
	MARKING SCHEME : PHYSICS (042) CODE :55/2/3		
Q.No	VALUE POINTS/EXPECTED ANSWERS	MARKS	TOTAL MARKS
	SECTION-A	Т.	I .
1.	(D) $\frac{1}{3}$	1	1
2.	(A) $\frac{\mathbf{v}_d}{2}$	1	1
3.	(B) Resistance of the coil	1	1
4.	(C) 31.4µWb	1	1
5.	(D) Magnetic Flux and Power both	1	1
6.	$(A)\frac{5\pi}{6}$	1	1
7.	(C) III	1	1
8.	(B) $8x10^{-28}$	1	1
9.	(C) P	1	1
10.	$(B) \frac{1}{\lambda_1} + \frac{1}{\lambda_2} = \frac{1}{\lambda_3}$	1	1
11.	(B) The barrier height increases and the depletion region widens.	1	1
12.	(C) $\frac{1}{K}$	1	1
13.	(A) Both Assertion(A) and Reason (R) are true and Reason(R) is the correct explanation of the Assertion (A)	1	1
14.	(C) Assertion(A) is true, but Reason (R) is false	1	1
15.	(B) Both Assertion(A) and Reason (R) are true but Reason(R) is not the correct explanation of the Assertion (A)	1	1
16.	(A) Both Assertion(A) and Reason (R) are true and Reason(R) is the correct explanation of the Assertion (A)	1	1
	SECTION- B		
17.	Deriving relation 2 $V = IR$ $El = \frac{I\rho l}{A} \qquad (V = El, R = \frac{\rho l}{A})$	1/2 1/2	
18.	$E = \frac{I}{A} \rho$ $E = \sigma \rho$	1/2	2
	Effect on energy gap and justification (i) Trivalent impurity (ii) Pentavalent impurity 1/2 + 1/2 (i) Decreases Justification: An acceptor energy level is formed just above the top of the valence band.	1/2	

	(ii) De	ecreases	1/2	
		cation: A donor level is formed just below the bottom of conduction		2
	band.	Just 601011 0 10101001	1/2	_
	Alterr	natively		
	≿. 			
	nerg	≈0.01eV E _D		
	ron	E_g		
	Electron energy	E_V E_V $\approx 0.01 - 0.05 \text{ eV}$		
	(Note	: Award the credit of justification if a student draws band diagram)		
19.	(a)	Obtaining expression for resultant intensity 2		
	$x_1 = a c$	$\cos \omega t$		
	1 -	$\cos(\omega t + \phi)$	1/2	
	$x = x_1 + x_2$			
		$s \omega t + \cos(\omega t + \phi)$		
	-a(2c)	$\cos(\omega t + \frac{\phi}{2})\cos\frac{\phi}{2}$		
			1/2	
	$=2a\cos$	$\cos\frac{\phi}{2}\cos(\omega t + \frac{\phi}{2})$	/2	
	Intens			
	I = K	(amplitude) ² where K is a constant.	1/2	
		$a\cos\frac{\phi}{2}$) ²		
	$=4I_0$ co	2	1/2	
		a^2 = intensity of each incident wave.		
	(Awai	rd full credit of this part for all other alternative correct methods) OR		
		Effect and instification		
	(b)	Effect and justification (i) Source alit moved along to plane of alits 1		
		(i) Source slit moved closer to plane of slits		
		(ii) Separation between two slits		
	(i)Sha	rpness of interference pattern decreases		
		$\frac{s}{S} < \frac{\lambda}{d}$		
	As S d	lecreases, interference patterns produced by different parts of the source	1	
	overla	p and finally fringes disappear.		
		natively		
		source slit is brought closer to the plane of the slits, the screen gets		
	ıllumı	nated uniformly and fringes disappear.		

