dipole from $\theta = \theta_0$ to $\theta = \theta_1$ by the external torque $W = \int_{\theta_0}^{\pi} \tau_{co} d\theta$ $= \int_{\theta_0}^{\pi} pE \sin \theta \ d\theta$ $W = pE(\cos \theta_0 - \cos \theta_1)$ For $\theta_0 = \frac{\pi}{2}$ & $\theta_1 = \theta$ $= pE(\cos \frac{\pi}{2} - \cos \theta)$ U(θ) = $-pE$ cos θ $= -p, E$ (1) Potential energy is maximum when:				
(i) • Deriving the expression for potential energy • Maximum & Minimum value of potential energy (1/2 + 1/2) (ii) Finding the torque. 2 (i) The amount of work done in rotating the dipole from $\theta = \theta_0$ to $\theta = \theta_1$ by the external torque $W = \int_{\theta_0}^{\eta} \tau_m d\theta$ $= \int_{\theta_0}^{\eta} pE \sin \theta \ d\theta$ $W = pE(\cos \theta_0 - \cos \theta_1)$ For $\theta_0 = \frac{\pi}{2} & \theta_1 = \theta$ $- pE(\cos \frac{\pi}{2} - \cos \theta)$ $U(\theta) = -pE \cos \theta$ $= -\vec{p}.\vec{E}$ (1) Potential energy is maximum when:		$=\frac{5}{4}\times520$	1	5
The amount of work done in rotating the dipole from $\theta = \theta_0$ to $\theta = \theta_1$ by the external torque $W = \int_{t_0}^{\pi} \tau_{ext} d\theta$ $= \int_{t_0}^{\pi} pE \sin \theta \ d\theta$ $W = pE(\cos \theta_0 - \cos \theta_1)$ For $\theta_0 = \frac{\pi}{2} & \theta_1 = \theta$ $= pE(\cos \frac{\pi}{2} - \cos \theta)$ $U(\theta) = -pE \cos \theta$ $= -\vec{p}.\vec{E}$ (1) Potential energy is maximum when:	32.	 (i) Deriving the expression for potential energy 2 Maximum & Minimum value of potential energy (½+½) 		
The amount of work done in rotating the dipole from $\theta = \theta_0$ to $\theta = \theta_1$ by the external torque $W = \int_{t_0}^{\pi} \tau_{ext} d\theta$ $= \int_{t_0}^{\pi} pE \sin \theta \ d\theta$ $W = pE(\cos \theta_0 - \cos \theta_1)$ For $\theta_0 = \frac{\pi}{2} & \theta_1 = \theta$ $= pE(\cos \frac{\pi}{2} - \cos \theta)$ $U(\theta) = -pE \cos \theta$ $= -\vec{p}.\vec{E}$ (1) Potential energy is maximum when:				
The amount of work done in rotating the dipole from $\theta = \theta_0$ to $\theta = \theta_1$ by the external torque $W = \int_{\eta_0}^{\eta_0} \tau_{cc} d\theta$ $W = pE \sin\theta d\theta$ $W = pE(\cos\theta_0 - \cos\theta_1)$ For $\theta_0 = \frac{\pi}{2}$ & $\theta_1 = \theta$ $= pE(\cos\frac{\pi}{2} - \cos\theta)$ $U(\theta) = -pE \cos\theta$ $= -\vec{p}.\vec{E}$ (1) Potential energy is maximum when:				
The amount of work done in rotating the dipole from $\theta = \theta_0$ to $\theta = \theta_1$ by the external torque $W = \int_{\eta_0}^{\eta_0} \tau_{cc} d\theta$ $W = pE \sin\theta d\theta$ $W = pE(\cos\theta_0 - \cos\theta_1)$ For $\theta_0 = \frac{\pi}{2}$ & $\theta_1 = \theta$ $= pE(\cos\frac{\pi}{2} - \cos\theta)$ $U(\theta) = -pE \cos\theta$ $= -\vec{p}.\vec{E}$ (1) Potential energy is maximum when:				
