PREVIEW QUESTION BANK

Module Name : AGRONOMY-ENG Exam Date : 09-Jul-2023 Batch : 10:00-12:00

Sr. No.	Client	Question ID		Question Body and Alternatives	Marks		gative arks
Objec	tive Que	estion					
1	901	The te		growth of terrestrial plants without soil in mineral nutri	ent	4.0	1.00
		1.	Nutrient culture				
		2.	Aquaculture				
		3.	Soilless culture				
		4.	Solution culture				
		A1:1					
		A2:2					
		A3:3					
		A4:4					
Objec	tive Que	estion					
2	Match List-I with List-II (Choose the correct answer from the options given below)	4.0	1.00
			List-I	List-II			
			Instrument	Parameter			
		(A) V	Wind vane	(I) Photosynthetically active radiation			
		(B) (Quantum sensor	(II) Wind speed			
		(C) A	Anemometer	(III) Atmospheric pressure			
		(D) I	Barometer	(IV) Wind direction			
		Choo	se the <i>correct</i> answ	ver from the options given below:			
				(I), (C) - (II), (D) - (III)			
				II), (C) - (IV), (D) - (II)			
				(IV), (C) - (I), (D) - (II)			
		4.	(A) - (IV), (B) -	(III), (C) - (II), (D) - (I)			
		A1:1					
		A2:2					
		A3:3					

		A4:4			
Ohie	ective Que	ection			
3	903		said that wind is blowing from 360°, then what is its meaning?	4.0	1.00
			Wind is hlowing from south direction		
		2.			
		3.	Wind is blowing from true north direction		
		4.	Wind is blowing from magnetic south direction		
		A1:1			
		A2:2			
		A3:3			
		A4 : 4			
Obje	ective Qu	estion			
4	904	The co	omplex which is specifically inhibited by SHAM in the electron transport chain	4.0	1.00
			Complex I		
		2.	Complex II		
		3.			
			P. Company of the Com		
		4.	Complex IV		
		A1:1			
		A2:2			
		A3:3			
		A4 : 4			
Ohio	ective Que	agtion			
5	905		ystic fibrosis transmembrane conductance regulator (CFTR) is a transporter ed in	4.0	1.00
		1.	Glucose transport		
			Chloride ion transport		
			Calcium homeostasis		
		7.	Amino acid uptake		
		A1:1			
		A2:2			
		A3:3			٠, ام

	Question				
906	Given	below are	e two statements:	4.0	1.00
	Staten	nent I :	Minimum, optimum and maximum temperatures for germination of rice crop are 10-12°C, 30-32°C and 36-38°C, respectively.		
	Staten	nent II :	Minimum, optimum and maximum temperatures for germination of wheat crop are 3-4.5°C, 20-25°C and 30-40°C, respectively.		
	In the below	light of th	he above statements, choose the <i>correct</i> answer from the options given		
	1.	Both Sta	tement I and Statement II are correct		
	2.	Both Sta	tement I and Statement II are not correct		
	3.	Stateme	nt I is correct but Statement II is not correct		
	4.	Stateme	nt I is not correct but Statement II is correct		
	A1:1				
	A2:2				
	A3:3				
	A4:4				
ective Q	Question				
907			n factor SNAC1 (Stress-responsive NAC1) is involved in drought stress ch of the following crop plants?	4.0	1.00
	1.	Sorghum	a bicolor (sorghum)		
			us vulgaris (common bean)		
	3.		napus (rapeseed)		
	4.	Musa spj	p (banana)		
	A1:1				
	A2:2				
	A3:3				
	A4:4				
ective Q	Question				
908				4.0	1.00
			coll		

The technique used to study the spatial distribution of nutrients in plant tissues at a cellular level is ?

- 1. Immunohistochemistry
- 2. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
- 3. Metabolomics
- 4. RNA-sequencing (RNA-seq)

A1:1

A2:2

A3:3

A4:4

Objective Question

Leaf relative growth rate (LRGR) can be calculated using which of the following expressions?

4.0 1.00

1.
$$LRGR = \frac{LogLW2 - LogLW1}{t2 - t1}$$

$$2. LRGR = \frac{LW2 - LW1}{t2 - t1}$$

3.
$$LRGR = \frac{LogLW2 + LogLW1}{t2 - t1}$$

$$4. \qquad LRGR = \frac{LW2 + LW1}{t2 - t1}$$

A1:1

A2:2

A3:3

A4:4

Objective Question

The efficiency of PCR amplification in DNA barcoding can be enhanced by the presence of which mineral nutrient known for its stabilizing effect on DNA polymerase?

4.0 1.00

- 1. Rhodium
- 2. Ruthenium
- 3. Osmium
- 4. Iridium

A1:1

A2:2

		A3:3		
		A4:4		
Ob	jective Qu 911		4.0	1.00
		The amino acid considered as a branched-chain amino acid (BCAA) is		
		1. Serine		
		2. Leucine		
		3. Asparagine		
		4. Tyrosine		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	jective Qu	estion		
12	912	A lack of micronutrients affects not only plant growth but also vital functions, such as photosynthetic and mitochondrial electron flow. Which of the following group of elements shall have the greatest impact on both photosynthetic and mitochondrial electron transport?	4.0	1.00
		1. Co, Ni and Mo		
		2. Ca, K and Na		
		3. Mn, Co and Ca		
		4. Cu, Mn and Fe		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	jective Qu	estion		
13	913	The deficiency symptoms of an essential element tend to appear first in young leaves indicating that the element is relatively immobile. Such symptoms would be shown by which one of the following elemental deficiencies?	4.0	1.00
		1. Sulphur		
		2. Iron		
		3. Nitrogen		
		4. Potassium		
		coll	ege	edu

916

Objective Question

7/10/23, 12:15 PM

A1:1

A2:2

A3:3

A4:4

A1:1

A2:2

A3:3

A4:4

A1:1

A2:2

A3:3

A4:4

Objective Question 915

Golgi bodies and ER

Objective Question 914

Match List-I with List-II

List-I	List-II
Specialized part of cell	Specialized combinations of cell
(A) Centriole	(I) Infoldings in mitochondria
(B) Chlorophyll	(II) Thylakoids
(C) Cristae	(III) Nucleic acids
(D) Ribozymes	(IV) Basal body cilia or flagella

Choose the *correct* answer from the options given below:

- 1. (A) (IV), (B) (II), (C) (I), (D) (III)
- 2. (A) (I), (B) (II), (C) (IV), (D) (III)
- 3. (A) (I), (B) (III), (C) (II), (D) (IV)
- 4. (A) (IV), (B) (III), (C) (I), (D) (II)

A1:1

A2:2

A3:3

A4:4

Objective Question

17 917 Select out of the following the correct statement regarding cell membrane 1. Na and K ions move across cell membrane by passive transport.

