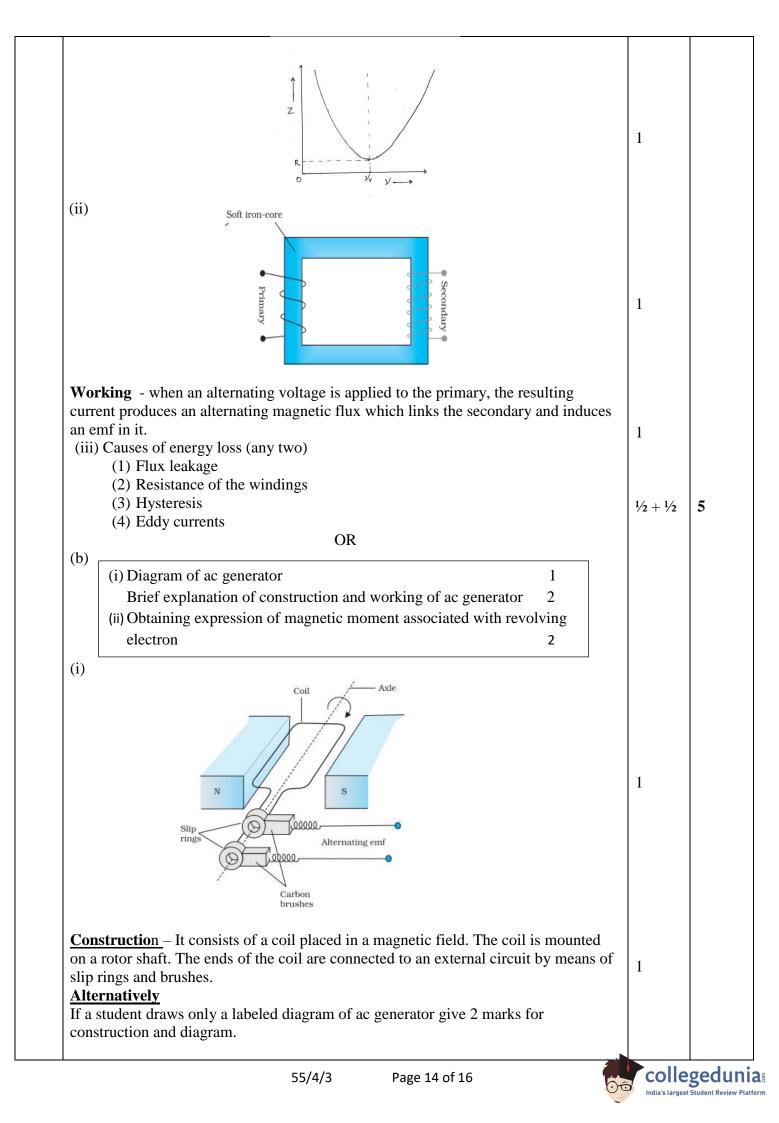


Q.NO	CODE : 55/4/3 VALUE POINTS/EXPECTED ANSWERS	MARKS	TOTAL
Q.110		WI INIS	MARKS
1	SECTION - A	1	1
1	(A) 2 pE	1	1
2	(B) Repulsive and $\frac{q\lambda}{2\pi\epsilon_0 x}$	1	1
3	(A)Zero.	1	1
4	(D) Closer together and weaker in intensity.	1	1
5	No option is correct, award 1 mark.	1	1
6	No option is correct, award 1 mark.	1	1
7	(A)R	1	1
8	(B) 1mA	1	1
9	$(C) \frac{1}{\sqrt{2}} \sqrt{(i_1^2 + i_2^2)}$	1	1
10	(A) There is a minimum frequency of incident radiation below which no electrons are emitted.	1	1
11	(A) Small and negative.	1	1
12	(C) $r_n \alpha n^2$	1	1
13	(A) Both assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion(A).	1	1
14	(C) Assertion (A) is true and Reason (R) is false.	1	1
15	(B) Both assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion(A).	1	1
16	(D) Both Assertion (A) and Reason (R) are false.	1	1
10	SECTION – B	-	-
17	(a) Finding nature and position of image 2 Using refraction formula at spherical surface from denser to rarer medium n_1 = refractive index of rarer medium		
	$n_2 =$ refractive index of denser medium $n_1 n_2 n_1 - n_2$	1/2	
	$\frac{n_1}{v} - \frac{n_2}{u} = \frac{n_1 - n_2}{R}$ $u = -20 \text{ cm}$, R= -40 cm, $n_1 = 1$, $n_2 = 1.5$ $\frac{1}{v} - \frac{1.5}{(-20)} = \frac{1 - 1.5}{(-40)}$ v = -16 cm Nature of image is virtual.	1/2 1/2 1/2	2
	OR		
	(b) Finding the focal lengths of the objective and eyepiece 2		
	Distance between objective and eyepiece fo + fe = 1.00 m = 100 cm Magnifying power	1⁄2	
	$ m = \frac{\text{fo}}{\text{fe}} = 19$	1⁄2	
	On solving fo = 95 cm = 0.95 m	1/2	
	fe = 5 cm = 0.05 m	1/2	

	Finding $\frac{V_p}{V_d}$ 2		
De	Broglie wavelength of proton $\lambda_{p} = \frac{h}{\sqrt{2meV_{p}}}$	1⁄2	
De	Broglie wavelength of deutron $\lambda_{d} = \frac{h}{\sqrt{2(2m)eV_{d}}}$	1⁄2	
	$\frac{\lambda_{\rm p}}{\lambda_{\rm d}} = \frac{1}{2} = \frac{\sqrt{2(2m)eV_{\rm d}}}{\sqrt{2meV_{\rm p}}}$	1⁄2	
On	solving $\frac{V_p}{V_d} = 8$	1⁄2	2
	Finding refractive index of the medium2		
	60	1/2	
Fro	m snell's law, μ .sin i = μ_m .sin r	1/2	
	$\mu.\sin 60^{\circ} = \mu_m.\sin 90^{\circ}$	1/2	
	$\mu_{\rm m} = \mu \cdot \frac{\sqrt{3}}{2}$	1/2	2
	ernatively 1	1	
	$\mu_{ga} = \frac{1}{\sin C}$ $\frac{\mu}{\mu_m} = \frac{1}{\sin 60^0}$	1/2	
	$\mu_m = \frac{\sqrt{3}}{2}\mu$	1⁄2	
	Finding temperature of conductor 2		
	$R_2 = R_1 + 25\%$ of $R_1 = 1.25R_1$ nperature coefficient of resistance	1/2	
	$\alpha = \frac{\mathbf{R}_2 - \mathbf{R}_1}{\mathbf{R}_1 \cdot \Delta \mathbf{T}}$	1/2	
	$T_2 - 27 = \frac{1.25R_1 - R_1}{R_1 \times 2 \times 10^{-4}}$	1/2	
	$\mathbf{R}_{1} \times 2 \times 10^{-4}$ $\mathbf{T}_{2} = 1277 \ ^{0}\mathbf{C}$	1/2	2

charge.		
