	MARKING SCHEME : PHYSICS (042)		
	CODE: 55/3/3		
Q.NO.	VALUE POINT/ EXPECTED ANSWERS	MARKS	TOTAL MARKS
	SECTION A		
1.	(B) 0.1mC	1	1
2.	(B) 1.6×10^{-18} J	1	1
3.	(C) –(0.24 nT) \hat{k}	1	1
4.	(D) Sodium Chloride	1	1
5.	(B) 0.3 MB	1	1
6.	(D) 100 V	1	1
7.	(B) l is decreased and A is increased	1	1
8.	(A) +z direction and in phase with \vec{E}	1	1
9.	(B) 2	1	1
10.	$(A)\frac{\lambda}{\sqrt{2}}$	1	1
11.	(B) decreased by 87.5%	1	1
12.	(B) 0.05 eV	1	1
13.	(D) Assertion (A) is false and Reason (R) is also false.	1	1
14.	(C) Assertion (A) is true but Reason (R) is false.	1	1
15.	(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).	1	1
16.	(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the	1	1
200	correct explanation of the Assertion (A).	_	_
	SECTION B		
17	SLETIOND		
1/1	Magning of value time 1/		
	Meaning of relaxation time ⁷ / ₂		
	Derivation of R 1 ¹ / ₂		
	Average time between two successive collisions of electron in presence of	14	
	Drift velocity of an electron	72	
	$v_d = \frac{e_L}{m} \tau$ (i)	1/2	
	Current flowing through a conductor of length <i>l</i> and area of cross section A		
	$I = neAv_d$ (ii)		
	$ne^2 \Delta F \tau$ $ne^2 \Delta \tau V$	1/	
	$I = \frac{he}{he} \frac{he}{ht} = \frac{he}{ht} \frac{he}{ht}$	1/2	
	m mu		
	$R = \frac{V}{r} = \frac{m}{2}$	16	
	$I ne^{2}\tau A$	72	
	UK		
	Circuit diagram of Wheatstone bridge ¹ / ₂		
	Obtaining the condition when current flows through		
	galvanometer 1½		
	1	CO	llegeduni
	55/3/3 Page 3 of 14	U India's	largest Student Review Platf

	A T TI TI TI	1⁄2	
	By applying Kirchoff's loop rule to closed loops ADBA and CBDC $-I_1R_1 + 0 + I_2R_2 = 0$ (i) $[I_g=0]$ $I_2R_4 + 0 - I_1R_3 = 0$ (ii) From eq (i) -	1/2	
	$\frac{I_1}{I_2} = \frac{R_2}{R_1}$ From eq (ii) -	1/2	
	$\frac{I_1}{I_2} = \frac{R_4}{R_3}$ Hence,		
	$\frac{R_2}{R_1} = \frac{R_4}{R_3}$	1⁄2	2
18.	Finding the focal length of objective lens 2		
	Magnifying power =24 , Distance between lenses =150 cm $\frac{f_o}{f_e} = 24$	1/2	
	$f_o + f_e = 150 \mathrm{cm}$ $f_e = 6 \mathrm{cm}$ $f_o = 144 \mathrm{cm}$	$\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$	2
19.	Sustained or stable interference 1 Conditions for sustained interference 1 When position of maxima and minima is not changing with time, interference pattern is called sustained or stable interference.	1	
	 Light sources must be coherent 	1	2
20.	Possibility of emission of electron1Calculation of longest wavelength of emitted electron1 $E = \frac{hc}{\lambda}$		

	1240 eV nm	1/2	
	$-\frac{1}{600 nm}$		
	=2.06 eV		
	\therefore Work function $\phi_0 = 2.3 eV$		
	$\therefore E < \phi_0$ No emission will take place.	1⁄2	
	$\lambda = \frac{hc}{hc}$		
	ϕ		
	$=\frac{1240eVnm}{}$	1/2	
	2.3 eV		
	$\lambda_{\max} = 539.13 nm$	1/2	2
21.	Calculation of concentration of holes & electrons 2		
	$n n = n^2$	1/2	
	$n_{e}n_{h} n_{i}$		
	$n_h \approx 5 \times 10^{-7} m_2$		
	$n_e = \frac{n_i^2}{n_i^2}$		
	n_h		
	$n_e = \frac{(1.5 \times 10^{10})^2}{5 \times 10^{22}}$	1/2	
