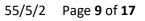
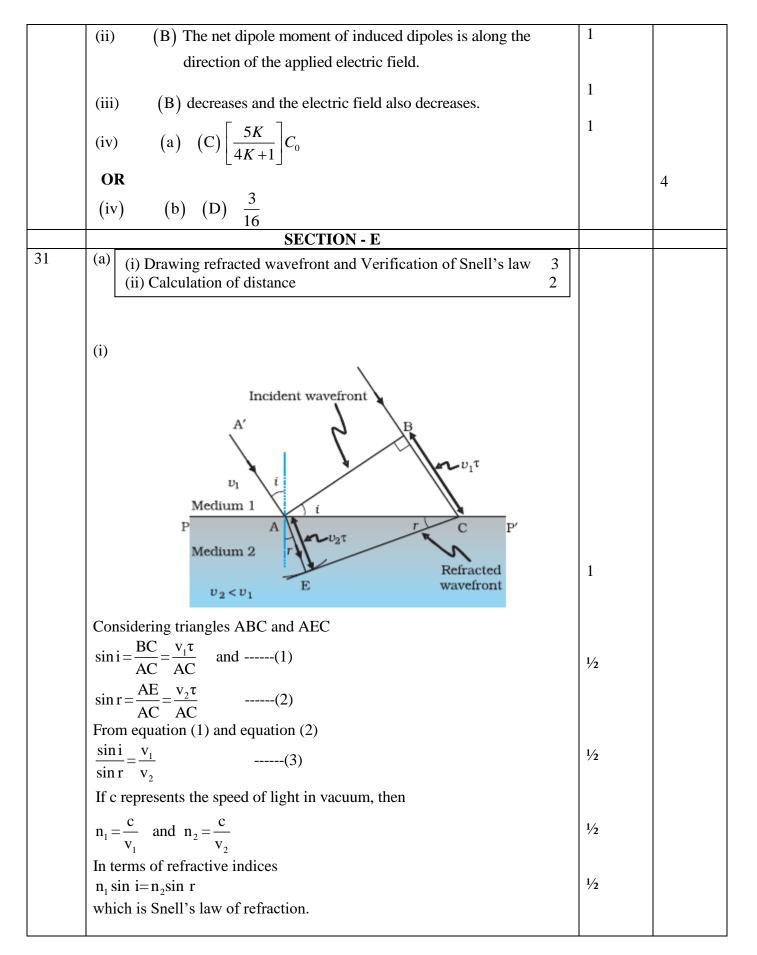

MARKING SCHEME : PHYSICS (042)				
Q.NO.	CODE : 55/5/2 VALUE POINTS/ EXPECTED ANSWERS	MARKS	TOTAL MARKS	
1.	(A) A will increase, V will decrease	1	1	
2.	(B) lags the voltage by $\left(\frac{1}{4}\right)$ cycle	1	1	
3.	(B) A force of attraction and a torque	1	1	
4.	(C) $\frac{2I - I_g}{I - I_g}$	1	1	
5.	(C) 1.5V	1	1	
6.	(B) 1.5×10^{16}	1	1	
7.	(A) 0.8 fm	1	1	
8.	(C) 0.33 mm	1	1	
9.	(A) A	1	1	
10	(C) 3.4eV, -6.8eV	1	1	
11	(B) Ultraviolet rays	1	1	
12	(D) 125	1	1	
13	(D) Both Assertion (A) and Reason (R) are false.	1	1	
14	(C) Assertion (A) is true but Reason (R) is false.	1	1	
15	(C) Assertion (A) is true but Reason (R) is false.	1	1	
16	(A) Both Assertion (A) and Reason (R) are true and Reason (R) is correct explanation of Assertion (A).	1	1	
	SECTION - B			
17	(a) Finding net electric field 2 $-3\mu c$ F_{ob} $C_{H}\mu c$ F_{oh} $F_$	1		
	OA = OB = OC = OD = r Net force on charge $4\mu C$			

	$E_{OA} = E_{OB} = E_{OC} = 2.7 \text{ NC}^{-1}$		
	$E_{BC} = \sqrt{E_{OB}^2 + E_{OC}^2 + 2E_{OB}E_{OC}\cos 120^0}$	1/2	
	$=E_{OB}$		
	As $\vec{E}_{BC} = -\vec{E}_{OA}$		
	$\vec{E}_{BC} + \vec{E}_{OA} = 0$		
	Net electric field is zero.	1/2	
	Alternatively $\left \vec{E}_{OA}\right = \left \vec{E}_{OB}\right = \left \vec{E}_{OC}\right $		
	Electric field vectors are making an angle of 120° with each other. They make a closed polygon. So vector sum of all electric field vectors will be		
	zero.		