4.0 1.00

- Proteins make up 60 to 70% of the cell membrane.
- 3. Fluid mosaic model of cell membrane was proposed by Singer and Nicolson.
- 4. Lipids are arranged in a bilayer with polar heads towards the inner part.

A1:1

A2:2

A3:3

A4:4

Objective Question

918

Vegetable crops like tomatoes and bell pepper, allowed growing in a carbon dioxide rich environment, showed higher yields because :

- 1. C pathway for carbon fixation at high carbon dioxide is the limiting factor in such plants.
- 2. These showed an increased rate of photosynthesis at higher carbon dioxide concentrations.
- 3. These can respond to high carbon dioxide conditions even in low light conditions.
- 4. Only carbon dioxide is the limiting factor in such plants.

A1:1

A2:2

A3:3

A4:4

Objective Question

A3:3

Obj	Objective Question				
19	919	Photor	respiration does not take place in C ₄ plants because such plants	4.0	1.00
		1.	Do not contain fixation enzyme RUBISCO		
		2.	Have cells that are impermeable to oxygen		
		3.	Have mechanism that increases the concentration of CO2 at the enzyme site		
		4.	Cells do not allow oxygen to accumulate in them		
		A1:1			
		A2:2			
		A3:3			
		A4 : 4			

The product of photorespiration process is 1. Phosphoglycerate 2. Phosphoglycolate 3. Both A and B 4. Oxalo Acetic Acid A1:1 A2:2

4.0 | 1.00

		A4:4			
Obie	ective Que	estion			
_	921	The c	ountry that has given name of the tropical cyclone "Mocha" developed in the of May, 2023 in Bay of Bengal is	4.0	1.00
		1.	Bangladesh		
		2.	Pakistan		
		3.	India		
		4.	Yemen		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ective Que	estion			
22	922	Which	of the following clouds is a rain bearing cloud?	4.0	1.00
		1.	Nimbostratus		
		2.	Altocumulus		
		3.	Cirrostratus		
		4.	Stratocumulus		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ective Que	estion			
23	923	Which	of the following statements is correct?	4.0	1.00
		1.	One cm of rainfall is the equivalent of one liter of water per square meter.		
		2.	One millimeter of rainfall is the equivalent of 10 liter of water per square meter.		
		3.	One millimeter of rainfall is the equivalent of one liter of water per square meter.		
		4.	One cm of rainfall is the equivalent of 10 liter of water per square meter.		
		A1:1			
		A2:2			
		A3:3	coll	ege	du

		A4 : 4			
Obje	ctive Qu	estion			
24	924		es that are not used for cloud seeding in artificial rain making is	4.0	1.00
			Silver iodide Dry ion		
			Dry ice Common salt		
			Kaolinite		
		4.	Raomine		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ective Que	estion			
25	925	Given	below are two statements:	4.0	1.00
		Stater	nent (I): In the atmosphere, 90% of the ozone is distributed in the troposphere, while only 10% is confined to the stratosphere		
		Stater	ment (II): According to IPCC (2007) estimated value of radiative forcing from the tropospheric ozone is to be 0.35± 0.15 W m ⁻² .		
		1000	nt of the above statements, choose the <i>most appropriate</i> answer from the options below.		
		1.	Both Statement (I) and Statement (II) are correct.		
		2.	Both Statement (I) and Statement (II) are incorrect.		
		3.	Statement (I) is correct but Statement (II) is incorrect.		
		4.	Statement (I) is incorrect but Statement (II) is correct.		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Ohio	ctive Qu	agtion			
26	926	estion		4.0	1.00
					اا

Full form of NISAR satellite is

- 1. National Indian Satellite for Agricultural Research
- 2. NASA ISRO Satellite for Agricultural Research
- 3. NASA ISRO Synthetic Aperture Radar
- 4. NASA ISRO Synchronised Agricultural Radar

A1:1

A2:2

A3:3

A4:4

Objective Question

27 927

Match List-I with List-II

4.0 1.00

List-I	List-II			
(Fact /feature/event/ phenomena)	(Definition)			
(A) Ecotype	(I) A uniform interbreeding population spread over time and space.			
(B) Ecotone	(II) It is a group of individual organisms of the same species in a given area.			
(C) Species	(III) It is a population of individuals of a species, which are genetically different.			
(D) Population	(IV) A zone of transition, presenting a situation of special ecological interest between two different types of communities.			

Choose the *correct* answer from the options given below:

2.
$$(A) - (III), (B) - (IV), (C) - (I), (D) - (II)$$

4.
$$(A) - (II), (B) - (III), (C) - (IV), (D) - (I)$$

A1:1

A2:2

A3:3

A4:4

collegedunia

Objective Question

28 928

Match List-II with List-II

List-I	List-II
(Types of ecology)	(Explanation)
(A) Ecosystem ecology	(I) The units of study are interactions between different communities of area.
(B) Community ecology	(II) The units of study are pure stands of individuals of a single species.
(C) Biome ecology	(III) The units of study are groups of individuals belonging to different species of plants as well as animals.
(D) Population ecology	(IV) The most complicated synecological approach to the ecology of an area.

Choose the *correct* answer from the options given below:

- 1. (A) (I), (B) (II), (C) (III), (D) (IV)
- 2. (A) (III), (B) (I), (C) (IV), (D) (II)
- 3. (A) (I), (B) (III), (C) (IV), (D) (II)
- 4. (A) (IV), (B) (III), (C) (I), (D) (II)

A1:1

A2:2

A3:3

A4:4

Objective Question

929

The region of atmosphere having the constant temperature is

- Troposphere

 1. Troposphere
- 2. Mesopause
- 3. Stratosphere
- 4. Ionosphere

A1:1

A2:2

A3:3

. .

A4:4

Objective Question

30 930

4.0 1.00

The concentration of nitrogen in atmosphere upto 50 km from the ground surafce is

- 1. About 48% nitrogen
- 2. About 58% nitrogen
- 3. About 68% nitrogen
- 4. About 78% nitrogen

A1:1

A2:2

A3:3

A4:4

Objective Question

931

Match List-II with List-II

4.0 1.00

List-I	List-II
(CGIAR centers.)	(Headquarter.)
(A) International Institute of Tropical Agriculture (IITA)	(I) Nairobi, Kenya
(B) International Livestock Research Institute (ILRI)	(II) Battaramulla, Sri Lanka
(C) International Water Management Institute (IWMI)	(III) Beirut, Lebanon
(D) International Center for Agricultural Research in the Dry Areas (ICARDA)	(IV) Ibadan, Nigeria

Choose the *correct* answer from the options given below:

- 1. (A) (I), (B) (III), (C) (II), (D) (IV)
- 2. (A) (II), (B) (III), (C) (IV), (D) (I)
- 3. (A) (IV), (B) (I), (C) (II), (D) (III)
- 4. (A) (III), (B) (IV), (C) (I), (D) (II)

A1:1

A2:2

A3:3

A4:4

Objective Question

932

Which of the following statements are correct for "Tillage"?