	5×10^{-2}	1/	
	$n_e = 4.5 \times 10^{-7} M$	$\frac{1}{2}$ $\frac{1}{2}$	2
	$n_h > n_e$, it is a p- type crystar	, -	-
	SECTION C		
22.	Calculation of		
22.	Calculation of (a) Electric field across the wire		
22.	Calculation of 1 (a) Electric field across the wire 1 (b) Current density 1		
22.	SECTION CCalculation of (a) Electric field across the wire1(b) Current density1(c) Average relaxation time (c)1		
22.	Calculation of 1 (a) Electric field across the wire 1 (b) Current density 1 (c) Average relaxation time (c) 1		
22.	SECTION CCalculation of (a) Electric field across the wire1(b) Current density1(c) Average relaxation time (c)1(a) $E = \frac{V}{l}$	1/2	
22.	SECTION C Calculation of (a) Electric field across the wire 1 (b) Current density 1 (c) Average relaxation time (c) 1 (a) $E = \frac{V}{l}$ $= \frac{1.0V}{1.0m} = 1.0 \text{ V/m}$	1/2 1/2	
22.	SECTION C Calculation of (a) Electric field across the wire 1 (b) Current density 1 (c) Average relaxation time (c) 1 (a) $E = \frac{V}{l}$ $= \frac{1.0V}{1.0m} = 1.0 \text{ V/m}$ (b) $J = \frac{l}{A}$	1/2 1/2 1/2	
22.	SECTION C Calculation of (a) Electric field across the wire 1 (b) Current density 1 (c) Average relaxation time (c) 1 (a) $E = \frac{V}{l}$ $= \frac{1.0V}{1.0m} = 1.0 \text{ V/m}$ (b) $J = \frac{l}{A}$ $L = \frac{1.6A}{l}$	1/2 1/2 1/2	
22.	SECTION C Calculation of (a) Electric field across the wire 1 (b) Current density 1 (c) Average relaxation time (c) 1 (a) $E = \frac{V}{l}$ $= \frac{1.0V}{1.0m} = 1.0 \text{ V/m}$ (b) $J = \frac{I}{A}$ $J = \frac{1.6A}{1.0 \times 10^{-7} m^2} = 1.6 \times 10^7 \text{ A/m}^2$	1/2 1/2 1/2 1/2 1/2	
22.	SECTION C Calculation of (a) Electric field across the wire 1 (b) Current density 1 (c) Average relaxation time (c) 1 (a) $E = \frac{V}{l}$ $= \frac{1.0V}{1.0m} = 1.0 \text{ V/m}$ (b) $J = \frac{I}{A}$ $J = \frac{1.6A}{1.0 \times 10^{-7} m^2} = 1.6 \times 10^7 \text{ A/m}^2$ (c) $\tau = \frac{m}{2} \frac{J}{\pi}$	1/2 1/2 1/2 1/2	
22.	SECTION C Calculation of (a) Electric field across the wire 1 (b) Current density 1 (c) Average relaxation time (c) 1 (a) $E = \frac{V}{l}$ $= \frac{1.0V}{1.0m} = 1.0 \text{ V/m}$ (b) $J = \frac{I}{A}$ $J = \frac{1.6A}{1.0 \times 10^{-7} m^2} = 1.6 \times 10^7 \text{ A/m}^2$ (c) $\tau = \frac{m}{ne^2} \frac{J}{E}$	1/2 1/2 1/2 1/2 1/2	
22.	SECTION C Calculation of (a) Electric field across the wire 1 (b) Current density 1 (c) Average relaxation time (c) 1 (a) $E = \frac{V}{l}$ $= \frac{1.0V}{l.0m} = 1.0 \text{ V/m}$ (b) $J = \frac{I}{A}$ $J = \frac{1.6A}{1.0 \times 10^{-7} m^2} = 1.6 \times 10^7 \text{ A/m}^2$ (c) $\tau = \frac{m}{ne^2} \frac{J}{E}$ $= \frac{9.1 \times 10^{-31} \times 1 \times 1.6}{2 \times 10^{210} (1.5 \times 10^{-10})^2}$	1/2 1/2 1/2 1/2 1/2	
22.	SECTION C Calculation of (a) Electric field across the wire 1 (b) Current density 1 (c) Average relaxation time (c) 1 (a) $E = \frac{V}{l}$ $= \frac{1.0V}{1.0m} = 1.0 \text{ V/m}$ (b) $J = \frac{I}{A}$ $J = \frac{1.6A}{1.0 \times 10^{-7} m^2} = 1.6 \times 10^7 \text{ A/m}^2$ (c) $\tau = \frac{m}{ne^2} \frac{J}{E}$ $= \frac{9.1 \times 10^{-31} \times 1 \times 1.6}{9 \times 10^{28} \times (1.6 \times 10^{-19})^2}$	1/2 1/2 1/2 1/2 1/2	
