PREVIEW QUESTION BANK

Module Name : PLANT BIOTECHNOLOGY-ENG Exam Date : 14-Jul-2023 Batch : 10:00-12:00

Sr. No.	Clien	nt Question ID	Question Question Body and Alternatives Marks		ative arks	
	tive Qu	uestion				
	01			4.0	1.00	
		Which on	be of the following monounsaturated fatty acids is not an omega-9 (ω -9) fatty acid?			
		1. Palr	nitoleic acid (C16:1, Δ^9)			
			cic acid (C22:1, Δ ¹³)			
			dic acid (C18:1, Δ ⁹)			
		4. Ner	vonic acid (C24:1, Δ^{15})			
		A1:1				
		A2:2				
		A3:3				
		A4:4				
ject	tive Qu	uestion				
1	02			4.0	1.00	
		The decre	easing order of the numerical values of Molar Extinction Coefficient of following amino acids at 280 nm is:			
		(A). Cyste	ine			
		(B). Pheny	ylalanine			
		(C). Tyros	ine			
		(D). Trypt	ophan			
		Choose t	the correct answer from the options given below:			
			(C), (A), (B).			
			(C), (D), (A).			
			(D), (B), (A).			
		4. (D),	(B), (C), (A).			
		A1:1				
		A1.1				
		A2:2				
		AZ:Z				
		1 42 - 2				
		A3:3				
		A4:4				
		uestion		10	1.00	
	103			$\ ^{4.0}$	1.00	
			COIL	ege	edui	
			A/Ann Date// a cel/Terry / Part EV e4420 40272/470 44 PM Live Plant Pictor PC 4 420 html	ege	edu	

		Equal volumes of 0.1 M acetic acid and 0.1 M sodium acetate are mixed to form a buffer solution. Considering that the ionization of acetic acid is occurring at dissociation constant of 1.74 x 10 ⁻⁵ , what will be its pKa value? (Given: log 1.74 = 0.24) 1. 5.24 2. 4.76 3. 0.024 4. 0.5 A1:1 A2:2 A3:3 A4:4		
	<u></u>			
	ctive Qu	nestion	4.0	1.00
4	104		4.0	1.00
		Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).		
		Assertion (A): The fluorescence of Green Fluorescent Protein (GFP) occurs without the assistance of any helper molecule or prosthetic group.		
		Reason (R): Three amino acids-serine, tyrosine and glycine- in the sequence of GFP react between themselves to form a chromophore that imparts light-transducing capability to GFP		
		In light of the above statements, choose the <i>correct</i> answer from the options given below.		
		1. Both (A) and (R) are true and (R) is the correct explanation of (A).		
		2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).		
		3. (A) is true but (R) is false.		
		4. (A) is false but (R) is true.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ctive Qu	nestion		
5	105		4.0	1.00
		colle	ege	dunia
le:///C	:/Users	s/ADMINI~1/AppData/Local/Temp/Rar\$EXa1136.18373/170_14_B1_Live_Plant_Biotech_PG_1-120.html	st Stud	ent Review Platform 2/48

Match List-I with List-II

List-I	List-II
Sugar Alcohol	Use/Property
(A). Sorbitol	(I). Constituent of flavin coenzymes
(B). <i>myo-</i> Inositol	(II). Used as a laxative to relieve constipation
(C). Ribitol	(III). Most commonly used osmotic diuretic
(D). Mannitol	(IV). Cyclic sugar alcohol

Choose the correct answer from the options given below:

- 1. (A) (I), (B) (III), (C) (II), (D) (IV)
- 2. (A) (II), (B) (I), (C) (IV), (D) (III)
- 3. (A) (II), (B) (IV), (C) (I), (D) (III)
- 4. (A) (I), (B) (IV), (C) (II), (D) (III)
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

The molarity of a buffer soultion made up from a weak acid and its conjugate base would be equal to:

4.0 1.00

- 1. Molar concentration of weak acid only.
- 2. Molar concentration of the conjugate base of the weak acid.
- 3. Sum of the molar concentration of both the weak acid and its conjugate base.
- 4. Net value obtained after deducting the molar concentration of conjugate base from the concentration of weak acid.
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

Which of the following patterns is true about the relationship between three pKa values of triprotic phosphoric acid?

- 1. pKa1 < pKa2 < pKa3
- 2. pKa1> pKa2 > pKa3
- 3. pKa1= pKa2 = pKa3
- 4. pKa3= (pKa1 + pKa2)/2

A1:1

4.0 | 1.00

Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).