- (A) The most important objectives of tillage are seedbed preparation, increasing soil fertility, and soil moisture conservation.
- (B) Tillage increases the bulk density of soil in the longirerer.
- (C) Tillage improve soil tilth, soil aeration and root penetration.
- (D) Tillage removes hard pans thus increase the soil depth for water absorption.

Choose the *correct* answer from the options given below:

- 1. (A) and (B) only.
- 2. (A) and (C) only.
- 3. (B), (C) and (D) only.
- 4. (B) and (C) only.

A1:1

A2:2

A3:3

A4:4

Objective Question

33 933

Given below are two statements:

4.0 1.00

- **Statement (I):** Precision agriculture is generally defined as information and technology based farm management system to identify, analyze and manage variability within fields for optimum profitability, sustainability and protection of the land resources.
- Statement (II): Precision agriculture is the application of drone technologies in agricultural production

In light of the above statements, choose the *most appropriate* answer from the options given below.

- 1. Both Statement (I) and Statement (II) are correct.
- 2. Both **Statement** (I) and **Statement** (II) are incorrect.
- 3. Statement (I) is correct but Statement (II) is incorrect.
- 4. Statement (I) is incorrect but Statement (II) is correct.

A1:1

A2:2

A3:3

A4:4

Objective Question

34 934

			Calculate cumulative evaporation required for scheduling irrigation at 0.5 IW / CPE ratio with 5 cm of irrigation water?			
			1. 5 cm			
			2. 10 cm			
			3. 15 cm			
			4. 20 cm			
			A1:1			
			A2:2			
			A3:3			
			A3.3			
			A4:4			
	Obje	ctive Qu	estion			
		935	Which of the following statements are correct for "Dryland agriculture"?	4.0	1.00	
			(A) Growing season in dryland agriculture is < 300 days.			
			(B) Rainfall should be < 1800 mm.			
			(C) Main constraints are wind and water erosion.			
			(D) Growing regions are mainly humid and tropical as well as uplands.			
			Choose the <i>correct</i> answer from the options given below:			
			1. (A) and (B) only.			
			2. (A) and (C) only.			
			3. (B), (C) and (D) only.			
			4. (B) and (C) only.			
			4. (B) and (C) only.			
			A1:1			
			A2:2			
			A3:3			
			A4:4			
	01:	<u></u>				
	-	936	esuon	4.0	1.00	
			coll	ege	du	nia
ile	:///C	:/Users	/ADMINI~1/AppData/Local/Temp/Rar\$EXa25560.46266/174_B1_Live_AGRONOMY_1-120.html	est Stude	nt Review	∠Platform

Match List-II with List-II

List-I	List-II
(Plant hormones)	(Major function)
(A) Auxins	(I) Induces leaf and fruit abscission
(B) Cytokinin	(II) Elongation of cells
(C) Abscisic acid	(III) Stimulates the swelling of stems and roots
(D) Ethylene	(IV) Stimulate cell division

Choose the *correct* answer from the options given below:

- 1. (A) (II), (B) (IV), (C) (I), (D) (III)
- 2. (A) (I), (B) (II), (C) (III), (D) (IV)
- 3. (A) (III), (B) (I), (C) (IV), (D) (II)
- 4. (A) (III), (B) (IV), (C) (I), (D) (II)

A1:1

A2:2

A3:3

A4:4

Objective Question

37 937

Given below are two statements, one is labelled as **Assertion** (A) and other one labelled as

Reason (R).

Assertion (A): Zero-tillage practice in rice-wheat cropping system is a climate change adaptation strategy.

Reason (R): It helps to avoid terminal heat stress of wheat.

In light of the above statements, choose the *correct* answer from the options given below.

- 1. Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).
- 3. (A) is true but (R) is false.
- 4. (A) is false but (R) is true.

A1:1

A2:2

A3:3

A4:4

collegedunia

ective Qu	estion		
938	What is the optimum range of soil moisture for effective ploughing?	4.0	1.
	5 to 10 per cent depletion of available soil moisture		
	2. 15 to 20 per cent depletion of available soil moisture		
	3. 25 to 50 per cent depletion of available soil moisture		
	4. 50 to 60 per cent depletion of available soil moisture		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
ective Qu	estion		
939	Given below are two statements, one is labelled as Assertion (A) and other one labelled	4.0	1.
	as Reason (R).		
	Assertion (A): Ridging increases albedo, thereby increasing the effective incoming radiation compared to a flat surface.		
	Reason (R): Tillage causes unequal distribution of energy at the soil surface.		
	In light of the above statements, choose the <i>correct</i> answer from the options given below.		
	1. Both (A) and (R) are true and (R) is the correct explanation of (A).		
	2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).		
	3. (A) is true but (R) is false.		
	4. (A) is false but (R) is true.		
	A1:1		
	A2:2		
	A3:3		
	A3.3		
	A4:4		
	estion		
jective Qu			_
jective Qu		4.0	1.
jective Qu		4.0	1.
		4.0	1.

Given below are two statements, one is labelled as **Assertion** (**A**) and other one labelled as **Reason** (**R**). **Assertion** (**A**): The Net Assimilation Rate (NAR) is a measure of the average photosynthetic efficiency of leaves in a crop community. **Reason** (**R**): It is highest when the plants are small and most of the leaves are

In light of the above statements, choose the *correct* answer from the options given below.

- 1. Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).
- 3. (A) is true but (R) is false.

exposed to sun light.

4. (A) is false but (R) is true.

A1:1

A2:2

A3:3

A4:4

Objective Question

The practice of controlling water erosion by cultivation of alternate erosion permitting and erosion resistant crops is called as

- Mixed cropping
- 2. Intercropping
- 3. Strip cropping
- 4. Relay cropping

A1:1

A2:2

A3:3

A4:4

Objective Question

42 942

The Dapog method of raising rice nursery was introduced in India from

- Myanmar
- 2. Japan
- 3. China
- 4. Philippines

collegedunia

	Using the following types of water erosion, find which order is the correct one.			
	(A) Splash erosion			
	(B) Sheet erosion			
	(C) Rill erosion			
	(D) Gully erosion			
	Choose the <i>correct</i> answer from the options given below:			
	1. (A), (B), (C), (D).			
	2. (A), (D), (C), (B).			
	3. (B), (A), (D), (C).			
	4. (C), (B), (D), (A).			
	A1:1			
	A2:2			
	A3:3			
	A4:4			
Objectiv	ve Question			
46 94		4.0	1.00	
	Input quality			
	Variable rate technology			
	3. Field variability			
	4. Site-specific output			
	4. Site-specific output			
	A1:1			
	A2:2			
	AZ.Z			
	A3:3			
	A4:4			
Objecti ⁴	ve Question	4.0	1.00	
	An intercropping system can be said beneficial, if it has LER:			
	1. Equal to 1.0			
	2. < 1.0			
	3. >1.0			
	4. Zero			
	A1:1			
	A2:2	ollege	dur	nia
·///C·/I	Jeers/ADMINI~1/AppData/Local/Temp/Rar\$EXa25560.46266/174_R1_Live_AGRONOMY_1-120.html	lia's largest Stude	ent Review	Platform