	Alternatively Interference pattern is not formed.		
	(Note: Award full credit of this part if a student merely attempts this part.)		
	(ii) $\beta = \frac{\lambda D}{d}$	1/2	
	As d increases, β decreases and fringes disappear.	1/2	2
20.	Finding ratio of period of revolution 2		
	$T = \frac{2\pi r_n}{v_n}$	1/2	
	$r_n \alpha n^2$		
	$v_n \alpha \frac{1}{n}$	1/2	
	$T \alpha n^3$	1/2	
	$\frac{T_2}{T_1} = \frac{(n_2)^3}{(n_1)^3}$		
	$=\frac{(2)^3}{(1)^3}$		
	$(1)^3$		
	$=\frac{8}{1}$	1/2	2
21.	Finding focal length 1 ½		
	Nature of the lens ½		
	For convex lens in air		
	$\frac{1}{f_a} = \left(\frac{n_g}{n_a} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$		
	For convex lens in liquid.		
	$\frac{1}{f_l} = \left(\frac{n_g}{n_l} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1/2	
	$\begin{bmatrix} J_1 & (h_1 & J)(K_1 & K_2) \\ 1.52 - 1 \end{bmatrix}$		
	$\frac{f_l}{f_a} = \frac{1}{1.52 - 1.65}$	1/2	
	$f_a = \frac{1.52 - 1.65}{1.65}$		
	= - 6.6		
	$f_t = -6.6 f_a$	1/2	
	= -99cm Nature of the lens: Diverging/ behaves like a concave lens.	1/2	2
	SECTION- C	/ 2	
22.	(a) Explaining nature of force ½		
	Obtaining expression of force 1½		
	Defining one ampere 1		

Nature of force is repulsive.

1/2

1/2

Magnetic field due to current Ia at all points of conductor b

$$B_{ab} = \frac{\mu_0 I_a}{2\pi d}$$
 directed downwards

1/2

Force experienced by conductor b on its segment of length l $F_{ab} = I_b l B_{ab}$

$$= \frac{\mu_0 I_a I_b}{2\pi d} l$$
 directed towards left

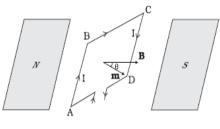
1/2

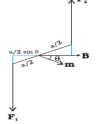
Similarly

Force experienced by conductor a on its segment of length l

$$F_{ba} = \frac{\mu_0 I_a I_b}{2\pi d} l$$
 directed towards right

_


One ampere is that steady current which when maintained in each of two very long straight parallel conductors of negligible cross-section, placed one metre apart in vacuum produces a force of $2x10^{-7}$ N/m on each conductor.


1

OR

(b)

Obtaining expression of torque	2	
Drawing diagram	1	
		, F.

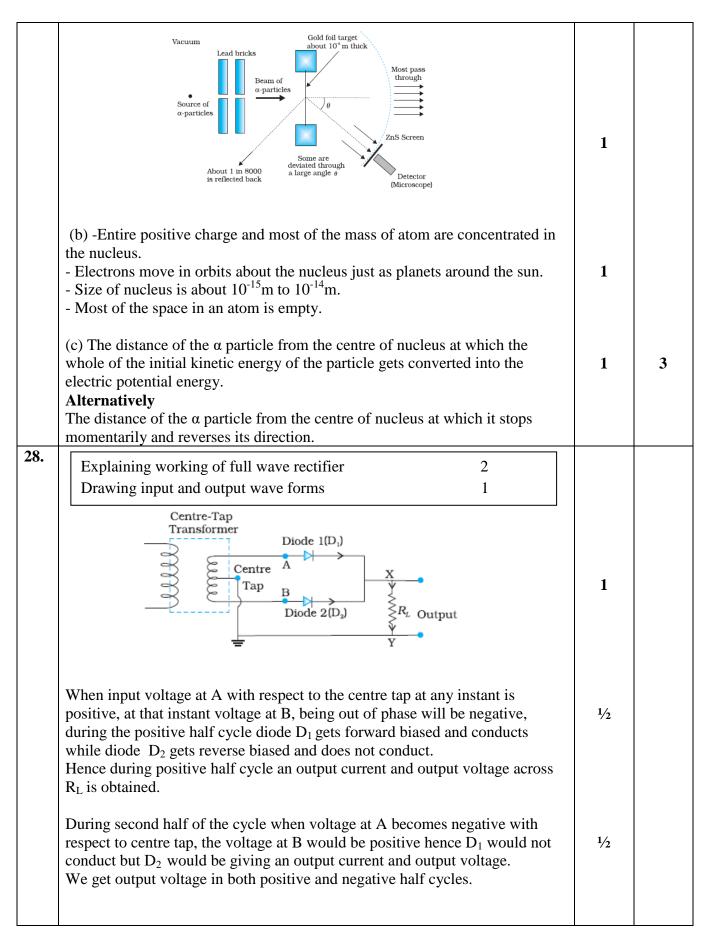
1

1/2

Forces on arm BC and DA are equal and opposite and act along the axis of the coil. Being collinear they cancel each other.