22.	SECTION C Calculation of (a) Electric field across the wire 1 (b) Current density 1 (c) Average relaxation time (c) 1 (a) $E = \frac{V}{l}$ $= \frac{1.0V}{1.0m} = 1.0 \text{ V/m}$ (b) $J = \frac{I}{A}$ $J = \frac{1.6A}{1.0 \times 10^{-7} m^2} = 1.6 \times 10^7 \text{ A/m}^2$ (c) $\tau = \frac{m}{ne^2} \frac{J}{E}$ $= \frac{9.1 \times 10^{-31} \times 1 \times 1.6}{9 \times 10^{28} \times (1.6 \times 10^{-19})^2}$ $= 6.31 \times 10^{-14} \text{ s}$	1/2 1/2 1/2 1/2 1/2 1/2	3
22.	SECTION C Calculation of (a) Electric field across the wire 1 (b) Current density 1 (c) Average relaxation time (c) 1 (a) $E = \frac{V}{l}$ $= \frac{1.0V}{1.0m} = 1.0 \text{ V/m}$ (b) $J = \frac{I}{A}$ $J = \frac{1.6A}{1.0 \times 10^{-7} m^2} = 1.6 \times 10^7 \text{ A/m}^2$ (c) $\tau = \frac{m}{ne^2} \frac{J}{E}$ $= \frac{9.1 \times 10^{-31} \times 1 \times 1.6}{9 \times 10^{28} \times (1.6 \times 10^{-19})^2}$ $= 6.31 \times 10^{-14} \text{ s}$	1/2 1/2 1/2 1/2 1/2 1/2	3

23.	Derivation of magnetic dipole moment $2\frac{1}{2}$		
	Gyromagnetic ratio1/2		
	Electron revolve around the nucleus constitute a current		
	$I = \frac{e}{T}$	1/2	
	$T = \frac{2\pi r}{r}$		
	V ev	1/2	
	$I = \frac{cv}{2\pi r}$, -	
	Magnetic moment, M =I.A		
	$\mu_l = \frac{e v \pi r}{2\pi r}$	1/2	
	$u_{\rm c} = \frac{evr}{evr}$		
	$ \begin{array}{c} 2 \\ (L = mvr) \end{array} $	1/2	
	Since electron has negative charge, μ_l is opposite in direction of an electron of angular momentum L.		
	$\vec{\mu}_l = -\frac{e}{2m}\vec{L}$	1/2	
	Gyromagnetic ratio - The ratio of magnetic moment to angular momentum is called gyromagnetic ratio.		
	That is, $\frac{\mu_e}{L} = \frac{e}{2m}$	1/2	3
	[Note- give half mark of gyromagnetic ratio to each student, if it is not attempted]]		
24.	Proof of induced charge 3		
	Using Faraday's law of electromagnetic induction		
	$ \varepsilon = \frac{\Delta \phi}{\Delta t}$	1/2	
	$ \varepsilon ^{\Delta t}$	1/	
	$I = \frac{1}{R}$	1/2	
	$I = \frac{1}{R} \left(\frac{\Delta \phi}{\Delta t} \right)$	1/2	
	$\frac{\Delta Q}{\Delta t} = \frac{1}{R} \left(\frac{\Delta \phi}{\Delta t} \right)$	1/2	
	$\triangle Q = \frac{\triangle \phi}{R}$	1/2	
	Hence induced charge depends on change in magnetic flux, not on the time interval of flux change.	1/2	3
25.	(a) Finding the wavelength and frequency 1+1		
	(b) Finding the amplitude of magnetic field $\frac{1}{2}$		
	(c) Writing expression for magnetic field $\frac{1}{2}$		
I	55/3/3 Page 6 of 14	CO India's	llegedunia

	(a) $k = \frac{2\pi}{\lambda}$	1/2		
l	$\lambda = \frac{2\pi}{K} = \frac{4\pi}{2} m = 4.18 m$	1/2		
	$ \begin{array}{ccc} K & 3 \\ \omega = 2\pi\nu \end{array} $			
	$v = \frac{\omega}{2\pi} = \frac{4.5 \times 10^8}{2\pi}$ Hz	1/2		
	$v = \frac{9}{10^8} \times 10^8 \mathrm{Hz}$	14		
	4π v=7.16×10 ⁻¹ Hz	-/2		