		A3:3			
		A4 : 4			
Ob. 48	jective Qu 948			4.0	1.00
			ht avoidance mechanism is found in which of the following crops?		
			Barley		
		2.	Maize		
		3.	Sorghum		
		4.	Sunflower		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Ob	jective Qu	estion			
49	949		ng geometry that ensures a uniform incidence of solar radiation	4.0	1.00
			Square planting		
			Rectangular planting		
		3.	Mixed planting		
		4.	Random planting		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Ob	jective Qu	estion			
50	950	The K	ufri Bahar is a prominant variety of	4.0	1.00
		1.	Sunflower		
		2.	Cotton		
		3.	Potato		
		4.	Tobacco		
		A1:1			
		A2:2	colle	906	du

		A3:3			
		A4:4			
Obje	ective Que	estion		4.0	1.00
31	931	Hyrbio	l rice for commercial production was first evolved in	4.0	1.00
		1.	India		
		2.	China		
		3.	Japan		
		4.	USA		
		A1:1			
		A2:2			
		A3:3			
		A4 : 4			
	ective Que	estion			
52	952	Menth	a crop is commercially raised through	4.0	1.00
			Seed		
			Root cutting		
			Stolons		
			Leaflets		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ective Que	estion			
53	953	The oi	l content in sunflower is	4.0	1.00
		1.	10-20%		
			20-35%		
			35-45%		
			45-60%		
		A1:1			
		A2:2			
		A3:3	colle	σσ	du

		A4:4			
	ctive Qu	estion			
54	954	Which	among the following is the temperate grass?	4.0	1.00
			White and red clover		
			Napier grass		
		3.			
		4.	Guinea grass		
			Summer grand		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
	ctive Qu 955			4.0	1.00
		Aerop	onic technology is commercially used in quality seed/planting material production		
		1.	Tomato		
		2.			
			Potato		
			Brinjal		
		7.	Dilijai		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
		AT.T			
	ctive Qu	iestion		4.0	1.00
0	930	Weed	seed dispersal by ants is called as	4.0	1.00
		1.	Exozoochory		
		2.	Autochory		
		3.	Myrmecochory		
		4.	Herpochory		
		A1 - 1			
		A1:1			
		A2:2			
			coll	ege	du
:///C	::/Users	s/ADMINI~1	/AppData/Local/Temp/Rar\$EXa25560.46266/174_B1_Live_AGRONOMY_1-120.html	gest Stud	ent Revie

	Which among the following is an ephemeral weed?	
	1. Stellaria media	
	2. Phalaris minor	
	3. Medicago denticulata	
	4. Phyllanthus niruri	
	A1:1	
	A2:2	
	A3:3	
	A4:4	
Objective (Question	
60 960	Given below are two statements:	4.0 1.00
	Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management.	
	Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population.	
	In light of the above statements, choose the <i>most appropriate</i> answer from the options given below.	
	1. Both Statement (I) and Statement (II) are correct.	
	2. Both Statement (I) and Statement (II) are incorrect.	
	3. Statement (I) is correct but Statement (II) is incorrect.	
	4. Statement (I) is incorrect but Statement (II) is correct.	
	A1:1	
	A2:2	
	A3:3	
	A4:4	
Objective (Question	
61 961	Which of the following groups of herbicides, dicamba belongs to?	4.0 1.00
	Aryloxy alkanoic acids	
	2. Arylcarboxylic acids	
	3. Thiocarbamates	
	4. Dinitroanilines	
 -///C-/I-lea	A1 : 1 ers/ADMINI~1/AppData/Local/Temp/Rar\$EXa25560.46266/174_B1_Live_AGRONOMY_1-120.html	legedunia gest Student Review Blatform
.,,, 0.,036	5.57. (2.111111 17. pp. data/2000) 1011p/1/dat/20000.70200/177_D1_ENO_//ONONONI1_1-120.110111	20/01

A2:2
A3:3
A4:4

Objective Question

62 962

Inhibitors of photosynthesis at photosystem I.

- 1. Sulfonylureas
- 2. Benzoic acids
- 3. Diphenyl ethers
- 4. Bipyridyls

A1:1

A2:2

A3:3

A4:4

Objective Question

63 963

Match herbicides with their first use/testing or synthesis

4.0 1.00

Herbicide	First synthesis/use/testing
(A) Glyphosate	(I) 1995
(B) 2, 4-D	(II) 1971
(C) Diclosulam	(III) 1958
(D) Atrazine	(IV) 1944

Choose the *correct* answer from the options given below:

3.
$$(A) - (II), (B) - (I), (C) - (IV), (D) - (III)$$

A1:1

A2:2

A3:3

A4:4

Given	below are	two statements:	4.0	1.00
Staten	nent (I):	Three types of adjuvants used with herbicides are activator, spray modifier and utility.		
Staten	nent (II) :	Activator adjuvants are a part of the formulation.		
		bove statements, choose the <i>most appropriate</i> answer from the options		
1.	Both Sta	tement (I) and Statement (II) are correct.		
2.	Both Sta	tement (I) and Statement (II) are incorrect.		
3.	Statemen	nt (I) is correct but Statement (II) is incorrect.		
4.	Statemen	nt (I) is incorrect but Statement (II) is correct.		
A1:1				
A2:2				
A3:3				
A4:4				
uestion				
In Indi	a, herbicie	e resistance was first reported in	4.0	1.00
		55		
2.	Phalaris	minor		
3.	Ageratun	n houstonianum		
4.	Chenopo	dium album		
A1:1				
A2:2				
A3:3				
A4:4				
uestion				
Which	of the fol	lowing herbicides is highly volatile?	4.0	1.00
1.	Pendimet	thalin		
2.	Atrazine			
3.	Ethalflura	alin		
4.	EPTC			
A1:1				
	Staten Staten In light given 1 1. 2. 3. 4. A1:1 A2:2 A3:3 A4:4 Destion In Indi 1. 2. 3. 4. Which 1. 2.	Statement (I): Statement (II): In light of the algiven below. 1. Both Sta 2. Both Sta 3. Statement 4. Statement A1:1 A2:2 A3:3 A4:4 In India, herbicing 1. Echinoch 2. Phalaris 3. Ageratum 4. Chenopo A1:1 A2:2 A3:3 A4:4 Which of the fol 1. Pendiment 2. Atrazine	Statement (II): Activator adjuvants are a part of the formulation. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) is correct but Statement (III) is incorrect. 3. Statement (I) is correct but Statement (III) is incorrect. 4. Statement (I) is incorrect but Statement (III) is correct. Al::1 A2::2 A3::3 A4::4 Lectinochloa colona 2. Phalaris minor 3. Ageratum houstonianum 4. Chenopodium album A1::1 A2::2 A3::3 A4::4 Which of the following herbicides is highly volatile? 1. Pendimethalin 2. Atrazine	Given below are two statements: Statement (I): Three types of adjuvants used with herbicides are activator, spray modifier and utility. Statement (II): Activator adjuvants are a part of the formulation. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) is correct but Statement (II) is incorrect. 3. Statement (I) is correct but Statement (II) is correct. 4. Statement (I) is incorrect but Statement (II) is correct. Al::1 A2::2 A3::3 A4::4 In India, herbicie resistance was first reported in 1. Echinochloa colona 2. Phalaris minor 3. Ageratum houstonianum 4. Chenopodium album A1::1 A2::2 A3::3 A4::4 Institute