$1 q'_{A} - 1 q'_{B}$	1/2	
$\frac{1}{4\pi\varepsilon_0}\frac{\mathbf{q}_{\mathrm{A}}}{\mathrm{R}} = \frac{1}{4\pi\varepsilon_0}\frac{\mathbf{q}_{\mathrm{B}}}{2\mathrm{R}}$		
$q'_{B} = 2q'_{A}$		
From conservation of charge		
$\mathbf{q}_{\mathrm{A}} + \mathbf{q}_{\mathrm{B}} = \mathbf{q}_{\mathrm{A}} + \mathbf{q}_{\mathrm{B}}$	1/2	
$4\pi R^2 \sigma + 16\pi R^2 \sigma = 3q'_A$		
	• /	
$q'_{\rm A} = \frac{20\pi R^2 \sigma}{3}$	1⁄2	
Final potential of Shell A		
$\mathbf{V}_{\mathbf{A}} = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{q}_{\mathbf{A}}}{\mathbf{R}}$		
$V_{A} = \frac{1}{4\pi\varepsilon_{0}} \frac{20\pi R^{2}\sigma}{3R}$		
	1/2	
$V_A = \frac{5\sigma R}{3\epsilon_0}$	12	3
Alternatively		
Charge on spherical shell A		
$q_A = 4\pi R^2 \sigma$	1/2	
Charge on spherical shell B		
$q_{\rm B} = 4\pi (2R)^2 \sigma = 16\pi R^2 \sigma$	1/2	
After connecting by a wire, their potential will become equal after sharing of charges	/ _	
Therefore the potential of shell A	1⁄2	
$\mathbf{V}_{\mathrm{A}} = \mathbf{V}_{\mathrm{common}} = \frac{\mathbf{q}_{\mathrm{A}} + \mathbf{q}_{\mathrm{B}}}{\mathbf{C}_{\mathrm{A}} + \mathbf{C}_{\mathrm{B}}}$	1/2	
$-4\pi R^2 \sigma + 16\pi R^2 \sigma$	1/	
$= \frac{1}{4\pi\varepsilon_0 R + 4\pi\varepsilon_0 (2R)}$	1/2	
$-\frac{5\sigma R}{2}$		
$-\frac{1}{3\varepsilon_0}$	1⁄2	
Drawing graph showing variation of scattered particles detected (N) with		
scattering angle(θ) 1		
Two conclusions 1		
Obtaining expression for the distance of closest approach 1		
e e e e e e e e e e e e e e e e e e e		
scattered particles detected		
	1	
Number of	1	
2 0 Scattering angle θ (in degree)		
security where a fire address		egedu

Two conclusions		
(i) Most of an atom is empty space.(ii) Almost entire mass and entire positive charge is concentrated in a very small	1/2	
region called nucleus. At distance of closest approach	1⁄2	
$E_{k} = E_{P}$ $K = \frac{1}{4\pi\varepsilon_{0}} \frac{(Ze).(2e)}{d}$	1/2	
$d = \frac{1}{4\pi\varepsilon_0} \frac{(2Ze^2)}{K}$	1/2	3
25 (i) Calculating effective resistance 2 (ii) Calculating power supplied by battery 1		
	1/2	
i) $R_{ABC} = 10+10 = 20\Omega$		
Equivalent resistance across AC	1/	
$R_{AC} = \frac{20 \times 20}{20 + 20} = 10\Omega$	1/2	
Equivalent resistance across AD		
$R_{AD} = \frac{20 \times 20}{20 + 20} = 10 \ \Omega$	1/2	
Equivalent resistance across AM		
$R_{AM} = \frac{20 \times 30}{20 + 30} = 12 \Omega$	1/2	
ii) Net resistance of circuit		
$R_{net} = 12 + 10 + 8 = 30 \Omega$	1/2	
Power supplied		
$P = \frac{V^2}{R_{net}}$		
$= \frac{\left(6\right)^2}{30}$		
30 = 1.2 W	1/2	3
-1.2 W	, -	
Alternatively		
Net resistance of circuit		
$R_{net} = 12 + 10 + 8 = 30 \Omega$	1⁄2	
$I = \frac{\varepsilon}{R_{net}}$		
$= \frac{6}{30}$		
= 0.2 A		
55/4/3 Page 8 of 16	.)	legeduni


	Power supplied		
	P = VI		
	= 6×0.2		
	=1.2 W	1⁄2	
,	Finding magnitude of force2 1/2Finding direction of force1/2		
	Magnetic field at P due to infinite straight conductor carrying current	1/	
	$\vec{\mathbf{B}} = \frac{\mu_0 I}{2\pi r} \hat{k}$	1⁄2	
	Force on charge q in this magnetic field	1/	
	$\vec{\mathbf{F}} = \mathbf{q}(\vec{\mathbf{v}} \times \vec{\mathbf{B}})$	1⁄2	
	$\vec{\mathbf{F}} = \mathbf{q} \left[(\mathbf{v}_0 \ \hat{\mathbf{j}}) \times \left(\frac{\boldsymbol{\mu}_0 \mathbf{I}}{2\pi \mathbf{r}} \right) \hat{k} \right]$	1⁄2	
	$\vec{\mathbf{F}} = \frac{\mu_0 q \mathbf{v}_0 \mathbf{I}}{2\pi r} \hat{\mathbf{i}}$	1⁄2	
	The magnitude of force $F = \frac{\mu_0 q v_0 I}{2\pi r}$	1⁄2	
	$2\pi r$ The direction of force on charge is along +ve X-axis.	1⁄2	3
	Reasons fori) Difference in mode of interaction of electromagnetic wave with matter 1ii) Containing water in food items to be heated in microwave1iii) Wearing facemask with glasses by welders during welding1		
	(i) Since they have different wavelenghts and frequencies, they differ considerably in their mode of interaction with matter.	1	
	(ii) Frequency of microwave matches with the resonant frequency of water		