	$\vec{E} = 0$	2	2
18			
	Deriving an expression for magnetic force $1\frac{1}{2}$		
	Validity and Justification for zig-zag form conductor1/2		
	Total number of mobile charge carriers in a conductor of length L , cross-		
	sectional area A and number density of charge carriers n : = nLA		
	Force acting on the charge carriers in external magnetic field \vec{B}		
	$\vec{F} = (nAL) q \vec{v}_d \times \vec{B}$ (1)		
	Where \vec{v}_d is the drift velocity of the charge carriers	1/2	
	Current flowing		
	$I = v_d q n A$	1⁄2	
	$I\vec{L} = \vec{v}_d qnAL$ (2)		
	On solving equation (1) and (2)		
	$\vec{F} = I(\vec{L} \times \vec{B})$	1⁄2	
	Yes, because this force can be calculated by considering zig-zag		
	conductor as a collection of linear strips $(d\vec{l})$ and summing them	1/2	2
	vectorically.		
19	Finding separation 2		
	$\mathbf{m} = -\frac{\mathbf{v}}{u} = \frac{h_I}{h_O} = \frac{1}{2}$	1/2	
	u = -2v	, 2	
	u = -2v 1 1 1	1/	
	$\frac{1}{f} = \frac{1}{V} + \frac{1}{U}$	1⁄2	

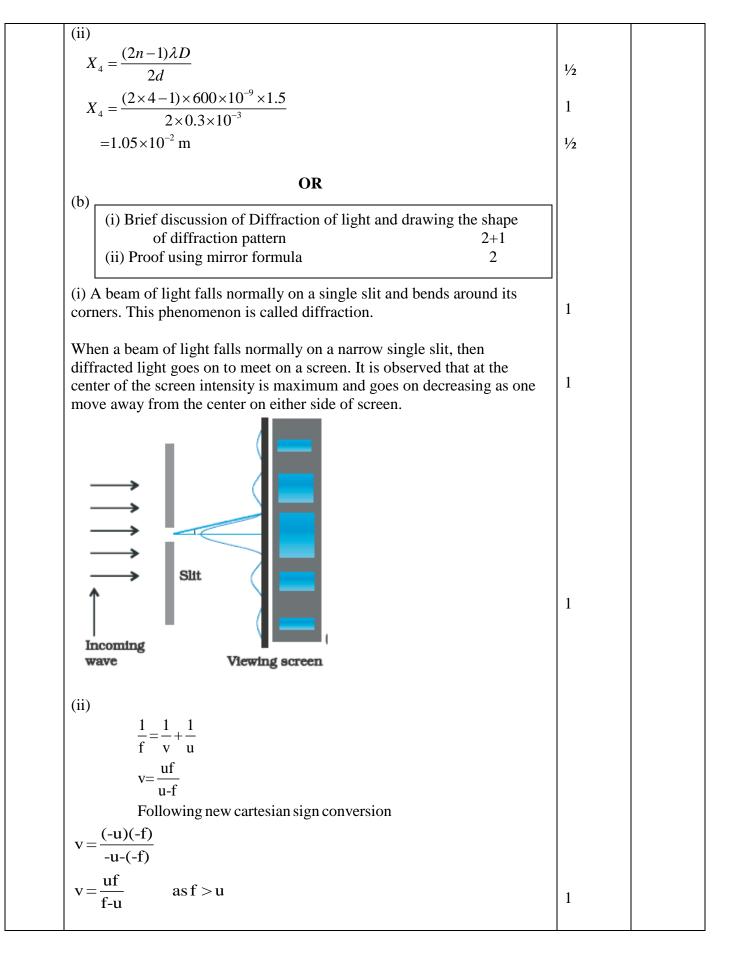
1	1 1		
	$\frac{1}{1}$		
	$\overline{v} = \frac{1}{2v}$		
	blving		
$ \mathbf{v} = 1$	7.5 cm		
u =	+15.0 cm		
	ration = 15.0 + 7.5	1/2	
Sepa	= 22.5 cm	1/2	2
20			
C	lculating energy 2		
Mass	of reactants = $(1.007825 + 3.016049)$ u		
	= 4.023874 u		
Mass	of product $= 2 \times 2.014102$ u		
	= 4.028204 u		
Mass	defect, $\Delta m = 4.023874 \text{ u} - 4.028204 \text{ u}$		
	= - 0.00433 u	1	
	e mass defect is negative, energy is absorbed.	1/2	
Energ	gy absorbed, $E = 0.00433 \times 931.5 \text{ MeV}$	1/	2