	A3:3			
	A4:4			
	A4:4			
Objective Q	Question		10	1.00
967	Suitab	le nozzles for herbicide spraying	4.0	1.00
	1.	Fan and impact type		
	2.	Adjustable nozzles		
	3.	Hollow cone nozzles		
	4.	Tripple action		
	A1:1			
	A2:2			
	A3:3			
	A4:4			
Objective Q	Question		4.0	1.00
908	A wee	d of both cropped and non cropped lands	4.0	1.00
	1.	Urena lobata		
	2.	Urtica dioca		
	3.	Ageratum sp		
	4.	Solanum xanthocarpum		
	A1:1			
	A2:2			
	A3:3			
	A4:4			
Objective Q	Question		10	1.00
969	A sele	ctive post-emergence herbicide used for weed control in rice is	4.0	1.00
	1.	Pretilachlor		
	2.	Butachlor		
	3.	Bispyribac Sodium		
	4.	Tembotrione		
	A1:1			
	A2:2	col	lege	edui
:///C:/Use	∥ rs/ADMINI~1		argest Stud	

10/23, 12:1	5 PM	174_B1_Live_AGRONOMY_1-120.html		
	A3:3			
	A4:4			
Objective Q	uestion			
70 970	Match Cultural pracices with crop	os .	4.0	1.00
	Cultural Practice	Crop		
	(A) Beushaning	(I) Sunflower		
	(B) Blind hoeing	(II) Maize		
	(C) Earthing up	(III) Rice		
	(D) Intercultivation with bullocks	(IV) Sugarcane		
	Choose the <i>correct</i> answer from the	options given below:		
	1. $(A) - (I), (B) - (II), (C) - (III)$			
	2. (A) - (III), (B) - (IV), (C) - (
	3. (A) - (I), (B) - (II), (C) - (IV), (D) - (III)		
	4. (A) - (III), (B) - (IV), (C) - (I), (D) - (II)		
	A1:1			
	A2:2			
	A3:3			
	A4:4			
Objective Q	ruestion			
71 971			4.0	1.00

Match List-II with List-II

List-I	List-II
Dam/Reservoir	State
(A) Tawa	(I) Uttar Pradesh
(B) Lower Bhavani	(II) Madhya Pradesh
(C) Balimala	(III) Tamil Nadu
(D) Matatila	(IV) Odisha
(E) Mayurakshi	(V) West Bengal

Choose the *correct* answer from the options given below:

- 1. (A) (III), (B) (IV), (C) (II), (D) (V), (E) (I)
- 2. (A) (II), (B) (III), (C) (IV), (D) (I), (E) (V)
- 3. (A) (I), (B) (V), (C) (IV), (D) (II), (E) (III)
- 4. (A) (V), (B) (IV), (C) (I), (D) (II), (E) (III)

A1:1

A2:2

A3:3

A4:4

Objective Question

Given below are two statements:

Statement (I): According to USDA estimates, the total amount of water on earth is about 1400 billion cubic kilometers

Statement (II): This amount of water is enough to cover the earth with a layer of 300 meters (depth)

In light of the above statements, choose the *most appropriate* answer from the options given below.

- 1. Both Statement (I) and Statement (II) are true.
- 2. Both **Statement** (**I**) and **Statement** (**II**) are false.
- 3. Statement (I) is true but Statement (II) is false.
- 4. Statement (I) is false but Statement (II) is true.

A1:1

A2:2

A3:3

		A4:4			
OF:	ctive Qu	Direction			
	973	Correct order, in decreasing trend, of principal components of India's war 1. Potential flow in rivers > Precipitation > Natural recharge > Evaporante 2. Precipitation > Evapotranspiration < Potential flow in rivers > Natural recharge > Evaporante 3. Potential flow in rivers > Precipitation > Evapotranspiration > Natural recharge > Natural recharge > Evapotranspiration > Natural recharge > Evapotranspiration > Natural recharge > Natural recharg	otranspiration atural recharge atural recharge	0 11	1.00
	ctive Qu 974	ve Question		.0 1	1.00
		Assertion (A): Addition of organic matter to a mineral soil leads to improvement in water holding capacity of the soil. Reason (R): Under tropical conditions, water holding properties and available water range of a mineral soil due to addition of organic matter may not change materially			
		In light of the above statements, choose the <i>most appropriate</i> answer from the options given below:			
		1. Both (A) and (R) are correct and (R) is the correct explanation of (A).			
		2. Both (A) and (R) are correct but (R) is NOT the correct explanation of (A).			
		3. (A) is correct but (R) is not correct.			
		4. (A) is not correct but (R) is correct.			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
	ctive Qu	Question	4	.0 1	.00

Read the following statements.

- (A) TDR stands for Time Domain Refraction.
- (B) TDR is based on the estimation of dielectric constant of water.
- (C) Dielectric constant of water is 80.
- (D) TDR is relatively unaffected by salinity or bulk density variations.
- (E) TDR measures soil moisture suction.

Choose the *correct* answer from the options given below:

- 1. (B) and (D) only
- 2. (A), (C) and (D) only
- 3. (C) and (D) only
- 4. (B), (C) and (E) only
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

When Δ (delta) is in cm, B (base period) is in days and D is in ha cumec⁻¹

- 1. $\Delta = \frac{864 \text{ B}}{\text{D}} (cm)$
- $2. \qquad \Delta = \frac{864 \, \mathrm{D}}{\mathrm{B}} \, (cm)$
- 3. $\Delta = \frac{8640 \text{ B}}{\text{D}} (cm)$
- 4. $\Delta = \frac{86.4 \,\mathrm{B}}{\mathrm{D}} \,(cm)$
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

collegedunia

Given below are two statements:

Statement (I): The sum of matric and osmotic potential is called 'hydraulic head' which is useful index for characterizing the energy status of soil-water with respect to plant-water uptake

Statement (II): Hydraulic potential is useful in evaluating the direction and intensity of water moving forces in the soil profile.

In light of the above statements, choose the *most appropriate* answer from the options given below.