	molecules so that energy from wave is transferred to water molecules.	1	
	(iii) To protect their eyes from large amount of ultraviolet rays produced by	1	
	welding arcs.	1	3
	(a) Difference between nuclear fission and fusion(1)(b) Calculating energy released in fission(2)		
	(a) In nuclear fission, a heavy nucleus splits into two or more lighter nuclei and energy is released.	1/2	
	In nuclear fusion, lighter nuclei combine together a form a heavy nucleus and larger amount of energy is released. (b) Number of atoms in 1 g of ₉₄ Pu ²³⁹	1⁄2	
	$=\frac{6.023\times10^{23}}{239}$	1	
	$= 2.5 \times 10^{21}$		
	55/4/3 Page 9 of 16		oroduu

	Energy released in fission of 1 g of $_{94}Pu^{239}$,		
	$E = 180 \text{MeV} \times 2.5 \times 10^{21}$		
	$E = 4.5 \times 10^{23} \text{ MeV}$	1	3
29	SECTION - D		
	 (i) (B) 0.01 eV (ii) (D) 5×10²² m⁻³ (iii) (a) (C) Electrons diffuse from n-region into p-region and holes diffuse from p-region to n-region. OR 	1 1 1	
	(b) (A) Diffusion current is large and drift current is small.		
	(iv) (D) 50 Hz , 100 Hz.	1	4
30	(i) (B) $\frac{-5}{3}D$ (ii) (C) $\frac{3}{2}$	1	
	(ii) (C) $\frac{3}{2}$ (iii) (A) increases when a lens is dipped in water.	1 1	
	(iv) (a) (B) 10 cm, right from lens. (b) (A) real, 24 cm	1	4
	(0) (A) leaf, 24 cm		
31	a)		
51	(i) Obtaining expression for capacitance 3 (ii) Finding capacitance of capacitors 2		
	a) (i) Electric field in air between plates $E_0 = \frac{\sigma}{\varepsilon_0}$	1⁄2	
	Electric field inside the dielectric $E = \frac{\sigma}{\varepsilon_0 K}$ $= \frac{\sigma}{\omega_0 K}$	1⁄2	
	Potential difference between the plates $V=E_0(d-t)+Et$	1⁄2	
	$V = \frac{\sigma}{\varepsilon_0} \left[d - t + \frac{t}{K} \right]$ $V = \frac{q}{\varepsilon_0} \left[1 + \frac{t}{K} \right]$		
	$V = \frac{q}{A\varepsilon_0} \left[d - t + \frac{t}{K} \right]$ Capacitance	1⁄2	
	$C = \frac{q}{V}$	1⁄2	
	$C = \frac{q}{V}$ $C = \frac{A\varepsilon_0}{d - t + \frac{t}{K}}$		
	55/4/3 Page 10 of 16		legedur

$C = \frac{As_n}{1 - (1 - \frac{1}{K})}$ $i) Tonal energy stored in series combination \frac{1}{2} \left(\frac{C}{C_1} + \frac{C}{C_2} \right) V^2 = 40 \times 10^4 \text{ J} \dots $			
ii) Total energy stored in series combination $\frac{1}{2} \left(\frac{C_{c}}{C_{c}+C_{c}} \right) V^{2} = 40 \times 10^{3} \text{ J} \dots (1)$ Energy stored in parallel combination $\frac{1}{2} (C_{c}+C_{c}) V^{2} = 250 \times 10^{3} \text{ J} \dots (2)$ Substituting value of V=100 V in eq (1) and (2), on solving $C_{1} = 4 \times 10^{3} \text{ F or } 10 \mu\text{F}$ C ₃ = 1×10 ³ F or 10 μ F OR i) Showing electric field at a point due to a uniformly charged infinite plane sheet i) Calculating (1) electric flux through the cube 1 (2) charge enclosed by cube 1 () $\psi = \frac{1}{2EA}$ From Gauss's law $\oint \vec{E}.ds = \frac{\sigma}{k_{0}}$ $E = \frac{\sigma}{2k_{0}}$ Vectorially $\vec{E} = \frac{\sigma}{2k_{0}}$ ii) (1) Electric flux through the sheet. (ii) (1) Electric flux through the cube $\psi = \phi + \phi$, $\psi = \int \vec{E}_{a}.ds + \int \vec{E}_{a}.ds$ $= -2 \times 10^{4} \text{ Nm}^{2}C^{4}$ Vactorially $\vec{E} = \frac{\sigma}{2k_{0}}$ if $\vec{E} = -\frac{\sigma}{2k_{0}}$ if $\vec{E} $	$C = \frac{A\varepsilon_0}{d - t\left(1 - \frac{1}{2}\right)}$	1/2	
$\frac{1}{2} \left(\frac{CC}{C_{1}+C_{2}} \right) \sqrt{3} = 40 \times 10^{3} \text{ J} \dots (1)$ Energy stored in parallel combination $\frac{1}{2} (C_{1}+C_{2}) \sqrt{2} = 250 \times 10^{3} \text{ J} \dots (2)$ Substituting value of V=100 V in eq (1) and (2), on solving $C_{1} = 4 \times 10^{3} \text{ F or } 10 \mu \text{F}$ C_{2} = 1 \times 10^{3} \text{ F or } 10 \mu \text{F} or i) Showing electric field at a point due to a uniformly charged infinite plane sheet 3 ii) Calculating (1) electric field that a point due to a uniformly (2) charge enclosed by cube 1 i) $\frac{\int \vec{E} \cdot d\vec{s} = \int_{1}^{\vec{E}} \cdot d\vec{s} + \int_{2}^{\vec{E}} \cdot