Forces on arms AB and CD are equal and opposite but not collinear. They form a couple.

$$F_1 = F_2 = IbB$$


$$\tau = F_1 \frac{a}{2} \sin \theta + F_2 \frac{a}{2} \sin \theta$$

1/2

1/2

	$\tau = IabB\sin\theta$		
	$\tau = IAB \sin \theta$ (where A = ab & m = IA)		
	$\vec{\tau} = \vec{m} \times \vec{B}$	1/2	3
23.	(a) Factors affecting speed of Electromagnetic wave 1 (b) Production of Electromagnetic wave 1 (c) Sketch of Electromagnetic wave 1		
	(a) Speed of EM waves $v = \frac{1}{\sqrt{\mu \varepsilon}}$ Speed depends upon (i) Permittivity (ε) of medium	$\frac{1}{2} + \frac{1}{2}$	
	(ii) Magnetic permeability (μ) of medium	,	
	(b) Accelerated charges or oscillating charges produce electromagnetic waves (c)	1	
	E B		
	у	1	3
24.	(a) Finding output voltage 1 (b) Finding instantaneous voltage 1 (c) Finding current 1		
	(a) $V_P(\text{rms}) = \frac{140}{\sqrt{2}} = \frac{140}{1.4} = 100V$	1/2	
	$\therefore V_s = \frac{N_s}{N_p} V_p = \frac{1000}{200} 100 = 500 V$	1/2	
	(b) $v_s = 500\sqrt{2} \sin 100 \text{ pt} = 700 \sin 100 \text{ pt}$ (c) Power Output = Power Input	1	
	$I_s = \frac{5000}{500} = 10A$	1	3
25.	Finding magnitude and direction of current in AG, BF and CD 1+1+1		

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2	
	By Kirchoff's Laws (at point B) $I_1 + I_2 = I_3 \qquad(1)$ In the closed loop AGFBA $3 + 2I_3 - 6 + 4I_2 + 2I_3 = 0$	1/2	
	$I_2 + I_3 = \frac{3}{4}$ (2) From (i) $2I_1 + I_2 = \frac{3}{4}$ (3)	1/2	
	In closed loop BFDCB $-4I_2 + 6 + 2I_1 - 6 + 2I_1=0$	1/2	
	$I_2 - I_1 = 0$ $I_2 = I_1$ (4) Putting in (3)	1/2	
	$I_1 = \frac{1}{4}A$ From (4) $I_2 = \frac{1}{4}A$		
	From (2) $I_3 = \frac{1}{2}A$	1/2	3
26.	(a) Three characteristics 1 ½ (b) Identifying more stable nucleus and reason 1 ½ (a) Characteristics of nuclear forces: 1. Saturated in nature 2. Attractive for distances larger than r_0 and repulsive for distance less than r_0		
	 3. Do not depend on nature of electric charge i.e. same for n-n, n-p and p-p pairs. 4. Much stronger than gravitational forces. (Any three) 	1½	
	(b) ${}_{4}^{8}X$ is more stable The ratio of number of neutrons to the number of protons is more in	1/2	3
27.	${}_{4}^{8}X$ than ${}_{3}^{5}Y$	1	3
21.	(a) Drawing schematic arrangement 1 (b) Explaining conclusions 1 (c) Defining distance of closest approach 1		