- 1. Both Statement (I) and Statement (II) are correct.
- 2. Both Statement (I) and Statement (II) are incorrect.
- 3. Statement (I) is correct but Statement (II) is incorrect.
- 4. Statement (I) is incorrect but Statement (II) is correct.

A1:1

A2:2

A3:3

A4:4

Objective Question

78 978

Given below are two statements, one is labelled as **Assertion** (A) and other one labelled as

Reason (R).

Assertion (A): In a double ring infiltrometer, the double ring avoids requirement of deep insertion into the soil.

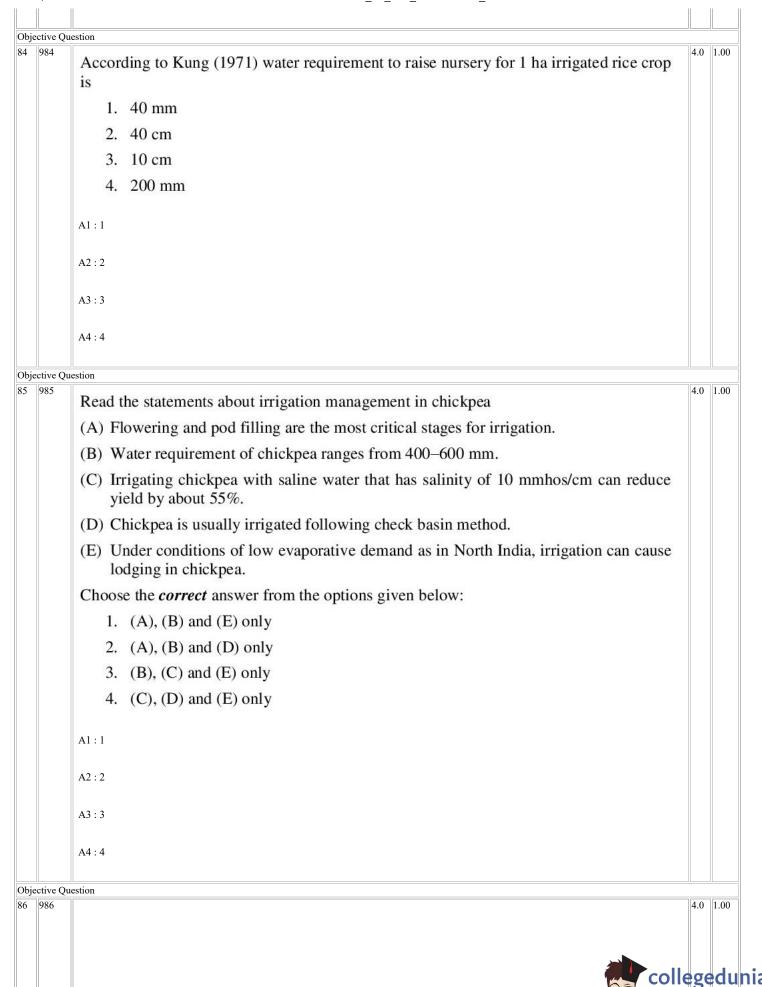
Reason (R): The outer ring provides a buffer of infiltrating water, which leads to force of infiltration below the inner ring to remain completely vertical and unidirectional.

In light of the above statements, choose the *correct* answer from the options given below.

- 1. Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).
- 3. (A) is true but (R) is false.
- 4. (A) is false but (R) is true.

A1:1

A2:2


A3:3

A4:4

collegedunia

			-1	
	List-I	List-II		
	Instrument	Parameter measurement		
	(A) Gypsum blocks	(I) Water flow		
	(B) Flume	(II) Soil moisture suction		
	(C) Infra-red balance	(III) Di-electric constant		
	(D) Irrometer	(IV) Electric resistance		
	(E) TDR	(V) Gravimetric moisture content		
	1. (A) - (IV), (B) - 2. (A) - (IV), (B) -	e <i>correct</i> answer from the options given below: (IV), (B) - (III), (C) - (II), (D) - (V), (E) - (I) (IV), (B) - (III), (C) - (I), (D) - (II), (E) - (V) (I), (B) - (V), (C) - (IV), (D) - (II), (E) - (III)		
	4. (A) - (IV), (B) -	(I), (C) - (V), (D) - (II), (E) - (III)		
	A1:1			
	A2:2			
	A3:3			
	A4:4			
ctive Q	uestion			
980	A 4% salt concentration	is equal to how many ppm?	4.0	1.00
	1. 40000			
	2. 4000			
	3. 400			
	4. 40			
	A1:1			
	A2:2			
	A3:3			
	A4:4			
	Duestion			
ctive Q				

		If electrical conductivity of a saturation extract of the soil is 11 dS/m, what will be the electrical conductivity (dS/m) of drainage water?		
		1. 0.11		
		2. 1.1		
		3. 5.5		
		4. 22		
		A1.1		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
O	ojective (uestion		
82			4.0	1.00
		1. 15000		
		2. 12000		
		3. 6000		
		4. 3000		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
O	ojective (uestion		
83	983	Which among the followings provides the correct sequence of four zones of the infiltration profile (from top to bottom)	4.0	1.00
		1. Transmission Zone – Wetting Zone – Transition Zone – Saturation Zone		
		2. Saturation Zone – Transition Zone – Transmission Zone – Wetting Zone		
		3. Transmission Zone – Transition Zone – Saturation Zone – Wetting Zone		
		4. Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone		
		A1:1		
		A2:2		
		N2.2		
		A3:3		
	 	A4:4	ge	dunia
ne://	/C:/US6	s/ADMINI~1/AppData/Local/Temp/Rar\$EXa25560.46266/174_B1_Live_AGRONOMY_1-120.html		35/51

The Law which states that whatever is being taken by plants from soil needs to be restored to maintain the nutrient supplying capacity of the soil is called "Law of Restitution" and it is propounded by:

- 1. Justus von Liebig (1840)
- 2. Hilgard (1888)
- 3. J.B. Boussingault (1802-1882)
- 4. E.W. Hilgard (1833-1916)

A1:1

A2:2

A3:3

A4:4

Objective Question

Parker et al. (1951) introduced the concept of Nutrient Index Value (NIV) to describe the fertility status of soils for the purpose of mapping. The NIV value of medium nutrient status is:

- 1. 0.5-1.0
- 2. 1.0-1.5
- 3. 1.5-2.0
- 4. 1.5-2.5

A1:1

A2:2

A3:3

A4:4

Objective Question

Secondary tillage is done primarily

- 1. To prepare root bed
- 2. To break hard pan
- 3. To prepare a fine tilth seed bed
- 4. To preserve soil structure

A1:1

A2:2

A3:3

collegedunia

4.0 1.00

		A4:4			
Ohio	ctive Qu	agtion			
	989			4.0	1.00
			ominant clay mineral present in Inceptisol is		
			Montmorrilonite		
			Illite		
			Kaolinite		
		4.	Chlorite		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
	ctive Qu	estion			
90	990	The di	ameter of fine particle in sand fraction according to USDA is:	4.0	1.00
			0.25-0.10 mm		
			0.50-0.25 mm		
			0.05-0.002 mm		
		4.	2.00 -1.00 mm		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Ohia	ective Qu	estion			
	991	CSHOII		4.0	1.00
			Coll		ء الم

Given below are two statements: One is labeled as **Statement** (I) and the other is labeled as (**Statement II**).