d\vec{s}$ = 2EA From Gauss's law $\oint \vec{E} \cdot d\vec{s} = \frac{\sigma}{z_{c_{0}}}$ Vectorially $\vec{E} = \frac{\sigma}{2z_{c_{0}}}$ Electric field is normally outward of the sheet. (ii) (1) Electric flux through the cube $\oint = \frac{1}{2} \cdot \frac{1}{c_{1}} \cdot d\vec{s} + \int \vec{E} \cdot d\vec{s}$ = 2E/A $\frac{\sigma A}{z_{0}}$ Electric field is normally outward of the sheet. (iii) (1) Electric flux through the cube $\oint = \frac{1}{2} \cdot \frac{1}{c_{1}} \cdot d\vec{s} + \int \vec{E} \cdot d\vec{s}$ = $-2 \times 10^{\circ} \times 10^{\circ} \cdot 1^{\circ} + (5 \times (10 \times 10^{\circ})^{2})^{2} + 2] \times 100 \times 10^{-4}$ $\oint = 5 \times 10^{\circ} \times 10^{\circ} \cdot 1^{\circ}$ (2) Electric field is normally outward of the sheet. (3) (4) Electric field is normally outward of the sheet. (4) Electric field is normally outward of the sheet. (4) Electric field is normally outward of the sheet. (5) (5) (5) (5) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7			
Energy stored in parallel combination $\frac{1}{2}(C_{1}+C_{3})\nabla^{2}=250\times10^{3}J(2)$ Substituting value of V=100 V in eq (1) and (2), on solving $C_{1}=4\times10^{5}$ F or 40 µF $C_{2}=1\times10^{5}$ F or 10 µF $C_{2}=1\times10^{5}$ F or 10 µF () i) Showing electric field at a point due to a uniformly charged infinite plane sheet 3 ii) Calculating (1) electric flux through the cube 1 (2) charge enclosed by cube 1 () ψ^{2} ψ^{2} ψ^{2} ψ^{2} ψ^{2} ψ^{2} ψ^{2} ψ^{2} () ψ^{2} $\psi^{$		1/	
$\frac{1}{2}(C_{1}+C_{2})V^{2}=250\times10^{3} \text{ J(2)}$ Substituting value of V=100 V in eq (1) and (2), on solving $C_{1}=4\times10^{3} \text{ F or } 40\mu\text{F}$ $C_{2}=1\times10^{3} \text{ F or } 10\mu\text{F}$ b) i) Showing electric field at a point due to a uniformly charged infinite plane sheet 3 ii) Calculating (1) electric flux through the cube 1 (2) charge enclosed by cube 1 (i) $\psi = \frac{1}{2}E_{1}ds = \int_{1}^{1}\vec{E}_{1}ds + \int_{2}^{1}\vec{E}_{1}ds$ = 2EA From Gauss's law $\oint \vec{E}_{1}ds = \int_{0}^{1}\vec{E}_{1}ds + \int_{2}^{1}\vec{E}_{1}ds$ $E = \frac{\sigma}{2c_{0}}$ Vectorially $\vec{E} = \frac{\sigma}{2c_{0}}\hat{n}$ Electric field is normally outward of the sheet. (ii) (1) Electric flux through the cube $\psi = \phi_{1} + \phi_{2}$ $\psi = \int \vec{E}_{x} ds + \int \vec{E}_{x} ds$ $= -2\times100\times10^{-1} + [5\times(10\times10^{-2})^{2} + 2]\times100\times10^{-1}$ $\psi = 5\times10^{-1} \text{ Nm}^{2}\text{C}^{-1}$ Page 11 of 16	$\frac{1}{2} \left(\frac{C_1 C_2}{C_1 + C_2} \right) V^2 = 40 \times 10^{-3} \text{ J(1)}$	1/2	
Substituting value of V=100 V in eq (1) and (2), on solving $C_{1} = 4 \times 10^{5} \text{ F or } 40 \mu \text{F}$ $C_{2} = 1 \times 10^{3} \text{ F or } 10 \mu \text{F}$ OR b) i) Showing electric field at a point due to a uniformly charged infinite plane sheet 3 ii) Calculating (1) electric flux through the cube 1 (2) charge enclosed by cube 1 () $\oint \vec{E}_{.d}\vec{S} = \int_{1}^{1} \vec{E}_{.d}\vec{S} + \int_{2}^{1} \vec{E}_{.d}\vec{S}$ $= 2EA$ From Gauss's law $\oint \vec{E}_{.d}\vec{S} = \frac{9}{8_{0}}$ $2EA = \frac{\sigma}{8_{0}}$ $E = \frac{\sigma}{2k_{0}}\hat{n}$ Electric field is normally outward of the sheet. (ii) (1) Electric flux through the cube $\oint = \phi_{\perp} + \phi_{R}$ $\oint = \int \vec{E}_{.d}\vec{S} + \int \vec{E}_{.d}\vec{S}$ $= -2 \times 100 \times 10^{-1} + [5 \times (10 \times 10^{-2})^{2} + 2] \times 100 \times 10^{-1}$ $\phi = 5 \times 10^{4} \text{ Nm}^{2}\text{C}^{4}$ Page 11 of 16			