	Output waveform at B. Wereform at A. Control (across R.). Output waveform at B. Wereform at A. Control (across R.). Output waveform at B. Wereform at A. Control (across R.). Output waveform at B. Wereform at B. Wereform at A. Control (across R.). Output waveform at B. Wereform at B. Wereform at B. Control (across R.). Output waveform at B. Wereform at B. Wereform at B. Control (across R.). Output waveform at B. Wereform at B. Wereform at B. Control (across R.). Output waveform at B. Control (ac	1	3
29.	(i) Since no option is correct, award 1 mark to all students.(ii) (D) 800 nm	1 1	
	(iii) (b) 800 iiii (iii) (a) (A) $\frac{\sqrt{3}}{2}$	1	
	(b) (B) $\sin^{-1}\left(\frac{4}{5}\right)$	1	
	(iv) (A) $\sin^{-1} \sqrt{n^2 - 1}$	1	4
30.	(i) (B) The internal resistance of a cell decreases with the decrease in	1	
	temperature of the electrolyte. (ii) (B) 2.8 V	1	
	(iii) (A) $\varepsilon = V_+ + V > 0$	1	
	(iv) (a) (D) 0.2A OR		
	(b) (A) 1.0Ω	1	4
31.	(a)		
	(i) Two differences between interference pattern and diffraction pattern 2 (ii) Intensity distribution graph 1 (iii) Finding intensity of light 2		
	(i)		
	Interference Diffraction		
	1Bands are equally spacedBands are not equally spaced.2Intensity of bright bands is same.Intensity of maxima decreases on	1+1	
	either side of central maxima.		
	3 First maxima is at an angle λ/a First minima is at an angle λ/a		
	(ii) Imax 33 2 2 1 2 0 1 2 2 3 3 3	1	
	→ Path differnce		
	(iii) Path difference $(\Delta) = \lambda$		

2-4	1/	
$\phi = \frac{2\pi\Delta}{\lambda}$	1/2	
$\phi = 2\pi$		
$I = 4I_0 \cos^2 \frac{\phi}{2}$		
_		
$K = 4I_0 \cos^2 \pi = 4I_0$	1/2	
Path difference = $\frac{\lambda}{\epsilon}$		
$\phi = \pi / 3$		
$I = 4I_0 \cos^2 \frac{\pi}{6}$	1/2	
	72	
$=4I_0 \times \frac{3}{4}$		
$=\frac{3}{4}\mathbf{K}$	1/2	
OR	,-	
(b)		
(i) Drawing labeled ray diagram 1		
Derivation of magnifying power 2		
(iii) Finding magnifying power 2		
B' B Objective A' Eyepiece	1	
The magnification obtained by eye-piece lens $m_e = \left(1 + \frac{D}{f_e}\right)$	1/2	
The magnification obtained by objective lens $m_0 = \frac{v_0}{-u_0}$		
Hence the total magnifying power is	1/2	
$m = m_0 \times m_e$	1/2	
$=\frac{v_0}{-u_0}\left(1+\frac{D}{f_e}\right)$	1/2	
$(ii) \mathbf{m} = \left \frac{f_0}{f_e} \right $	1	
Identification of focal length of objective and eyepiece		
$f_0 = 100cm$ $f_0 = 5cm$	1/2	
$f_e = 5cm$		
$m = \left \frac{100}{5} \right = 20$	1/2	5
	72	3

(a)	(i) Obtaining expression for electric potential 3	
(42)	(ii) Finding the value of n 2	
(i)	r_1 r_2 r_3 r_4 r_5 r_6 r_7	1/2
Poter	ntial due to the dipole is the sum of potentials due to charges q and -q	
	$\frac{1}{\pi\varepsilon_0} \left(\frac{q}{r_1} - \frac{q}{r_2} \right) (1)$	1/2
	eometry $a^2 + a^2 - 2ar\cos\theta$	
$r_2^2 = r$	$a^{2} + a^{2} + 2ar \cos \theta$ $a^{2} >> a$, retaining terms only up to first order in a/r	1/2
	$r^2 \left(1 - \frac{2a\cos\theta}{r} + \frac{a^2}{r^2} \right)$	
	$1 - \frac{2a\cos\theta}{r}$	
Simil		
$r_2^2 \cong r$	$r^2\left(1+\frac{2a\cos\theta}{r}\right)$	1/2
	g the binomial theorem and retaining terms up to the first order in a/r $ \left(1 - \frac{2a\cos\theta}{r}\right)^{-1/2} $	
$\cong \frac{1}{r} \left(1 \right)$	$+\frac{a\cos\theta}{r}$ (2)	
$\frac{1}{r_2} \cong \frac{1}{r_2}$	$\left(\frac{1+2a\cos\theta}{r}\right)^{-1/2} \qquad(3)$	
•	$-\frac{a\cos\theta}{r}$	1/2
Using $V = \frac{1}{4}$	g eqn. (1) (2), (3) and p = 2qa $\frac{q}{\pi \varepsilon_0} \frac{2a \cos \theta}{r^2}$	
		17
$=\frac{p}{4\pi}$	$\overline{\imath \varepsilon_0 r^2}$ $\mathbf{P}^{(\mathbf{r}, \boldsymbol{\theta})}$	1/2
Alter	natively –	