The amount of work done in rotating the dipole from $\theta = \theta_0$ to $\theta = \theta_1$ by the external torque $W = \int_{\theta_0}^{\theta_0} \tau_{ext} d\theta$ $= \int_{\theta_0}^{\theta_0} pE \sin \theta \ d\theta$ $W = pE(\cos \theta_0 - \cos \theta_1)$ For $\theta_0 = \frac{\pi}{2}$ & $\theta_1 = \theta$ $= pE(\cos \frac{\pi}{2} - \cos \theta)$ $U(\theta) = -pE \cos \theta$ $= -\vec{p} \cdot \vec{E}$ (1) Potential energy is maximum when:		E		
the external torque $W = \int_{\theta_0}^{\theta_0} \tau_{ext} d\theta$ $= \int_{\theta_0}^{\theta_0} pE \sin \theta \ d\theta$ $W = pE(\cos \theta_0 - \cos \theta_1)$ $For \theta_0 = \frac{\pi}{2} \& \theta_1 = \theta$ $= pE(\cos \frac{\pi}{2} - \cos \theta)$ $U(\theta) = -pE \cos \theta$ $= -\vec{p} \cdot \vec{E}$ (1) Potential energy is maximum when:				
$W = \int_{\theta_0}^{\theta_1} \tau_{ext} d\theta$ $= \int_{\theta_0}^{\theta_1} pE \sin \theta \ d\theta$ $W = pE(\cos \theta_0 - \cos \theta_1)$ $For \theta_0 = \frac{\pi}{2} & \theta_1 = \theta$ $= pE(\cos \frac{\pi}{2} - \cos \theta)$ $U(\theta) = -pE \cos \theta$ $= -\vec{p} \cdot \vec{E}$ (1) Potential energy is maximum when:				
$= \int_{\theta_0}^{\theta_0} pE \sin \theta \ d\theta$ $W = pE(\cos \theta_0 - \cos \theta_1)$ $For \theta_0 = \frac{\pi}{2} \& \theta_1 = \theta$ $= pE(\cos \frac{\pi}{2} - \cos \theta)$ $U(\theta) = -pE \cos \theta$ $= -\vec{p}.\vec{E}$ (1) Potential energy is maximum when:				
$W = pE(\cos \theta_0 - \cos \theta_1)$ $For \theta_0 = \frac{\pi}{2} \& \theta_1 = \theta$ $= pE(\cos \frac{\pi}{2} - \cos \theta)$ $U(\theta) = -pE \cos \theta$ $= -\vec{p}.\vec{E}$ (1) Potential energy is maximum when:		$W=\int\limits_{ heta_{o}}^{ heta_{1}} au_{_{ m ext}}d heta$	1/2	
For $\theta_0 = \frac{\pi}{2} \& \theta_1 = \theta$ $= pE(\cos \frac{\pi}{2} - \cos \theta)$ $U(\theta) = -pE \cos \theta$ $= -\vec{p}.\vec{E}$ (1) Potential energy is maximum when:		$=\int\limits_{0}^{ heta_{1}}pE\sin heta\;d heta$		
For $\theta_0 = \frac{\pi}{2}$ & $\theta_1 = \theta$ $= pE(\cos \frac{\pi}{2} - \cos \theta)$ $U(\theta) = -pE \cos \theta$ $= -\vec{p}.\vec{E}$ (1) Potential energy is maximum when:		$W = pE(\cos\theta_0 - \cos\theta_1)$	1/2	
$U(\theta) = -pE \cos \theta$ $= -\vec{p} \cdot \vec{E}$ (1) Potential energy is maximum when:			1/2	
$U(\theta) = -pE \cos \theta$ $= -\vec{p} \cdot \vec{E}$ (1) Potential energy is maximum when:		$= pE(\cos\frac{\pi}{2} - \cos\theta)$		
$= -\vec{p}.\vec{E}$ (1) Potential energy is maximum when:				
(1) Potential energy is maximum when:			1/2	
		(1) Potential energy is maximum when:		
p is antiparallel to E		\overrightarrow{p} is antiparallel to \overrightarrow{E}	1/2	