Substituting value of V=100 V in eq (1) and (2), on solving $C_{1}=4\times10^{5} \text{ F or }40\mu\text{F}$ $C_{2}=1\times10^{3} \text{ F or }10\mu\text{F}$ OR b) i) Showing electric field at a point due to a uniformly charged infinite plane sheet 3 ii) Calculating (1) electric flux through the cube 1 (2) charge enclosed by cube 1 () $\oint \vec{E}_{.d}\vec{S} = \int_{1}^{1} \vec{E}_{.d}\vec{S} + \int_{2}^{1} \vec{E}_{.d}\vec{S}$ $= 2EA$ From Gauss's law $\oint \vec{E}_{.d}\vec{S} = \frac{9}{c_{0}}$ $2EA = \frac{\sigma}{c_{0}}$ $E = \frac{\sigma}{2c_{0}}\hat{n}$ Electric field is normally outward of the sheet. (ii) (1) Electric flux through the cube $\oint = \phi_{L} + \phi_{R}$ $\oint = \int \vec{E}_{.d}\vec{S} + \int \vec{E}_{.d}\vec{S}$ $= -2 \times 100 \times 10^{-1} + [5 \times (10 \times 10^{-2})^{2} + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{4} \text{ Nm}^{2}\text{C}^{4}$ Page 11 of 16	$\frac{1}{2} (C_1 + C_2) V^2 = 250 \times 10^{-3} J(2)$	1⁄2	
$C_{2}=1\times10^{5} \text{ F or } 10\mu\text{F}$ OR i) Showing electric field at a point due to a uniformly charged infinite plane sheet 3 ii) Calculating (1) electric flux through the cube 1 (2) charge enclosed by cube 1 (i) $\int \vec{E}.d\vec{s} = \int_{\vec{E}}.d\vec{s} + \int_{\vec{L}}.\vec{E}.d\vec{s}$ $= 2EA$ From Gauss's law $\oint \vec{E}.d\vec{s} = \frac{\sigma}{2e_{0}}$ $E = \frac{\sigma}{2e_{0}}$ $Vectorially \vec{E} = \frac{\sigma}{2e_{0}}$ $Vector$	Substituting value of V=100 V in eq (1) and (2) , on solving	1/2	
b) i) Showing electric field at a point due to a uniformly charged infinite plane sheet 3 ii) Calculating (1) electric flux through the cube 1 (2) charge enclosed by cube 1 (i)	$C_2 = 1 \times 10^{-5} \text{ F or } 10 \mu\text{F}$		5
i) Showing electric field at a point due to a uniformly charged infinite plane sheet 3 ii) Calculating (1) electric flux through the cube 1 (2) charge enclosed by cube 1 (i) $\int \vec{E}_{i} d\vec{s} = \int_{1}^{1} \vec{E}_{i} d\vec{s} + \int_{2}^{1} \vec{E}_{i} d\vec{s}$ $= 2EA$ From Gauss's law $\oint \vec{E}_{i} d\vec{s} = \int_{0}^{1} \vec{E}_{i} d\vec{s} + \int_{0}^{1} \vec{E}_{i} d\vec{s}$ $= \frac{\sigma}{z_{e_{0}}}$ $E = \frac{\sigma}{2z_{e_{0}}}$ V_{2} Vectorially $\vec{E} = \frac{\sigma}{2z_{e_{0}}}$ î Electric field is normally outward of the sheet. (ii) (1) Electric flux through the cube $\phi = \phi_{k} + \phi_{k}$ $\phi = \int_{0}^{1} \vec{E}_{k} d\vec{s}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^{2} + 2] \times 100 \times 10^{-4}$ $\psi = 5 \times 10^{-4} \text{ Nm}^{2}\text{C}^{-1}$			
charged infinite plane sheet 3 ii) Calculating (1) electric flux through the cube 1 (2) charge enclosed by cube 1 (i) $ \int \vec{E}.d\vec{s} = \int \vec{E}.d\vec{s} + \int_{2} \vec{E}.d\vec{s} = \frac{1}{2EA} $ From Gauss's law $ \oint \vec{E}.d\vec{s} = \frac{q}{k_{0}} $ $ E = \frac{q}{2k_{0}} $ Vectorially $\vec{E} = \frac{\sigma}{2k_{0}}$ $ Electric field is normally outward of the sheet. $ (ii) (1) Electric flux through the cube $ \oint = \phi_{k} + \phi_{R} $ $ \phi = \int \vec{E}.d\vec{s} + \int \vec{E}.d\vec{s} = \frac{1}{2k_{0}}d\vec{s} $ $ = -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^{2} + 2] \times 100 \times 10^{-4} $ $ \phi = 5 \times 10^{-4} \operatorname{Nm}^{2}C^{-4} $ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	b)		
ii) Calculating (1) electric flux through the cube 1 (2) charge enclosed by cube 1 (i) (j) (
(2) charge enclosed by cube 1 (i) $\oint \vec{E}.d\vec{s} = \int_{1}^{1}\vec{E}.d\vec{s} + \int_{2}^{2}\vec{E}.d\vec{s}$ = 2EA From Gauss's law $\oint \vec{E}.d\vec{s} = \frac{\sigma A}{\epsilon_{0}}$ $E = \frac{\sigma A}{2\epsilon_{0}}$ $E = \frac{\sigma}{2\epsilon_{0}}$ Vectorially $\vec{E} = \frac{\sigma}{2\epsilon_{0}} \hat{n}$ Electric field is normally outward of the sheet. (ii) (1) Electric flux through the cube $\phi = \phi_{L} + \phi_{R}$ $\phi = \int \vec{E}_{L}.d\vec{s} + \int \vec{E}_{R}.d\vec{s}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^{2} + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{ Nm}^{2}\text{C}^{-4}$ 1			