	= 4.03 MeV	1/2	2
21			
21 F	inding distance of closest approach 2		
	$h Z c^2$		
$d_0 =$	$\frac{kZe^2}{K_p}$	1/2	
0	K_p	/2	
	$9 \times 10^9 \times 79 \times (1.6 \times 10^{-19})^2$	$\frac{1}{2} + \frac{1}{2}$	
=	$\frac{9 \times 10^9 \times 79 \times (1.6 \times 10^{-19})^2}{1.6 \times 1.6 \times 10^{-19} \times 10^6}$		
	$711 \times 10^{-16} \mathrm{m}$		
		1/2	2
=	$7.11 \times 10^{-14} \mathrm{m}$		
	SECTION - C		
22	i) Coloulating throshold wavelength		
	i) Calculating threshold wavelength 1		
	ii) Energy of incident photon1iii) Maximum kinetic energy1		
(a)	hc		
ϕ_0 =	$=\frac{hc}{\lambda_0}$	1/2	
	λ_0	/ 2	
	$_{0} = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{2.1 \times 1.6 \times 10^{-19}}$		
(i) 2		1	
(i) <i>λ</i>	$2.1 \times 1.6 \times 10^{-19}$		
	$ 2.1 \times 1.6 \times 10^{-19} $ = 5.92×10 ⁻⁷ m	1/2	

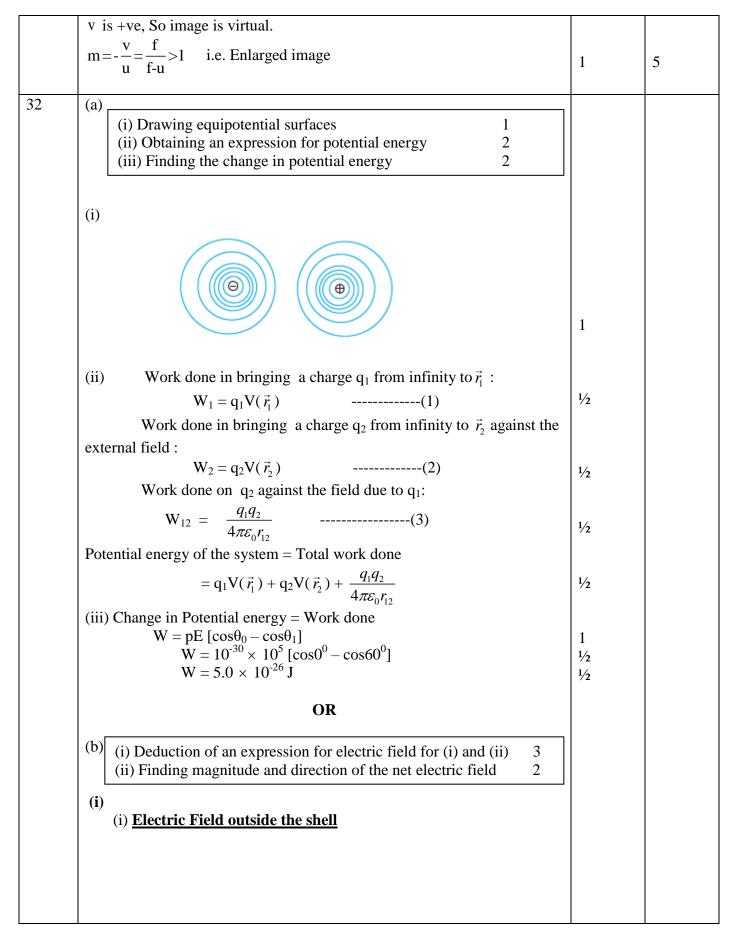

(ii) Energy of incident photon = $\frac{hc}{\lambda}$	1/2	
$=\frac{6.63\times10^{-34}\times3\times10^{8}}{150\times10^{-19}\times1.6\times10^{-19}}$		
=8.29 eV	1/2	
(iii) Using Einstein equation		
$\frac{hc}{\lambda} = \phi_0 + K_{\max}$	1/2	
$K_{\rm max} = (8.29 - 2.1) {\rm eV}$		
$=6.2\mathrm{eV}$	1/2	3
23 (a)		
23 (a) (i) Statement of Lenz's Law 1		
Justification ¹ /2		
(ii) Calculating emf induced 1 ¹ / ₂		
(a) (i) The polarity of induced emf is such that it tends to produce a		
current which opposes the change in magnetic flux that produced it. In a closed loop, when the polarity of induced emf is such that, the	1	