Assertion (A): Carbohydrates are more efficient storage form of the energy as compared to the triacylglycerols.

Reason (R): Carbohydrates are more oxidized and hence yield more energy on oxidation.

In light of the above statements, choose the correct answer from the options given below.

- 1. Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).
- 3. (A) is true but (R) is false.
- 4. Both (A) and (R) are false.
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

11 111

List-l	List-II
Form of the DNA	Occurance
(A). B-DNA	(I). Observed in vitro when DNA helix becomes desiccated.
(B). A-DNA	(II). The most common form of DNA found <i>in vivo</i> .
(C). Z-DNA	(III). Triple helical structure formed by polypurine-polypyrimidine stretch of DNA with mirror-repeat symmetry.
(D). H-DNA	(IV). adopted under high salinity conditions in short sequences that alternate pyrimidine and purine.

Choose the **correct** answer from the options given below:

- 1. (A) (II), (B) (III), (C) (I), (D) (IV)
- 2. (A) (II), (B) (I), (C) (III), (D) (IV)
- 3. (A) (II), (B) (I), (C) (IV), (D) (III)
- 4. (A) (II), (B) (IV), (C) (I), (D) (III)
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

12 112

4.0 1.00

		The absorbance of a solution of an analyte having 75% transmittance would be equal to (Given log 5= 0.6990 and log 3= 0.4771): 1. 0.75 2. 0.25 3. 0.125 4. 0.0625 A1:1 A2:2 A3:3 A4:4		
Object	ective Qu	lestion.		
	113	The "Van Deemter equation" describes the elements of band broadening and chromatographic column efficiency in terms of (A). Eddy diffusion of analyte in the column	4.0	1.00
		(B). Longitudinal diffusion of analyte in the column		
		(C). Mass transfer of analyte between stationary and mobile phase		
		(D). Flow rate		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A), (B) and (D) only. 2. (A), (B) and (C) only. 3. (A), (B), (C) and (D). 4. (C) and (D) only.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Qu	ll cuestion	140	1.00
14	114		4.0	1.00
le:///C	C:/Users	s/ADMINI~1/AppData/Local/Temp/Rar\$EXa1136.18373/170_14_B1_Live_Plant_Biotech_PG_1-120.html	eg	edun

Match	ist-	with	list-l	ı

List-I	List-II
Name of the Photorespiratory C ₂ cycle enzyme	Location of the enzyme
(A). Glycolate oxidase	(I). Mitochondria
(B). Glycine decarboxylase	(II). Peroxisome
(C). Glycerate kinase	(III). Cytosol
(D). NADPH-dependent hydroxypyruvate reductase 2	(IV). Chloroplast

Choose the correct answer from the options given below:

- 1. (A) (II), (B) (I), (C) (III), (D) (IV)
- 2. (A) (I), (B) (II), (C) (IV), (D) (III)
- 3. (A) (II), (B) (I), (C) (IV), (D) (III)
- 4. (A) (III), (B) (IV), (C) (I), (D) (II)
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

15 115

Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).

Assertion (A) : In the secondary structure of proteins, the parallel β -pleated sheets are less stable than antiparallel β -pleated sheets.

Reason (R): The hydrogen bonds of parallel β -pleated sheets are distorted in comparison to those of antiparallel β -pleated sheets.

In light of the above statements, choose the correct answer from the options given below.

- 1. Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).
- 3. (A) is true but (R) is false.
- 4. (A) is false but (R) is true.
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

16 116

4.0 1.00

		The sequence for the action of the following enzymes of fatty acid β-oxidation pathway is: (A), β-hydroxyacyl-CoA dehydrogenase (B). Thiolase (C). Enoyl CoA hydratase (D). Acyl CoA – dehydrogenase Choose the correct answer from the options given below: 1. (A), (B), (C), (D). 2. (B), (C), (A), (D). 3. (D), (C), (A), (B). 4. (C), (B), (D), (A).			
		A4:4			
01:					1
Оbје 17	ctive Qu	lestion	4.0	1.00	
		When two phosphatidyl glycerol moieties join with each other with the elimination of one glycerol molecule, the resulting phospholipid formed is: 1. Cardiolipin 2. Cephalin 3. Ceramide 4. Ganglioside A1:1 A2:2 A3:3			
		A4:4			
Oh:-	ctive Qu	action			
Obje		Fructans are polymers of fructose built upon which one of the following starter units? 1. Glucose 2. Galactose 3. Sucrose 4. Trehalose	4.0	1.00	
		A1:1 A2:2			
		A3:3	206	du	niละ
 e:///С	∥ ∷/Users	R3:3 s/ADMINI~1/AppData/Local/Temp/Rar\$EXa1136.18373/170_14_B1_Live_Plant_Biotech_PG_1-120.html	st Stud	ent Revie	748 atform