$\int \vec{E} \cdot d\vec{S} = \int_{1} \vec{E} \cdot d\vec{S} + \int_{2} \vec{E} \cdot d\vec{S}$ $= 2EA$ From Gauss's law $\int \vec{E} \cdot d\vec{S} = \frac{q}{\epsilon_{0}}$ $2EA = \frac{\sigma A}{\epsilon_{0}}$ $E = \frac{\sigma}{2\epsilon_{0}}$ Vectorially $\vec{E} = \frac{\sigma}{2\epsilon_{0}}$ $E = criter field is normally outward of the sheet.$ (ii) (1) Electric flux through the cube $\phi = \phi_{L} + \phi_{R}$ $\phi = \int \vec{E}_{L} \cdot d\vec{S} + \int \vec{E}_{R} \cdot d\vec{S}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^{2} + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{Nm}^{2}\text{C}^{-1}$ $i = 10$			
$\int \vec{E} \cdot d\vec{S} = \int_{1} \vec{E} \cdot d\vec{S} + \int_{2} \vec{E} \cdot d\vec{S}$ $= 2EA$ From Gauss's law $\int \vec{E} \cdot d\vec{S} = \frac{q}{\epsilon_{0}}$ $2EA = \frac{\sigma A}{\epsilon_{0}}$ $E = \frac{\sigma}{2\epsilon_{0}}$ Vectorially $\vec{E} = \frac{\sigma}{2\epsilon_{0}}$ $E = criter field is normally outward of the sheet.$ (ii) (1) Electric flux through the cube $\phi = \phi_{L} + \phi_{R}$ $\phi = \int \vec{E}_{L} \cdot d\vec{S} + \int \vec{E}_{R} \cdot d\vec{S}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^{2} + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{Nm}^{2}\text{C}^{-1}$ $i = 10$			
$\int \vec{E} \cdot d\vec{s} = \int \vec{E} \cdot d\vec{s} + \int_{2} \vec{E} \cdot d\vec{s}$ $= 2EA$ From Gauss's law $\int \vec{\Phi} \vec{E} \cdot d\vec{s} = \frac{q}{c_{0}}$ $2EA = \frac{\sigma A}{c_{0}}$ $E = \frac{\sigma}{2c_{0}}$ V_{2} Vectorially $\vec{E} = \frac{\sigma}{2c_{0}}$ i_{2} Electric field is normally outward of the sheet. (ii) (1) Electric flux through the cube $\varphi = \phi_{L} + \phi_{R}$ $\varphi = \int \vec{E}_{L} \cdot d\vec{s} + \int \vec{E}_{R} \cdot d\vec{s}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^{2} + 2] \times 100 \times 10^{-4}$ $\psi = 5 \times 10^{-4} \operatorname{Nm}^{2}C^{-1}$ V_{2} $Vectorial field is 0 = 0$			
$\oint \vec{E} \cdot d\vec{s} = \int_{1}^{r} \vec{E} \cdot d\vec{s} + \int_{2}^{r} \vec{E} \cdot d\vec{s}$ $= 2EA$ From Gauss's law $\oint \vec{E} \cdot d\vec{s} = \frac{q}{\varepsilon_{0}}$ $2EA = \frac{\sigma A}{\varepsilon_{0}}$ $E = \frac{\sigma}{2\varepsilon_{0}}$ $Vectorially \vec{E} = \frac{\sigma}{2\varepsilon_{0}}$ i'_{2} $iethic field is normally outward of the sheet. (ii) (1) Electric flux through the cube \phi = \phi_{L} + \phi_{R} \phi = \int \vec{E}_{L} \cdot d\vec{s} + \int \vec{E}_{R} \cdot d\vec{s} = -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^{2} + 2] \times 100 \times 10^{-4} \phi = 5 \times 10^{-4} \text{ Nm}^{2}\text{C}^{-1} Va = 100 \text{ M}^{2}$			
= 2EA From Gauss's law $\oint \vec{E} \cdot d\vec{s} = \frac{q}{\varepsilon_0}$ $2EA = \frac{\sigma A}{\varepsilon_0}$ $E = \frac{\sigma}{2\varepsilon_0}$ $Vectorially \vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$ Electric field is normally outward of the sheet. (ii) (1) Electric flux through the cube $\phi = \phi_L + \phi_R$ $\phi = \int \vec{E}_L \cdot d\vec{s} + \int \vec{E}_R \cdot d\vec{s}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^2 + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{ Nm}^2 \text{C}^{-1}$ V_2 V_2 V_3 V_4 V_5 V_4 V_4 V_5 V_6		1	
= 2EA From Gauss's law $\oint \vec{E} \cdot d\vec{s} = \frac{q}{\varepsilon_0}$ $2EA = \frac{\sigma A}{\varepsilon_0}$ $E = \frac{\sigma}{2\varepsilon_0}$ $Vectorially \vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$ Electric field is normally outward of the sheet. (ii) (1) Electric flux through the cube $\phi = \phi_L + \phi_R$ $\phi = \int \vec{E}_L \cdot d\vec{s} + \int \vec{E}_R \cdot d\vec{s}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^2 + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{ Nm}^2 \text{C}^{-1}$ V_2 V_2 V_3 V_4 V_5 V_6		1/2	
From Gauss's law $\oint \vec{E}.d\vec{s} = \frac{q}{\varepsilon_0}$ $2EA = \frac{\sigma A}{\varepsilon_0}$ $E = \frac{\sigma}{2\varepsilon_0}$ $Vectorially \vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$ $Vectorially \vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$ $Vectorially \vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$ $Vectorially cutward of the sheet.$ (ii) (1) Electric flux through the cube $\phi = \phi_L + \phi_R$ $\phi = \int \vec{E}_L.d\vec{s} + \int \vec{E}_R.d\vec{s}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^2 + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{ Nm}^2 \text{C}^{-1}$ $Vectorially$ $Vectorially = \frac{\sigma}{2\varepsilon_0} \hat{n}$		/2	