induced current favours the change in magnetic flux then the magnetic		
flux and consequently the current will go on increasing without any external source of energy. This violates law of conservation of energy.	1/2	
	/2	
$\varepsilon = \frac{1}{2}Bl^2\omega$	1/2	
$=\frac{1}{2} \times 2 \times (2)^2 \times (2\pi \times 60)$ $= 480\pi \text{ V}$	1/2	
$ = 480\pi V $	1/	
$=1.51\times10^{3}$ V	1/2	
OR		
(b) (i) Statement and explanation of Ampere's circuital law 1		
(i) Finding magnitude and direction of magnetic field 2		
Line integral of magnetic field over a closed loop in vacuum is equal to	1	
μ_0 times the total current passing through the loop. Alternatively	1	
$\oint \vec{B} \cdot \vec{dl} = \mu_0 I$		
The integral in this expression is over a closed loop coinciding with the		
5A boundary of the surface.		
(ii)		
p•		
IOA		

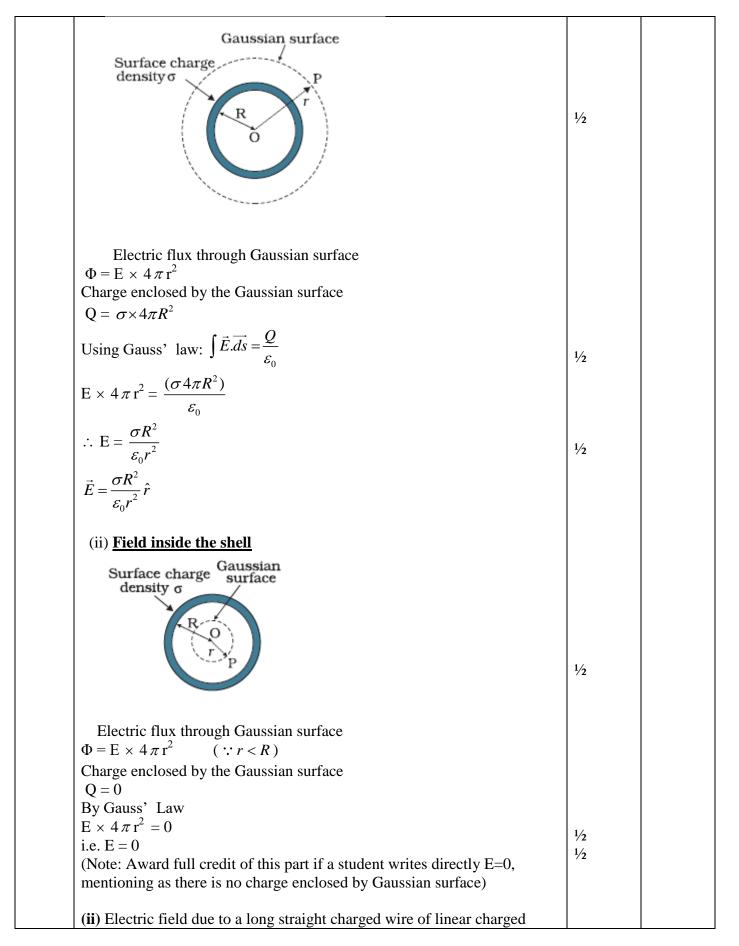
	$B = \frac{\mu_0 I}{2\pi r}$ Net magnetic field $B = B_2 - B_1$ $B = \frac{\mu_0 \times 10^2}{20\pi} [10 - 5]$ $B = \frac{4\pi \times 10^{-7} \times 10^2 \times 5}{20\pi}$ $B = 10^{-5} \text{T}$ Along the direction of magnetic field produced by the conductor carrying current 10A.	1/2 1/2 1/2 1/2	3
24	(i) Defining temperature coefficient1(ii) Showing the variation of resistivity1(iii) Finding the resistance1		
	(i) Change in resistance per unit original resistance per degree change in temperature is temperature coefficient of resistance.	1	