	(b) $B_0 = \frac{E_0}{2}$			
	$B_0 = \frac{6.3}{3 \times 10^8} = 2.1 \times 10^{-8} \mathrm{T}$	1/2		
	(c) $\vec{B} = 2.1 \times 10^{-8} [(\cos 1.5 \text{ rad/m}) \text{ y} + (4.5 \times 10^8 \text{ rad/s}) \text{ t}] \hat{\text{k}} \text{ T}$	1/2	3	
26.	Statement of Bohr's second postulates 1/2			
	Derivation of $r_n \alpha n^2$ $2\frac{1}{2}$			
	Bohr's second postulate Electron revolves around the nucleus only in those orbits for which the	1/2		
	angular momentum in some integral multiple of $h/2\pi$. Electrostatic force between revolving electron & nucleus provide requisi	ite		
	centripetal force $my^2 = 1 - a^2$			
	$\frac{mv_n}{r_n} = \frac{1}{4\pi\varepsilon_0} \frac{\varepsilon}{r_n^2}$	1/2		
	$v_n = \frac{e}{\sqrt{4\pi c mr}} $ (i)	16		
	$\int \frac{1}{\sqrt{2\pi}} $	72		
	From eqn. (i) and (ii)	1/2		
	$r = \left(\frac{n^2}{2}\right) \left(\frac{h}{2}\right)^2 \frac{4\pi\varepsilon_0}{2}$	1/2		
	$n (m)(2\pi) e^2$	1/2	3	
27.	$I_n \propto n$			-
	(a) Definition of Atomic mass unit (u)1(b) Calculation of energy required2			
	(a) Atomic mass unit (u) is defined as $1/12^{\text{th}}$ of the mass of the carbon $\binom{12}{2}$ atom	1		
	(b) $m(_1H^2) \rightarrow m(_1H^1) + m(_0n^1)$	1/		
	$Q = (m_R - m_P) \times 931.5 MeV$	+/2		
L	55/3/3 Page 7 of 1	4		lia

	(ii)	solution consistent in the second se	1	
	(iii)	E_{v} E_{c} E_{c	1	3
		SECTION D		
29.	(i) (E) IV	1	
	(ii) (l (iii) ((iv) (D) accelerate along $-\hat{i}$ A) V= V ₀ + α x a) (C) E ₄ > E ₃ > E ₂ > E ₁	1 1	
		DR b) (B) 2 6×10^6 m/s	1	4
30.	(i) (E	0) 6 7) 3	1	
	(iii) (a) (C)6	1	
		OR (1) (D) $\sin^{-1}(0.225)$	1	
	(iv) ($\begin{array}{c} (b) (B) \sin (0.225) \\ (b) 10 \end{array}$	1	4
		SECTION E		
31.	(a)	(i) Obtaining expression for the capacitance3(ii) Finding the electric potential2(i) at the surface2(ii) at the centre3		
	When induce the p Elect	n a dielectric slab is inserted between the plates of capacitance there is eed charge density σ_P which opposes the original charge density (σ) on late of capacitance. ric field with dielectric medium is	1⁄2	
	<i>E</i> =	$=\frac{(\sigma-\sigma_P)}{\sigma}$	1/2	
	V=	$\mathbf{E} \times \mathbf{d} = \frac{(\sigma - \sigma_P)}{\varepsilon_0} d$	1/2	
	(σ	$(-\sigma_P) = \frac{\sigma}{\kappa}$	1/2	
	V=	$\frac{\sigma d}{\varepsilon_0 K} = \frac{Qd}{A\varepsilon_0 K}$	1/2	
	C =	$= \frac{Q}{V} = \frac{K\varepsilon_0 A}{d}$	1/2	
		55/3/3 Page 9 of 14	CO India	Slargest Student Review Platfo

	Electric flux through Gaussian surface		
	$E \times 4\pi r^2 = \frac{(\sigma 4\pi R^2)}{2}$	1/2	
	ε_0		
	Charge enclosed by the Gaussian surface $(\pi 4\pi P^2)$		
	$E \times 4\pi r^2 = \frac{(64\pi R^2)}{\epsilon_0}$		
	Using Gauss's law:		
	$\int \vec{E} \cdot \vec{ds} = \frac{Q}{2}$	1/2	
	$ \sum_{\epsilon_0} \varepsilon_0 $		
	$E \times 4\pi r^2 = \frac{\varepsilon_0}{\varepsilon_0}$		
	$E = \frac{\sigma}{r} \frac{R^2}{r^2} = \frac{q}{r}$	14	
	$\varepsilon_0 r^2 = 4\pi\varepsilon_0 r^2$	-/2	
	(ii) For conducting sheet.		