1/2

		•	
$r_2 = r$	$+a\cos\theta$		
$r_1 = r$	$-a\cos\theta$		
17	$q \begin{pmatrix} 1 & 1 \end{pmatrix}$	1/2	
$V = \frac{1}{4}$	$rac{q}{\pi arepsilon_0} igg(rac{1}{r_1} - rac{1}{r_2}igg)$		
* 7	$q \left(\begin{array}{ccc} 1 & 1 \end{array} \right)$		
$V = -\frac{1}{2}$	$\frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r - a\cos\theta} - \frac{1}{r + a\cos\theta} \right)$	1/2	
q	$-\left(\frac{2a\cos\theta}{r^2-a^2\cos^2\theta}\right)$, 2	
$=\frac{1}{4\pi\varepsilon}$	$\sqrt{r^2-a^2\cos^2\theta}$		
		1/2	
=	$\frac{1}{1-\frac{a^2}{a^2}\cos^2\theta}$		
$4\pi\varepsilon$	$\left 1 - \frac{a^2}{3} \cos^2 \theta \right $	1/	
		1/2	
For r	>>a, neglecting $\frac{a^2}{r^2}$		
V	$\frac{P\cos\theta}{4\pi\varepsilon_0 r^2}$		
	0	1/2	
(ii) C	onsider the side of equilateral triangle as 'a'		
Poten	tial energy = U= $\frac{kq_1q_2}{q_1} + \frac{kq_2q_3}{q_2} + \frac{kq_1q_3}{q_3}$	1/2	
	a a a	, 2	
	rding to question $k(a)(2a) k(2a)(na) k(a)(na)$		
U = -	$\frac{k(q)(2q)}{a} + \frac{k(2q)(nq)}{a} + \frac{k(q)(nq)}{a} = 0$	1/2	
	$= \frac{2q^2}{1+q^2} + \frac{nq^2}{1+q^2} = 0$		
=	a a a	1/2	
	2 + 2n + n = 0	/2	
	3n = -2		
	$n=-\frac{2}{3}$	1/2	
	OR		
	(i) Statement of Gauss's Law 1		
(b)	Obtaining expression for electric field 2		
	(ii) Finding net force on electron 2		
	(ii) I maing not force on election		
(3) E1	active Flyw through a closed surface is equal to q , where q is the total		
(1) EI	ectric Flux through a closed surface is equal to $\frac{q}{\varepsilon_0}$, where q is the total		
charo	e enclosed by the surface. $\phi = \frac{q}{\varepsilon_0}$	1	
	U		
	natively		
The s	urface integral of electric field over a closed surface is $\frac{1}{\varepsilon_0}$ times the total		
	e enclosed by the surface.		
$\oint \vec{E} \cdot d\vec{s}$	$\vec{S} = \frac{q}{a}$		
	v		
(Awa	rd ½ mark for writing the formula only.)		