	(ii) $\begin{array}{c} (\text{iii}) \\ & & 0.4 \\ & & 0.2 \\ & & 0.2 \\ & & 0.50 \\ & & 100 \\ & & 150 \\ \text{Temperature } T (\text{K}) \rightarrow \end{array}$	1	
	(Note: Please do not deduct marks for not showing values on the graph) (iii) $R_2 = R_1 (\theta_2 - \theta_1) \alpha + R_1$ = 10(-73-27)×1.70×10 ⁻⁴ +10 = -0.170+10	1/2	
	$R_2 = 9.83\Omega$	1⁄2	
	Alternatively $R_1 = R_0(1 + \alpha t_1)$ $R_2 = R_0(1 + \alpha t_2)$ $\frac{R_1}{R_2} = \frac{(1 + \alpha t_1)}{(1 + \alpha t_2)}$		

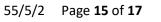


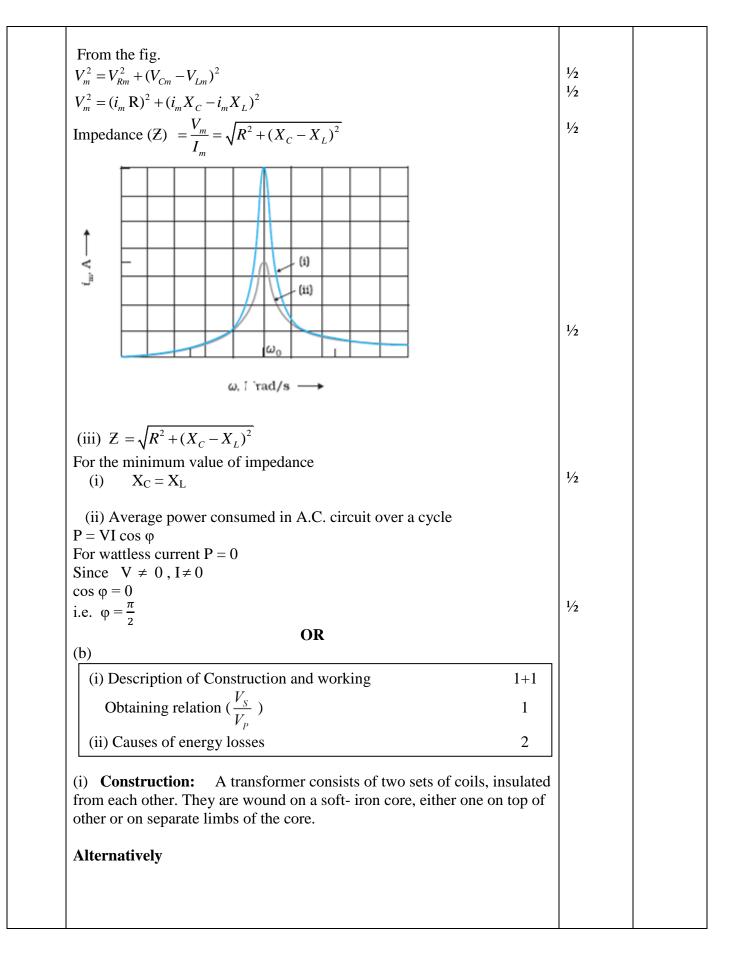
·		1	
	$R_{2} = \frac{(1 + \alpha t_{1})}{(1 + \alpha t_{2})} R_{1}$ $R_{2} = \left[\frac{1 + 1.70 \times 10^{-4} \times (-73)}{1 + 1.70 \times 10^{-4} \times 27}\right] \times 10$	1/2	
	$R_2 = \frac{0.98759}{1.00459} \times 10 \ \Omega$		
	$R_2 = 9.83 \ \Omega$	1/2	3
25	(i) Naming the e.m. wave and writing the wavelength $\frac{1}{2} + \frac{1}{2}$ (ii) Naming the e.m. wave and writing the wavelength $\frac{1}{2} + \frac{1}{2}$ (iii) Naming the e.m. wave and writing the wavelength $\frac{1}{2} + \frac{1}{2}$		
	 (i) Ultraviolet rays Order of wavelength 400 nm - 1 nm (ii) Infrared waves Order of wavelength 1 nm - 700 nm (iii) Radio waves Order of wavelength > 0.1 m 	1/2 1/2 1/2 1/2 1/2 1/2 1/2	3
26	 (a) Characteristics of p-n junction diode that makes it suitable for rectification 1 (b) Circuit diagram 1 Explanation of working of full wave rectifier 1 (a) p-n junction diode allows current to pass only when it is forward 	1	
	biased (b) Centre-Tap Transformer Diode $1(D_1)$ Centre A Tap B Diode $2(D_2)$ Y Centre the second	1	