		A4:4				
Objec	tive Qu	uestion				
19 Which of the following enzymes contain an unusual amino acid viz. selenocysteine, at its active site? 1. Ascorbate peroxidase 2. Glutathione peroxidase 3. Superoxide dismutase 4. Catalase A1:1 A2:2					4.0	1.00
Oli	tive O	A3:3 A4:4				
	tive Qu	lestion			1.0	1.00
20	120				4.0	1.00
		Match List-I with List-II				
		List-I	List-II			
		Name of the enzyme	Cofactor			
		(A). Nitrogenase	(I). Siroheme			
		(B). Nitrite reductase	(II). Homocitrate			
		(C). Serine hydroxymethyl transferase	(III). Pyridoxal phosphate			
		(D). Acetyl CoA carboxylase	(IV). Biotin			
		Choose the correct answer from the open series of the correct answer from the correct answ	1) /) I)			
		A1:1				
		A2:2				
		A3:3				
		A4:4				
Objec	tive Qu	uestion				
21					4.0	1.00

		Given below are two statements, and is labelled as Assatism (A) and abbout as Island as Bosson (D)		
		Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). Assertion (A): The citric acid cycle is amphibolic in nature rather than only catabolic.		
		Reason (R) : Several biosynthetic pathways utilize citric acid cycle intermediates as precursors for the synthesis of important products.		
		In light of the above statements, choose the <i>correct</i> answer from the options given below.		
		 Both (A) and (R) are true and (R) is the correct explanation of (A). Both (A) and (R) are true but (R) is NOT the correct explanation of (A). (A) is true but (R) is false. (A) is false but (R) is true. 		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obie	ective Q	uestion		
	122		4.0	1.00
		The correct sequence for the flow of electrons between following components of mitochondrial electron transport chain is: (A). NADH dehydrogenase		
		(B). Cytochrome <i>bc</i> ₁ complex		
		(C). Ubiquinone		
		(D). Cytochrome C		
		Choose the correct answer from the options given below:		
		1. (A), (B), (C), (D).		
		2. (A), (C), (B), (D).		
		3. (B), (A), (D), (C).		
		4. (C), (B), (D), (A).		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
01:				
	123	uesuon	4.0	1.00
		colle	ege	du

Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). Assertion (A): In the early part of the twentieth century, the 2,4-Dinitrophenol (DNP) was prescribed as a "diet pill" for weight loss. Reason (R): The DNP reduces metabolic rate by uncoupling oxidative phosphorylation from electron transport. In light of the above statements, choose the correct answer from the options given below. 1. Both (A) and (R) are true and (R) is the correct explanation of (A). 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A). 3. (A) is true but (R) is false. 4. (A) is false but (R) is true. A1:1 A2:2 A3:3 A4:4 Objective Question 24 124 4.0 1.00 Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). Assertion (A): The nitrogenase enzyme is considered to be a sluggish and inefficient enzyme. Reason (R): The nitrogenase enzyme must go through several catalytic reduction cycles, wherein the two components of the nitrogenase viz. Fe-Protein and MoFe-Protein get dissociated from each other following each electron transfer, before final product i.e. ammonia appears. In light of the above statements, choose the correct answer from the options given below. 1. Both (A) and (R) are true and (R) is the correct explanation of (A). 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A). 3. (A) is true but (R) is false. 4. (A) is false but (R) is true. A1:1 A2:2 A3:3 A4:4 Objective Question 25 125 4.0 1.00 colleged

Match List-I with List-II

List-I	List-II
Reductive Reaction	Number of electrons needed
(A). Conversion of nitrogen into one molecule each of ammonia and hydrogen	(I). Six
(B). Reduction of nitrate ion into hydrazine	(II). Two
(C). Reduction of nitrate ion to nitrite ion	(III). Eight
(D). Reduction of sulfite to sulfide	(IV). Seven

Choose the correct answer from the options given below:

- 1. (A) (II), (B) (I), (C) (III), (D) (IV)
- 2. (A) (III), (B) (II), (C) (I), (D) (IV)
- 3. (A) (III), (B) (IV), (C) (II), (D) (I)
- 4. (A) (III), (B) (IV), (C) (I), (D) (II)
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

26 126

Reading $5' \rightarrow 3'$, the sequence of following loops present in the clover leaf structure of t-RNA would be

- (A). Anticodon loop
- (B). D-Loop
- (C). ΤψC loop
- (D). Variable loop

Choose the **correct** answer from the options given below:

- 1. (B), (A), (C), (D).
- 2. (A), (B), (C), (D).
- 3. (B), (A), (D), (C).
- 4. (B), (D), (A), (C).
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

27 127

67767		G	0.0 2
Matc	n liet	- I sanith	List-II

List-I	List-II
Substrate concentration in comparison to Michaelis-Menton constant (K_m) / Total enzyme concentration (E_T)	Reaction characteristics
(A). $[S] << K_m$	(I). Reaction follows zero-order kinetics
(B). [S] >> K _m	(II). Reaction obeys first order kinetics
(C). [S] = K _m	(III). K_{m} and V_{max} do not define enzyme catalyzed reactions
(D). [S] < [E _T]	(IV). Rate of reaction (velocity) equals to one-half of the maximum velocity.

Choose the correct answer from the options given below:

- 1. (A) (IV), (B) (III), (C) (II), (D) (I)
- 2. (A) (III), (B) (II), (C) (I), (D) (IV)
- 3. (A) (II), (B) (I), (C) (IV), (D) (III)
- 4. (A) (III), (B) (IV), (C) (I), (D) (II)
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

28 | 128 | Which of the following statement(s) is/are true about the Type IV isozyme of the hexokinase?

- (A). It is highly specific for glucose and is thus often called as glucokinase.
- (B). It has much higher K_m value for glucose
- (C). It is allosterically inhibited by glucose-6-phosphate
- (D). It is a non-inducible enzyme and follows Michaelis-Menten Kinetics

Choose the *correct* answer from the options given below:

- 1. (A), (B) and (D) only.
- 2. (A) and (B) only.
- 3. (A), (C) and (D) only.
- 4. (A) and (D) only.
- A1:1
- A2:2
- A3:3
- A4 : 4

collegedunia

	Question		
129		4.0	1.0
	Which of the following statement(s) is/are true about the role of Malonyl CoA in fatty acid metabolism?		
	(A). It is an inhibitor of the enzyme "Carnitine acyltransferase"		
	(B). High levels of malonyl CoA suppress fatty acid entry into the mitochondria		
	(C). High levels of malonyl CoA lead to reduced flux of fatty acids towards triglycerides' biosynthesis		
	(D). Low levels of malonyl CoA favour fatty acid oxidation		
	Choose the <i>correct</i> answer from the options given below:		
	1. (A), (B) and (D) only.		
	2. (A), (B) and (C) only.		
	3. (A), (B), (C) and (D).		
	4. (B), (C) and (D) only.		
	A1:1		
	A2:2		
	A2:2		
	A3:3		
	A4:4		
jective	Question		
130		4.0	1.00
	Which of the following statements are true about the bundle sheath cells of C ₄ plants?		
	(A). In comparison to mesophyll cells, they contain large number of agranal chloroplasts		
	(B). They have very thin cell wall, as compared to mesophyll cells, to facilitate gaseous exchange		
	(C). They have no intercellular spaces between them		
	(D). They generate less/no oxygen because of the low activity/lack of photosystem II		
	Choose the <i>correct</i> answer from the options given below:		
	1. (A), (B) and (D) only.		
	2. (A), (C) and (D) only.		
	3. (B), (C) and (D) only. 4. (A), (B) and (C) only.		
	4. (A), (b) and (c) only.		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
jective	Question		1.0

		Which of the following phosphate is removed from the incoming nucleotide during the bacterial transcription? 1. alpha 2. gamma 3. 5 prime 4. 3 prime A1:1 A2:2 A3:3 A4:4		
	ective Qu	lestion	4.0	1.00
32	132	Which of the following is not related with termination of transcription in E. coli? 1. ppGpp 2. pppGpp 3. Alarmones 4. pGp	4.0	1.00
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obi	ective Qu	uestion		
33	133	Which of the following is/are true for B-DNA?	4.0	1.00
		(A). It is Right-handed		
		(B). It has 10.4 base pairs per turn of helix		
		(C). It's helix diameter is broadest among A and Z type		
		(D). The glycosidic bond is of anti type		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A), (B) and (C) only.		
		2. (A), (C) and (D) only.		
		3. (B), (C) and (D) only. 4. (A), (B) and (D) only.		
		A1:1		
		A2:2		
		A3:3	206	dui