	-		
	Surface z charge density σ		
	y		
	E 3 E X	1/2	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	(Gaussian surface can be cylindrical also)		
	As seen from figure, only two faces 1 and 2 will contribute to the flux. Flux \vec{E} .ds through both the surfaces is equal and add up.	1/2	
	The charge enclosed by surface is σA , where σ is surface charge density		
	According to Gauss's theorem		
	$2EA = \sigma A / \varepsilon_0$	1/2	
	$E = \sigma / 2\varepsilon_0$	1/2	
	$\vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$ where \hat{n} is unit vector directed normally out of the plane		
	(ii) $\vec{E} = \frac{\lambda}{2\pi\varepsilon_0 r} \hat{r}$		
	According to question		
	E_1 (at point P) = $\frac{\lambda_1}{2\pi\varepsilon_0 r_1}$		
	$= \frac{10 \times 10^{-6}}{2\pi\varepsilon_0 (10 \times 10^{-2})} \ (-\hat{j}) \ N/C$	1/2	
	$E_2 \text{ (at point P)} = \frac{\lambda_2}{2\pi\varepsilon_0 r_2}$		
	$= \frac{20 \times 10^{-6}}{2\pi \varepsilon_0 (20 \times 10^{-2})} (-\hat{j}) \ N/C$	1/2	
	$E_{net} = \frac{10 \times 10^{-6}}{2\pi\varepsilon_0} \left(\frac{1}{0.1} + \frac{2}{0.2} \right) \ (-\hat{j}) \ N/C$		
	$=3.6\times10^6 \ (-\hat{j}) \ N/C$	1./	
	$F_{net} = q \times E_{net}$	1/2	
	$= -1.6 \times 10^{-19} \times 3.6 \times 10^{6} (-\hat{j}) N$		
	$=5.76\times10^{-13}N(\hat{j})$	1/2	5
33.			
	(a)		
	(i) Showing helical path 1 ½		
	Obtaining frequency of revolution 1 ½		
	(ii) Finding magnetic moment of electron 2		
		1	

pitch	1/2	
$\mathbf{v}_{\perp} = \mathbf{v} \sin \theta$ is perpendicular to $\vec{\mathbf{B}}$ and		
$\mathbf{v}_{\parallel} = \mathbf{v}\mathbf{cos}\boldsymbol{\theta}$ is parallel to $\vec{\mathbf{B}}$		
Due to v_{\perp} the charge describes circular path and v_{\parallel} pushes it in the direction		
of \vec{B} . Therefore under the combined effect of two components the charged particle describes helical path, as shown in the figure. The centripetal force	1	
$\frac{mv_{\perp}^{2}}{r} = B qv_{\perp}$	1/2	
$v_{\perp} = \frac{Bqr}{m} \qquad (v_{\perp} = v \sin \theta)$	1/2	
Time period = $T = \frac{2\pi r}{v_{\perp}}$ = $\frac{2\pi m}{Bq}$ frequency $v = \frac{1}{T} = \frac{Bq}{2\pi m}$	1/2	
(ii) Magnetic moment $m = I A$		
$I = \frac{e}{T} = ev$	1/2	
$I = 1.6 \times 10^{-19} \times 8 \times 10^{14}$,2	
$\pm 1.28 \times 10^{-4} A$	1/ ₂ 1/ ₂	
$M = 1.28 \times 10^{-4} \times 3.14 \times (2 \times 10^{-10})^{2}$	1/2	
$=5.12\pi \times 10^{-24} Am^2 = 1.6 \times 10^{-23} Am^2$ OR	, -	
(b) (i) Definition of current sensitivity 1		
Showing dependence of current sensitivity & explanation 1+1		
(ii) Calculation of resistance		
(i) Deflection produced per unit current is called its current sensitivity. $I_s = \frac{\theta}{I} = \frac{NBA}{K}$ Current sensitivity can be increased by	1	

(b) increasing area of coil in magnetic field	1	
(c) decreasing <i>K</i> (Torsional Constant)		
(any one)		
$V_{s} = \frac{\theta}{V} = \frac{NBA}{KR}$		
If current sensitivity is increased by increasing number of turns of the coil, the resistance of the galvanometer will also increase. Thus voltage sensitivity may not increase.	1	
(ii) $V = I_G(R+G)$		
$R = \frac{V}{I_G} - G$	1/2	
$=\frac{100}{20\times10^{-3}}-15$	1/2	
=5000-15	1/2	
$=4985\Omega$	72	
By connecting 4985Ω in series with galvanometer it is converted to voltmeter of range (0-100V)	1/2	5