Alternatively: $\theta = 180^{\circ}$ or π radians (2) Potential energy is minimum when: \vec{p} is along to \vec{E} Alternatively: $\theta = 0^{\circ}$	1/2
(ii) (c.o) c (3,4) E (c.o) c (c.o)	
$\tau = pE \sin \theta$ $= (2aq)E \sin \theta$ $= (5 \times 10^{-3} \times 1 \times 10^{-12})10^{3} \times \frac{4}{5}$ $= 4 \times 10^{-12} Nm$ Direction is along –ve Z direction.	1/2 1/2 1/2 1/2
(b) (i) Deriving expression for potential (ii) New charge on Sphere S_1 $ \begin{array}{c} 2 \frac{1}{2} \\ 2 \frac{1}{2} \end{array} $ (i) $ \begin{array}{c} 2a \\ -q O +q P \hat{\imath} \\ x \end{array} $	1/2

$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$ $V = V_{+q} - V_{-q}$		1/2	
$V = \frac{1}{4\pi\varepsilon_0} \left[\frac{q}{(x-a)} - \frac{q}{(x+a)} \right]$		1/2	
$=\frac{q}{4\pi\varepsilon_0}\left[\frac{x+a-x+a}{(x^2-a^2)}\right]$			
$V = \frac{q}{4\pi\varepsilon_0} \frac{2a}{(x^2 - a^2)} = \frac{p}{4\pi\varepsilon_0(x^2 - a^2)}$ As p is along x-axis, so		1/2	
$V = \frac{1}{4\pi\varepsilon_0} \frac{\vec{p} \cdot \hat{i}}{(x^2 - a^2)}$			
If $x > a$ $1 \vec{n} \cdot \hat{i}$		1/2	
$V = \frac{1}{4\pi\varepsilon_0} \frac{\vec{p} \cdot \hat{i}}{x^2}$			
Alternatively:			
2a p 0	P'		
$V = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r_1} - \frac{q}{r_2} \right)$	(i)	1/2	
By geometry $r_1^2 = r^2 + a^2 - 2ar \cos\theta$			
$r_2^2 = r^2 + a^2 + 2ar\cos\theta$			
$r_1^2 = r^2 \left(1 - \frac{2a\cos\theta}{r} + \frac{a^2}{r^2} \right)$			


Using binomial theorem & retaining terms upto the first order in $\frac{a}{r}$;		
we obtain		
$\frac{1}{r_1} \cong \frac{1}{r} \left(1 - \frac{2a\cos\theta}{r} \right)^{-\frac{1}{2}} \cong \frac{1}{r} \left(1 + \frac{a}{r}\cos\theta \right) \qquad (ii)$	1/2	
$\frac{1}{r_2} \cong \frac{1}{r} \left(1 - \frac{2a\cos\theta}{r} \right)^{-\frac{1}{2}} \cong \frac{1}{r} \left(1 - \frac{a}{r}\cos\theta \right) \qquad (iii)$	1/2	
Using equations (i), (ii) & (iii) & p = 2qa $V = \frac{q}{4\pi\varepsilon_0} \frac{2a\cos\theta}{r^2} = \frac{p\cos\theta}{4\pi\varepsilon_0 r^2}$	1/2	
$p\cos\theta = \vec{p} \cdot \hat{r}$ As \vec{r} is along the x – axis. $\Rightarrow \vec{p} \cdot \hat{r} = \vec{p} \cdot \hat{i}$ $\Rightarrow V = \frac{1}{4\pi\varepsilon_0} \frac{\vec{p} \cdot \hat{i}}{x^2}$	1/2	
(ii) Charge on sphere S_1 : $Q_1 = \text{surface charge density} \times \text{surface Area}$ $= \left(\frac{2}{\pi} \times 10^{-9}\right) \times 4\pi \left(1 \times 10^{-2}\right)^2$ $= 8 \times 10^{-13} C$	1/2	
Charge on sphere S_2 : $Q_2 = \text{surface charge density} \times \text{surface Area}$ $= \left(\frac{2}{\pi} \times 10^{-9}\right) \times 4\pi (3 \times 10^{-2})^2$ $= 72 \times 10^{-13} C$ When connected by a thin wire they acquire a common potential V and the charge remains conserved. $Q_1 + Q_2 = Q_1' + Q_2'$	1/2	
$= C_1 V + C_2 V$ $Q_1 + Q_2 = (C_1 + C_2) V$		