		A4:4		
Obje	ctive Q	uestion	10	1.00
34	134		4.0	1.00
		Which of the following cellular structure found in all prokaryotes?		
		(A). Ribosome		
		(B). Capsules		
		(C). Flagellum		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A), (B) and (C).		
		2. (A) only.		
		3. (B) only.		
		4. (C) only.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		A4.4		
Obje	ctive Q	uestion		
35	135		4.0	1.00
		Which of the following cellular structure is found only in a plant cells?		
		1. Glyoxysomes		
		2. Vacuoles		
		3. Lysosomes		
		4. Cytoskeleton		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		A4:4		
	ctive Q	uestion		
36	136		4.0	1.00
		Which of the following can add the terminal 5'CCA3' at the end of mature tRNA?		
		1. tRNA nucleotidyltransferase		
		2. RNase D		
		3. RNase P		
		4. RNase E/F		
		A1:1		
		Colle		
		The collection of the collecti	A O	

		A2:2		
		A3:3		
		A4:4		
	ctive Qu	uestion		
37	137		4.0	1.00
		What are Twintrons?		
		1. Group II introns		
		2. Group III introns		
		3. Composite structure made up of two or more Group II and Group III introns		
		4. An archaeal introns		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Qu	uestion	1	11
38	138	PRODUCTION OF ROLE OF THE TANK	4.0	1.00
		Which of the following restriction endonuclease requires Mg ²⁺ for cleavage?		
		1. EcoK		
		2. EcoRI		
		3. EcoB		
		4. EcoP1		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Qu	uestion		
39	139	MODIFICATION NO. OF MADE AND ADDRESS OF MADE A	4.0	1.00
		Which of the following is the activity of alkaline phosphatase?		
		1. Addition of 5' –PO ₄ -		
		2. Removal of 5'-PO ₄		
		3. Removal of nucleotides from 3' -ends		
		4. Removal of single-strand protrusions from the end		
		A1:1		
		A2:2		
		A3:3		
		A3:3	Þσ	du

		A4:4		
		uestion		1.00
40	140	Which of the following vector can be used for obtaining single-strand copies of a cloned sequence? 1. pUC18 2. Cosmid 3. λ phage 4. Phage M13	4.0	1.00
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Q	uestion		
41	141	Which of the following is an example of scorable marker?	4.0	1.00
		1. Ampicillin 2. β-galacturonidase 3. Kanamycin 4. Neomycin A1:1 A2:2		
		A3:3 A4:4		
		uestion		
42	142	Which of the following cannot be used for confirmation of positive clones? 1. Colony hybridization 2. Colony PCR 3. Growing transformants on selection media 4. Growing transformants under low temperature	4.0	1.00
		A1:1		
		A2:2		
		A3:3		
		A4:4		

Question	11	
	4.0	1.00
Probes are not used in		
4. Colony hybridization		
ALLI		
AI:1		
A2:2		
A3:3		
A4.4		
A4:4		
Question		
	4.0	1.00
4. (b) and (c) only.		
A1:1		
A2 · 2		
A2.2		
A3:3		
A4:4		
ruesiioii	4.0	1.00
Which of the following database do not store nucleic acid data?	1.0	1.00
1. GenBank		
3. DDBJ		
4. SWISS-PROT		
A1 · 1		
COIL	296	DE
	1. Southern hybridization 2. Northern hybridization 3. RT-CR 4. Colony hybridization Al: 1 A2: 2 A3: 3 A4: 4 Decidion A progeny drosophila with grey body and vestigial wings derived from a cross between parents with grey body and normal wings with black body and vestigial wings indicate: (A). There is recombination between alleles of body color and types of wings of drosophila. (B). These two genes assort independently (C). These genes are linked together (D). These genes are pleiotropic in nature Choose the correct answer from the options given below: 1. (A), and (C) only, 2. (A), (B) and (C) only, 3. (A), (B), (C) and (D). 4. (B) and (C) only. A1: 1 A2: 2 A3: 3 A4: 4 Microbian discovered and conditions are some and conditions are some and conditions. Which of the following database do not store nucleic acid data? 1. GenBank 2. E.MBL 3. DBIJ 4. SWISS-PROT	Probes are not used in 1. Southern hybridization 2. Northern hybridization 3. RT-PCR 4. Colony hybridization A1:11 A2:2 A3:3 A4:4 A progeny drosophila with grey body and vestigial wings derived from a cross between parents with grey body and normal (A). There is recombination between allelas of body color and types of wings of drosophila (B). These two genes assort independently (C). These genes are linked together (D). These genes are linked together (D). These genes are pleiotropic in nature Choose the correct answer from the options given below: 1. (A), and (C) only. 2. (A), (B) and (C) only. 3. (A), (B), (C) and (D). 4. (B) and (C) only. A1:1 A2:2 A3:3 A1:4 Which of the following database do not store nucleic acid data? 1. GenBank 2. EMBL 3. DDBJ 4. SWISS-PROT