Statement (I): In India, Agricultural and Processed Food Products Export Development Authority (APEDA), Ministry of Commerce, Government of India, is the key accreditation agency

Statement (II): During XII Plan, Government of India initiated a Scheme named "Paramparagat Krishi Vikas Yojana" or "PKVY", which envisages promotion of organic farming.

In light of the above statements, choose the *most appropriate* answer from the options given below.

- 1. Both Statement (I) and Statement (II) are correct.
- 2. Both Statement (I) and Statement (II) are incorrect.
- 3. Statement (I) is correct but Statement (II) is incorrect.
- 4. Statement (I) is incorrect but Statement (II) is correct.

A1:1

A2:2

A3:3

A4:4

Objective Question

92 992

Given below are two statements, one is labelled as **Assertion** (A) and other one labelled as

Reason (R).

Assertion (A): Sulphur deficiencies first appear on the younger growth in the plants.

Reason (R): Sulphur is mobile in the plants, thereby, fading the normal green colour of the young leaves.

In light of the above statements, choose the *correct* answer from the options given below.

- 1. Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).
- 3. (A) is true but (R) is false.
- 4. (A) is false but (R) is true.

A1:1

A2:2

A3:3

A4:4

collegedunia

993		4.0	1.00
	Phosphorus (P) is an important essential nutrient.		
	(A) Plant roots absorb P in the $H_2PO_4^-$ form, but under neutral to alkaline environments, HPO_4^{2-} and or PO_4^{3-} ions could also be taken up.		
	(B) In normal P-sufficient plants, P-content varies from 0.1% to 0.4% by weight.		
	(C) It is an essential ingredient for $\it Rhizobium$ bacteria to convert atmospheric N (N ₂) into the ammonium (NH ₄) form usable by plant.		
	(D) Because of being immobile in plants, first signs of its deficiency appear on the older leaves.		
	Choose the <i>correct</i> answer from the options given below:		
	1. (A), (B) and (C) only.		
	2. (A), (B) and (D) only.		
	3. (B), (C) and (D) only.		
	4. (A), (C) and (D) only.		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
bjective Qu	uestion	4.0	1.00
4 994	As per critical relative humidity (CRH), the most hygroscopic fertilizer is	4.0	1.00
	Ammonium sulphate		
	2. Urea ammonium sulphate		
	3. Ammonium nitrate		
	4. Ammonium chloride		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
bjective Qu	lestion		
5 995		4.0	1.00
	coll		

Match List-II with List-II

Theory proposed	Thinker/Name of Theory, etc.)
(A) Root interception	(I) Bray, R.H. (1954)
(B) Law of diffusion	(II) Cate and Nelson (1965)
(C) Mobility concept	(III) Jenny and Overstrect (1939)
(D) Critical limit	(IV) Fick's (1885)

Choose the *correct* answer from the options given below:

- 1. (A) (III), (B) (IV), (C) (I), (D) (II)
- 2. (A) (II), (B) (I), (C) (IV), (D) (III)
- 3. (A) (III), (B) (I), (C) (IV), (D) (II)
- 4. (A) (IV), (B) (III), (C) (II), (D) (I)

A1:1

A2:2

A3:3

A4:4

Objective Question

96 996

Monoammonium phosphate is produced by reaction of ammonia with

4.0 1.00

- 1. Phosphoric acid
- 2. Nitric acid
- 3. Sulphuric acid
- 4. Hydrochloric acid

A1:1

A2:2

A3:3

A4:4

Objective Question

97 | 997

Prismatic soil structure is a distinct feature in

- 1. Red soils
- 2. Black soils
- 3. Alluvial soils
- 4. Sodic soils

		A1:1			
		A2:2			
		A3:3			
		A4:4			
	bjective Qu	estion			
9			stractants used for available nutrients:	4.0	1.00
			M KCL extract is used for determination of mineral N (NH ₄ and NO ₃) using soil: blution ratio of 1:10.		
			TPA extractant (pH 7.5) is used for determination of micronutrients using soil: blution ratio of 1:20.		
		100 30	mmonium acetate (1 N) solution is used for determination of potassium using bil: solution ratio of 1:5.		
			lsen reagent (0.5 M NaHCO ₃ , pH 8.5) is used for determination of available P in oil using soil: solution ratio of 1:20.		
		Choos	e the <i>correct</i> answer from the options given below:		
			(A), (B) and (C) only.		
			(A), (B) and (D) only.		
			•		
			(B), (C) and (D) only.		
		4.	(A), (C) and (D) only.		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
C	bjective Qu	estion			
9	9 999	The ta	rgeted yield concept for soil fertility evaluation was proposed by:	4.0	1.00
			S.P. Raychaudhuri		
		2.	T.D. Biswas		
			B. Ramamoorthy		
			N.P. Datta		
		т.	11.1. Data		
		A1:1			
		A2:2			
		A3:3			
		A4:4	coll	ege	du

Objective Question

100 1000

Match List-II with List-II

4.0 1.00

List-I	List-II
(Book/Theory proposed/ Characteristic, etc.)	(Author/Thinker/ Name of Theory, etc.)
(A) Khaira disease	(I) Molybdenum
(B) Whiptail symptom	(II) Zinc
(C) Hollow-heart in groundnut	(III) Manganese
(D) Grey speck in cereals	(IV) Boron

Choose the *correct* answer from the options given below:

- 1. (A) (I), (B) (II), (C) (III), (D) (IV)
- 2. (A) (II), (B) (I), (C) (IV), (D) (III)
- 3. (A) (III), (B) (I), (C) (IV), (D) (II)
- 4. (A) (IV), (B) (III), (C) (II), (D) (I)

A1:1

A2:2

A3:3

A4:4

Objective Question

101 1001

Which one is a minor-millet?