$\oint \vec{E} \cdot d\vec{s} = \frac{q}{\varepsilon_0}$ $2EA = \frac{\sigma A}{\varepsilon_0}$ $E = \frac{\sigma}{2\varepsilon_0}$ $Vectorially \vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$ $Electric field is normally outward of the sheet.$ (ii) (1) Electric flux through the cube $\phi = \phi_L + \phi_R$ $\phi = \int \vec{E}_L \cdot d\vec{s} + \int \vec{E}_R \cdot d\vec{s}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^2 + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{ Nm}^2 \text{C}^{-1}$ $55/4/3 \text{Page 11 of 16}$			
$2EA = \frac{\sigma A}{\varepsilon_0}$ $E = \frac{\sigma}{2\varepsilon_0}$ $Vectorially \vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$ $Vectorially \vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$ $Vectorially outward of the sheet.$ (ii) (1) Electric flux through the cube $\phi = \phi_L + \phi_R$ $\phi = \int \vec{E}_L . d\vec{s} + \int \vec{E}_R . d\vec{s}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^2 + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{ Nm}^2 \text{C}^{-1}$ V_2 $Vectorially \vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$			
$2EA = \frac{\sigma A}{\varepsilon_0}$ $E = \frac{\sigma}{2\varepsilon_0}$ $Vectorially \vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$ $Vectorially \vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$ $Vectorially outward of the sheet.$ (ii) (1) Electric flux through the cube $\phi = \phi_L + \phi_R$ $\phi = \int \vec{E}_L . d\vec{s} + \int \vec{E}_R . d\vec{s}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^2 + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{ Nm}^2 \text{C}^{-1}$ V_2 V_2 V_3 V_4 V	$\oint E.d\bar{s} = \frac{1}{\varepsilon_0}$	1/2	
$E = \frac{\sigma}{2\varepsilon_0}$ $E = \frac{\sigma}{2\varepsilon_0} \hat{n}$ $F =$			
Vectorially $\vec{E} = \frac{\sigma}{2\epsilon_0} \hat{n}$ Electric field is normally outward of the sheet. (ii) (1) Electric flux through the cube $\phi = \phi_L + \phi_R$ $\phi = \int \vec{E}_L \cdot d\vec{s} + \int \vec{E}_R \cdot d\vec{s}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^2 + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{ Nm}^2 \text{C}^{-1}$ $\frac{1}{2}$ 55/4/3 Page 11 of 16	$2\mathbf{E}\mathbf{A} = \frac{\mathbf{E}_{0}}{\mathbf{E}_{0}}$		
Vectorially $\vec{E} = \frac{\sigma}{2\epsilon_0} \hat{n}$ Electric field is normally outward of the sheet. (ii) (1) Electric flux through the cube $\phi = \phi_L + \phi_R$ $\phi = \int \vec{E}_L \cdot d\vec{s} + \int \vec{E}_R \cdot d\vec{s}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^2 + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{ Nm}^2 \text{C}^{-1}$ $\frac{1}{2}$ 55/4/3 Page 11 of 16	$E = \frac{\sigma}{\sigma}$	1/2	
Electric field is normally outward of the sheet. (ii) (1) Electric flux through the cube $\phi = \phi_L + \phi_R$ $\phi = \int \vec{E}_L \cdot d\vec{s} + \int \vec{E}_R \cdot d\vec{s}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^2 + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{ Nm}^2 \text{C}^{-1}$ $\frac{1}{2}$ $55/4/3 \text{ Page 11 of 16}$	$-2\varepsilon_0$	/2	
Electric field is normally outward of the sheet. (ii) (1) Electric flux through the cube $\phi = \phi_L + \phi_R$ $\phi = \int \vec{E}_L \cdot d\vec{s} + \int \vec{E}_R \cdot d\vec{s}$ $= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^2 + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{ Nm}^2 \text{C}^{-1}$ $\frac{1}{2}$ $55/4/3 \text{ Page 11 of 16}$	Vectorially $\vec{E} = \frac{\sigma}{2} \hat{n}$	1/	
(ii) (1) Electric flux through the cube		*/2	
	Electric field is normany outward of the sheet.		
$= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^{2} + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{ Nm}^{2}\text{C}^{-1}$ $\frac{1}{2}$ 55/4/3 Page 11 of 16		1⁄2	
$= -2 \times 100 \times 10^{-4} + [5 \times (10 \times 10^{-2})^{2} + 2] \times 100 \times 10^{-4}$ $\phi = 5 \times 10^{-4} \text{ Nm}^{2}\text{C}^{-1}$ $\frac{1}{2}$ 55/4/3 Page 11 of 16	$\phi = \int \vec{E}_I \cdot d\vec{s} + \int \vec{E}_P \cdot d\vec{s}$		
$\phi = 5 \times 10^{-4} \text{ Nm}^2 \text{C}^{-1}$ 55/4/3 Page 11 of 16 Collegedum			
55/4/3 Page 11 of 16		1/2	
	$\varphi = 5 \times 10^{-11} \text{ mm}^2 \text{ c}$		
	55/4/3 Page 11 of 16	colle	egedun
		1. 1.	0

(2)	1/2
$\phi = rac{q_{en}}{arepsilon_0}$	72
$q_{en} = \phi . \varepsilon_0$	
$= 5 \times 10^{-4} \times 8.85 \times 10^{-12}$	
$=4.43 \times 10^{-15} C$	1/2
a) i) Drawing of ray diagram 1	
Obtaining mirror equation 2	
ii) Reason for using multi-component lenses 1	
iii) Finding magnification produced by the objective 1	
i)	
M	
A	1
B P B'F C	
For paraxial rays MP can be considered to be a straight line perpendicular to CP,	
Therefore right angled triangles $A'B'F$ and MPF are similar	
$\frac{\mathbf{B}\mathbf{A}}{\mathbf{P}\mathbf{M}} = \frac{\mathbf{B}\mathbf{F}}{\mathbf{F}\mathbf{P}}$	
B'A' B'F	1/2
Or $\frac{B'A'}{BA} = \frac{B'F}{FP}$ ($\because PM = AB$)(1)	72
Since $\angle APB = \angle A'PB'$, the right angled triangles $A'PB'$ and ABP are also	
similar	
$\mathbf{T} = \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{P} $	
Therefore, $\frac{B'A'}{BA} = \frac{B'P}{BP}$ (2)	1/2
Comparing eq (1) and (2), we get	
$\frac{\mathbf{B}\mathbf{F}}{\mathbf{F}\mathbf{P}} = \frac{\mathbf{B}\mathbf{P}}{\mathbf{B}\mathbf{P}}$	
$\frac{PF-PB'}{FP} = \frac{B'P}{BP}$	
$\overline{FP} = \overline{BP}$	
Using sign convention	14
PF = f, PB' = +v, $PB = -u$	1/2
on solving $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	
v u f	1/2
ii) To improve image quality by minimizing various optical aberrations in lenses.	1
iii) Magnification produced by compound microscope	1/
$m = m_o \times m_e$	1/2
$m_o = \frac{m}{m_e} = \frac{m}{ \underline{D} }$	
$m_e \left \frac{D}{2}\right $	
fe	
55/4/3 Page 12 of 16	college

$m_o = \frac{200}{25} = 16$		
$m_o = \frac{25}{25}$	1⁄2	5
2		
OR		
(b) i) Difference between a wavefront and a ray 1		
ii) Statement of Huygens' principle 1		
Verification of the law of reflection $1 \frac{1}{2}$		
iii) Finding wavelength of light 1 ¹ / ₂		
i) Wavefront is a surface of constant phase.	1/2	
Alternatively Locus of points, which oscillate in phase	72	
<u>Ray</u> - The straight line path along which light travels (or energy propagates).	1/2	
<u>Alternatively</u> – Ray is normal to wave front.		
ii) <u>Huygens' Principle</u> Each point of the wave front is the source of secondary		
disturbance and the wavelets emanating from the points spread out in all directions with speed of wave. The wavelets emanating from wave front are		
usually referred to as secondary wavelets. A common tangent to all these spheres	1	
gives the new position of the wave front at a later time.		
Incident		
wavefront		
, E Reflected		
Bwavefront	1	
$\sqrt{7}$		
M MARTINI		
Triangles EAC and BAC are congruent therefore $\angle i = \angle r$	1/2	
iii) Position of 4 th bright fringe		
	1/	
$x_{4(bright)} = 4 \frac{D\lambda}{d}$	1⁄2	
Position of 2 nd dark fringe		
$x_{2(dark)} = \frac{3}{2} \frac{D\lambda}{d}$	1/2	
$x_{2(\text{dark})} = \frac{1}{2} \frac{1}{d}$		
$x_{4(bright)} - x_{2(dark)} = 5mm$		
$\Delta D\lambda 3 D\lambda = 10^{-3}$		
$4\frac{D\lambda}{d} - \frac{3}{2}\frac{D\lambda}{d} = 5 \times 10^{-3}$		
$\lambda = 6 \times 10^{-6}$ m	1/2	
(a) (i) Factors on which the resonant frequency of a series LCR circuit depends 1		
Plotting of graph 1		
(ii) Diagram of a transformer 1		
Working of a step-up transformer 1		
(iii) Two causes of energy loss in a real transformer 1		
(i) Inductance		
Capacitance	1/2	
Alternatively	1/2	
Alternatively		
1		
$\nu_0 = \frac{1}{2\pi\sqrt{LC}}$		

Working – The coil is rotated in the uniform magnetic field by some external means.	1	
The rotation of the coil causes the magnetic flux through it to change, so an emf is	1	
induced in the coil.		
Alternatively		
If a student derives $e = e_0 \sin \omega t$ give one mark for working.		
(ii) The equivalent current		
$I = \frac{q}{t} = \frac{e}{2\pi r} = \frac{ev}{2\pi r}$	1/2	
t $\frac{2\pi r}{2\pi r}$ $2\pi r$	/ _	
V		
Mangetic moment of revolving electron	1/2	
m = IA	/2	
$=$ $\frac{\text{ev}}{\text{m}} \times \pi r^2$	1/2	
$=\frac{1}{2\pi r}\times \pi r$		
1		
$=\frac{1}{2}$ evr	1⁄2	