	Electric field due to a conducting sheet		
	$E_c = \frac{\sigma}{c}$	1⁄2	
	Surface		
	z charge density σ		
	For non-conducting sheet		
	$E_{nc} = \frac{\sigma}{c}$	1/2	
	Since surface charge density is same	1/2	
	$2E_{nc} = E_c$	1/2	5
32.			
	(a) (i)(1) Meaning of current sensitivity, mentioning factors 2		
	(2) Finding the required resistance $1\frac{1}{2}$		
	(ii) Finding the induced current $1\frac{1}{2}$		
	(i) (1) Current sensitivity of galvanometer is defined as the deflection per		
	unit current.	1	
	Alternatively,		
	$\frac{\phi}{I} = \frac{NBA}{K}$		
	Factors		
	Number of turns in coil, Magnetic field intensity, Area of coil, Torsional	1/2+1/2	
	Constant (Any two)		
	(2) $P = V$ C for (0 V) Perce		
	$ (2) \ \kappa = \frac{1}{I} - G \qquad \text{for } (0-V) \ \text{Kange} $	1/2	
	$R_1 = \frac{v}{2l} - G \qquad \text{for } (0 - \frac{v}{2}) \text{ Range}$	1/2	
	$\frac{V}{I} = R + G$	72	
	$R_1 = \left(\frac{R+G}{R}\right) - G$		
_		CO	llegedunia
	55/3/3 Page 11 of 14	India's	largest Student Review Platform

India's largest Stud

$tan \theta = \frac{1}{\sqrt{2}}$	14
From the triangle GEF	72
$\sin\theta = \frac{1}{\sqrt{2}}$	
$\sqrt{3}$	1/2
$\mu = \sqrt{\frac{3}{2}}$	
OR	
(b) (i) Expression for resultant intensity	3
(ii) Ratio of intensities	2
(i) $y_1 = a \cos \omega t$	
$y_2 = a \cos(\omega t + \phi)$	
According to the principle of superposition	
$y = y_1 + y_2$	1/2
$y = a\cos\omega t + a\cos(\omega t + \phi)$	72
$y = a\cos\omega t + a\cos\omega t\cos\phi - a\sin\omega t\sin\phi$	1/2
$y = a\cos\omega t(1 + \cos\phi) - a\sin\phi\sin\omega t$	/-
Let, $a(1 + \cos \phi) = 4\cos \theta$ (i)	
$a(1 + \cos \varphi) = A\cos \theta \qquad $	
Squaring and adding equation (i) and (ii)	1/2
$A^2 = a^2 (1 + \cos \phi)^2 + a^2 \sin^2 \phi$	
$n = u (1 + \cos \varphi) + u \sin \varphi$	
$= a^2(1 + \cos^2\phi + 2\cos\phi) + a^2\sin^2\phi$	
$= 2a^2(1 + \cos\phi)$	
$=4a^2\cos^2\phi/2$	1/2
$I\alpha A^2$	
$I = kA^2$	1/2
where k is constant	
$I = 4ka^2 \cos^2 \phi / 2$	$\frac{1}{2}$
[Award full credit for this part for any other alternativ	ve methods]
$(ii) \phi_1 = \frac{2\pi}{2} \times \frac{\lambda}{2} = \pi/3$	1/2
$\begin{array}{c} (11) & 1 & \lambda & 6 \\ I & -AL \cos^2 \phi & /2 \end{array}$	
$H_1 = H_0 \cos \frac{\psi}{2}$ = $4I_0 \cos^2(\pi/6)$	
$I_1 = 3I_0$	14
$\phi_{2} = \frac{2\pi}{\lambda} \times \frac{\lambda}{\lambda} = \pi/6$	72
$ \begin{array}{c} \chi^{2} & \lambda & 12 \\ I & - \Lambda I & \cos^{2}(\pi/12) \end{array} $	1/2
$I_2 = 4I_0 \cos(\pi/12)$ $I_1 = AI_1 \cos^2 15^0$	/2
$I_2 = 4I_0 \cos 15$	
$\frac{1}{I_2} = \frac{1}{4\cos^2 15^0}$	1/2