	Common potential(V) = $\frac{Q_1 + Q_2}{C_1 + C_2}$		
	$C_1 = 4\pi\varepsilon_0 r_1 = \frac{1}{9 \times 10^9} \times 10^{-2} = \frac{1}{9} \times 10^{-11} F$		
	$C_2 = 4\pi\varepsilon_0 r_2 = \frac{1}{9 \times 10^9} \times 3 \times 10^{-2} = \frac{1}{3} \times 10^{-11} F$		
	$V = \frac{80 \times 10^{-13}}{\left(\frac{1}{9} + \frac{1}{3}\right) \times 10^{-11}} = 1.8 V$	1/2	
	$Q_1' = C_1 V = \frac{1}{9} \times 10^{-11} \times 1.8$		
	$Q_1' = 2 \times 10^{-12} C$	1/2	
	Alternatively:		
	Charge on sphere S ₁ :		
	Q_1 = surface charge density × surface Area		
	$= \left(\frac{2}{\pi} \times 10^{-9}\right) \times 4\pi (1 \times 10^{-2})^2$		
	$= 8 \times 10^{-13} C$	1/2	
	Charge on sphere S ₂ :		
	Q_2 = surface charge density × surface Area		
	$= \left(\frac{2}{\pi} \times 10^{-9}\right) \times 4\pi (3 \times 10^{-2})^2$		
	$= 72 \times 10^{-13} C$	1/2	
	When connected by a thin wire they acquire a common potential V		
	and the charge remains conserved.	1/2	
	$Q_1 + Q_2 = Q_1' + Q_2'$	72	
		1/2	
	$\frac{Q_2'}{Q_1'} = \frac{r_2}{r_1}$		
	On solving, $Q_1' = 2 \times 10^{-12} C$	1/2	
	5/ t 1		
			5
33.	(a) (i) Deriving expression for impedance 2		
	(ii) Reason 1		
	(iii) Inductance of coil 2		
	(III) Inductance of con		

$$V_{C} + V_{R} = V$$

$$v_{m}^{2} = v_{rm}^{2} + v_{cm}^{2}$$

$$v_{rm} = i_{m}R$$

$$v_{cm} = i_{m}X_{c}$$

$$v_{m}^{2} = (i_{m}R)^{2} + (i_{m}X_{c})^{2}$$

$$= i_{m}^{2} \left[R^{2} + X_{c}^{2}\right]$$

$$\Rightarrow i_m = \frac{v_m}{\sqrt{R^2 + X_c^2}}$$

$$\Rightarrow$$
 Impedance $Z = \sqrt{R^2 + X_c^2}$

As
$$X_L = \omega L = 2\pi v L$$

For dc
$$v = 0 \Rightarrow X_L = 0$$

Alternatively: -

Induced emf (
$$\varepsilon$$
) = - $\frac{LdI}{dt}$

For dc;
$$dI = 0 \implies \varepsilon = 0$$

(iii)
$$R = \frac{110}{11} = 10 \Omega$$

$$i_{rms} = \frac{v_{rms}}{\sqrt{R^2 + X_L^2}} = \frac{220}{\sqrt{100 + X_L^2}}$$

$$11 = \frac{220}{\sqrt{100 + X_L^2}}$$

$$\sqrt{100 + X_L^2} = \frac{220}{11} = 20\Omega$$

$$\Rightarrow 100 + X_L^2 = 400$$

$$\frac{1}{2}$$

$\Rightarrow X_L^2 = 300 \Rightarrow X_L = 10\sqrt{3} \Omega$	1/2	
$X_L = 2\pi f L \Rightarrow 10\sqrt{3} = 2\pi \times 50 \times L$		
$L = \frac{\sqrt{3}}{10\pi}H$	1/2	
$L = \frac{10\pi}{10\pi}H$		
OR		
(b)		
(i) Labelled diagram of step – up transformer 1		
Describing working principle ½		
Three causes 1 ½		
(ii) Explanation 1		
(iii) (1) Output voltage across secondary coil ½		
(2) Current in primary coil ½		
(i)		
Soft iron-core		
Secondary		
(a)		
OR		
Soft iron-core		
Secondary Primary (b)	1	

	1	
The working principle of transformer is mutual induction.		
When an alternating voltage is applied to the primary, the resulting current produces an alternating magnetic flux which links the		
secondary and induces an emf in it.	1/2	
secondary and modees an enii in it.		
Causes of energy losses (Any three)		
(a) Flux leakage		
(b) Resistance of the windings		
(c) Eddy currents	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	
(d) Hysteresis	/2 /2 /2	
(ii) No	1/2	
Current changes correspondingly. So, the input power is equal to the	, 2	
output power.	1/2	
(iii)		
(1)		
$\frac{V_s}{V_P} = \frac{N_s}{N_P}$		
$N_{\rm s} = 3000$		
$V_s = \frac{N_s}{N_p} \times V_p = \frac{3000}{200} \times 90$		
$V_s = 1350 V$	1/2	
	72	
(2) $I = N$		
$rac{I_P}{I_s} = rac{N_s}{N_P}$		
s IVp		
3000	1/2	
$I_P = \frac{3000}{200} \times 2 = 30 \text{ A}$	72	
		5