	When input voltage to A, with respect to the centre tap at any instant is positive, at that instant voltage at B, being out of phase will be negative, diode D_1 gets forward biased and conducts while D_2 being reverse biased does not conduct. Hence during this half cycle an output current and output voltage across R_L is obtained. During second half of the cycle when voltage at A becomes negative with respect to centre tap, the voltage		

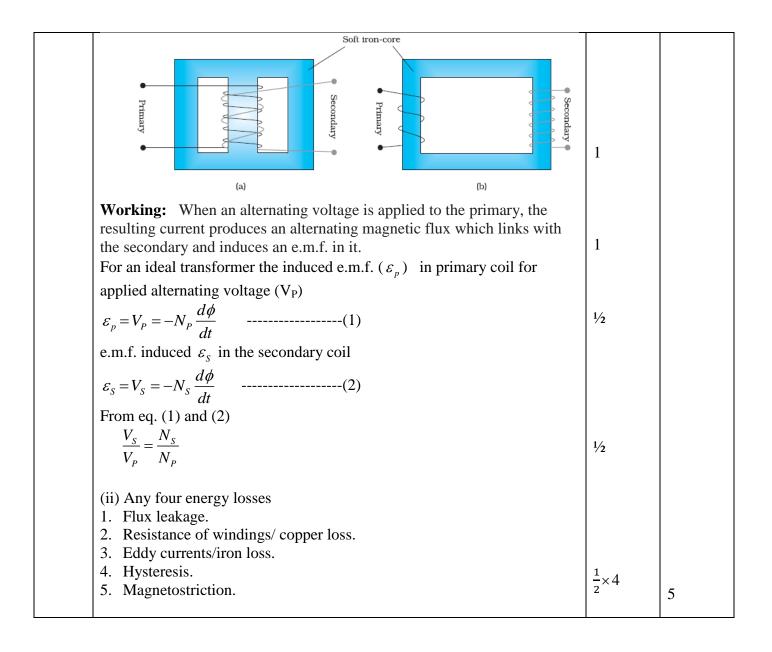



27	obtained during both halves of the cycle.	1	3
	Explanation of (a), (b) and(c) 1+1+1		
	(a) Charge of additional charge carriers is just equal and opposite to that of the ionised cores in the lattice.	1	
	(b) Under equilibrium, the diffusion current is equal to the drift current.	1	
	(c) Reverse current is limited due to concentration of minority charge carriers on either side of the junction.	1	3
28	Finding the radius of circular path1Answer for linear path1/2Calculation of linear distance covered11/2		
	Radius of circular path $r = \frac{mv_x}{eB}$ $r = \frac{9.1 \times 10^{-31} \times 1 \times 10^7}{1.6 \times 10^{-19} \times 0.5 \times 10^{-3}}$	1⁄2	
	$= 11.38 \times 10^{-2} m$ Yes, it traces a linear path too. Linear distance during period of one revolution	1/2 1/2	
	$y = \frac{2\pi m}{eB} \times v_y$	1/2	
	$=\frac{2 \times \pi \times 9.1 \times 10^{-31} \times 0.5 \times 10^{7}}{1.6 \times 10^{-19} \times 0.5 \times 10^{-3}}$	1⁄2	
	$= 0.357 \mathrm{m}$ = 0.36 m	1⁄2	3