- 1. Foxtail millet
- 2. Buck wheat
- 3. Sorghum
- 4. Barley

A1:1

A2:2

A3:3

A4:4

Objective Question

102 1002

collegedunia

	The term allelopathy was coined by				
		1.	Holm		
		2.	Harper		
		3.	Molisch		
		4.	Arnon		
		A1:1			
		A2:2			
		A3:3			
		A4 : 4			
	tive Que	estion			
103	1003	What atrazin	will be the concentration of an atrazine solution if 2 kg of atrataf (50 y.a i of a)	4.0	1.00
		1.	0.2 %		
		2.	2.0 %		
		3.	0.1 %		
		4.	1.0 %		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Objec	tive Que	estion			
104	1004	Correc	t sequence of herbicide resistant cases in following crops:	4.0	1.00
		1.	Rice>wheat>maize>soybean		
		2.	Wheat>rice>soybean>maize		
		3.	Wheat>maize>rice>soybean		
		4.	Rice>maize>wheat>soybean		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Objec	tive Qu	estion	coll	200	

105	1005	1. 2. 3.	Asymptotic Linear Parabolic Exponential	4.0	1.00
		A3:3 A4:4			
	ctive Qu	estion			
106	1006	Protein	n and oil content of soybean is% and%, respectively.	4.0	1.00
			43 and 20		
			35 and 30		
			30 and 35		
			20 and 43		
		4.	20 and 43		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ctive Qu	estion			
107	1007	The in	ateraction between legume and non-legume plants in the form of supplementation ed as:	4.0	1.00
		1.	Annidation		
			Allelopathic		
		3.	Antagonism		
		4.			
			Supplementary		
		A1:1			
		A2:2			
		A3:3			
		A4:4			

	ctive Qu	estion			
108	1008		soil sample contains 20% moisture, calculate the specific heat of this soil fic heat of water and soil is 1.0 and 0.2, respectively).	4.0	1.00
			0.44 cal/kg		
		2.	0.44 cal/g		
		3.	0.33 cal/kg		
		4.	0.33 cal/g		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
	ctive Qu	estion			
109	1009	Which	one is not the correct ideotype for dryland farming?	4.0	1.00
		1.	Thick leaves		
		2.	Shallow root system		
		3.	Leaves horizontally oriented		
		4.	High water requirement		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
	ctive Qu	estion			
110	1010	Which	endogenous harmone increases under drought conditions?	4.0	1.00
		1.	Auxins		
		2.	Gibbrelic acid		
		3.	Abscisic acid		
		4.	Cytokinin		
		A1:1			
		A2:2			
		A3:3			
		A4 : 4	colle		

	ctive Qu	estion	1		
111	1011	If the weight of soil is 1.0 g, amount of potassium dichromate (1 N) is 10 ml, volume of ferrous ammonium sulphate (0.5 N) solution required for blank titration is 20.1 ml and volume of ferrous ammonium sulphate (0.5 N) solution required for soil sample titration is 17.4 ml, then the organic carbon content (%) in soil will be:	4.0	1.00	
		1. 0.47%			
		2. 0.57%			
		3. 0.37%			
		4. 0.67%			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ctive Qu	estion			
112	1012	The functions of zinc are:	4.0	1.00	
		(A) It is involved in the synthesis of indole acetic acid, metabolism of gibberellic acid and synthesis of RNA.			
		(B) It is a constituent of enzymes such as carbonic anhydrase (CA), alcoholic dehydrogenase and superoxide dismutase (SOD).			
		(C) Because of its preferential binding to sulphydryl group, Zn plays an important role in the stabilization and structural orientation of the membrane proteins.			
		(D) It influences translocation and transportation of P in plants. Under Zn-deficiency, poor translocation of P occurs, resulting in P-deficiency.			
		Choose the <i>correct</i> answer from the options given below:			
		1. (A), (B) and (D) only.			
		2. (A), (C) and (D) only.			
		3. (A), (B) and (C) only.			
		4. (B), (C) and (D) only.			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ctive Qu	estion estimate the state of th			
113	1013		4.0	1.00	

collegedunia

			e porosity when a soil have its bulk density and particle density of 1.50 mg/m ³ , respectively?		
		1. 44.4%			
		2. 43.4%			
		3. 45.3%			
		4. 46.3%			
		A1:1			
		A2:2			
		A3:3			
		A4 : 4			
	ctive Qu	estion			
114	1014	Given below are as Reason (R).	two statements, one is labelled as Assertion (A) and other one labelled	4.0	1.00
		Assertion (A):	Organic-S is made available to plants under aerobic upland conditions by mineralization into sulphates by S-oxidizing bacteria such as <i>Thiobacillus</i> .		
		Reason (R):	Mineralization of organic-S results in production of H ⁺ ions leading to the acidification of soil.		
		In light of the below.	above statements, choose the correct answer from the options given		
		1. Both (A)	and (R) are true and (R) is the correct explanation of (A).		
		2. Both (A)	and (R) are true but (R) is NOT the correct explanation of (A).		
		3. (A) is tru	e but (R) is false.		
			se but (R) is true.		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
	ctive Qu	estion			
115	1015			4.0	1.00

Given below are two statements:

Statement (I): Molybdenum is a component of nitrate reductase, nitrogenase, xanthine oxidase/dehydrogenase and sulphite oxidase.

Statement (II): The critical concentration of molybdenum-deficiency in plants is usually more than 0.1 ppm and its deficiencies resemble the N-deficiencies.

In light of the above statements, choose the *most appropriate* answer from the options given below.

- 1. Both Statement (I) and Statement (II) are correct.
- 2. Both Statement (I) and Statement (II) are incorrect.
- 3. Statement (I) is correct but Statement (II) is incorrect.
- 4. Statement (I) is incorrect but Statement (II) is correct.

A1:1

A2:2

A3:3

A4:4

Objective Question

116 1016

The physical process of soil degradation:

4.0 1.00

- 1. Fertility imbalance
- 2. Organic matter decline
- 3. Erosion and depletion
- 4. Acidification

A1:1

A2:2

A3:3

A4:4

Objective Question

117 1017

Given below are two statements:

Statement (I): A key component of conservation agriculture is soil tillage connected to zero tillage, reduced tillage and ridge tillage.

Statement (II): Improved crop yields are one benefit of the innovation known as zero tillage especially in rice-wheat system due to timely seeding of wheat.

In light of the above statements, choose the *most appropriate* answer from the options given below.

- 1. Both Statement (I) and Statement (II) are true.
- 2. Both Statement (I) and Statement (II) are false.
- 3. Statement (I) is true but Statement (II) is false.
- 4. Statement (I) is false but Statement (II) is true.

A1:1

A2:2

A3:3

A4:4

Objective Question

Biochar produd by incomplete combustion of biological materials is rich in

4.0 1.00

- 1. Nitrogen
- 2. Sulphur
- 3. Phosphorus
- 4. Carbon

A1:1

A2:2

A3:3

A4:4

Objective Question

Tree Crops: A Permanent Agriculture is written by

4.0 1.00

- Charles C. Harrison
- 2. Edgar F. Smith
- 3. Josiah H. Penniman
- 4. J. Russel Smith

A1:1

A2:2

	-,		11.12= 12=11-21.13=11.13=		
		A3:3			
		A4:4			
	ctive Qu	estion			
120	1020	Integra since	ated Wasteland Development Programme (IWDP) had been under implementation	4.0	1.00
		1.	1979-80		
		2.	1989-90		
		3.	1994-95		
		4.	1997-98		
		A1:1			
		A2:2			
		A3:3			
		A4:4			