20	SECTION - D	1	
29	(i) (C) greater than θ_2	1	
	(ii) (C) λ decreases but ν is unchanged	1	
	(iii) (a) (D) violet colour OR	1	
	(iii) (b) (C) $\mathbf{r}_R < \mathbf{r}_Y < \mathbf{r}_V$		
	(iv) (D) undergo total internal reflection	1	4
30	(i) (D) HCl	1	






55/5/2 Page 14 of 17


	density λ		
	$\mathbf{E} = \frac{\lambda}{2\pi\varepsilon_0 r}$	1/2	
	$2\pi\varepsilon_0 r$	/2	
	$ \begin{array}{c} A \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$		
	Net electric field at the mid-point		
	$\mathbf{E}_{\text{net}} = \mathbf{E}_1 + \mathbf{E}_2$		
	$=\frac{\lambda_1}{2\pi\varepsilon_0 r}+\frac{\lambda_2}{2\pi\varepsilon_0 r}$	1/2	
	$- \frac{1}{1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	/2	
	$\mathbf{E}_{\rm net} = \frac{1}{2\pi\varepsilon_0 r} \big[\lambda_1 + \lambda_2 \big]$		
	$=\frac{2\times9\times10^9}{0.5}[10+20]\times10^{-6}$		
	$= 1.08 \times 10^{6} \mathrm{NC}^{-1}$	1⁄2	
	\vec{E}_{net} is directed towards CD.	1/2	5
33	(a)		
	(i) To identify the circuit element X, Y & Z $1\frac{1}{2}$		
	(ii) To establish relation for impedance2Showing variation in current with frequency1/2		
	(iii) To obtain condition for-		
	(i) Minimum impedance ¹ / ₂		
	(ii) Wattless current ¹ / ₂		
	(i) X : Resistor	1⁄2	
	Y : real inductor (such that its reactance is equal to its resistance) /	1/	
	Inductor Z : real capacitor (such that its reactance is equal to its resistance)/	1⁄2	
	Capacitor	1/2	
	(ii) $\frac{v_{c_m}}{L} - v_{L_m}$		
	$\mathbf{v} = \mathbf{v}_c + \mathbf{v}_L$	1⁄2	