		A2:2		
		A3:3		
		A4:4		
	ctive Qu	lestion	1	
46	146		4.0	1.00
		Hormones that are to be used in tissue culture can be sterilized by		
		1. Autoclave		
		2. Flame sterilization		
		3. Air (HEPA) filtration		
		4. Filter sterilization		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohie	ctive Qı	estion		
	147	ASILOT	4.0	1.00
		The expression of an anti-nutrional factor/negative regulator can be eliminated by which of the following tools		
		(A). RNA interference		
		(B). Genome editing		
		(C). Over-expression of encoding gene		
		(D). Insertional mutagenesis		
		(E). TILLING		
		Choose the <i>correct</i> answer from the options given below:		
		choose the correct answer from the options given below.		
		1. (A), (B), (C) and (D) only.		
		2. (A), (C), (D), and (E) only.		
		3. (B), (C), (D), and (E) only.		
		4. (A), (B), (D) and (E) only.		
		A1.1		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Qu	nestion		
48	148		4.0	1.00
		colle		٠

		Which of the following is correct statement for Genetic Code: (A). It uses ribonucleotide bases to make a codon.		
		(B). It uses deoxyribonucleotide bases to make a codon.		
		(C). A single coding dictionary is used by almost all viruses, prokaryotes, archaea, and eukaryotes		
		(D). During translation, the codons are read one after the other with no breaks between them until a stop signal is found.		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A), (C) and (D) only. 2. (A), (B) and (C) only. 3. (B), (C) and (D) only. 4. (A), (B), and (D) only.		
		A1:1		
		A2:2		
		A3:3		
		A4:4 		
Obje	ective Qu	uestion		
49	149		4.0	1.00
		Which of the following statement is/are correct with respect to bacterial transduction		
		Statement (A): A partially diploid bacterial cell for the transduced gene can be produced.		
		Statement (B): The partial diploid case is resulted due to a complete transduction phenomenon		
		In light of the above statements, choose the <i>most appropriate</i> answer from the options given below .		
		1. Both A and B are correct.		
		B is correct but A is incorrect. A is correct but B is incorrect.		
		4. Both A and B are incorrect.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obio	ective Qu	uestion		
	150		4.0	1.00
			loge	dun
		s/ADMINI~1/AppData/Local/Temp/Rar\$EXa1136.18373/170_14_B1_Live_Plant_Biotech_PG_1-120.html	rgest Stud	ent Review 8
-///				

Match List-I with List-II

List-I	List-II
(A). Isolation of CDS	(I). Affinity column with oligo-dT
(B). Isolation of plasmid	(II). Genomic library
(C). Isolation of mRNA	(III). Alkaline lysis
(D). Separation of proteins	(IV). Gel electrophoresis
	(V). cDNA library

Choose the correct answer from the options given below:

- 1. (A) (V), (B) (III), (C) (I), (D) (IV)
- 2. (A) (IV), (B) V, (C) I, (D) (II)
- 3. (A) (II), (B) (IV), (C) (III), (D) I
- 4. (A) I, (B) V, (C) III, (D) II

A1:1

A2:2

A3:3

A4:4

Objective Question

151

Matc

List-I	List-II
(A). Amplification of a known DNA sequence	(I). RT-PCR
(B). Amplification of cDNA sequence	(II). Competent Cells
(C). Selection of transformed cells	(III). PCR
(D). CaCl ₂	(IV). Colony PCR
	(V). Plasmid isolation

Choose the correct answer from the options given below:

- 1. (A) (I), (B) (V), (C) (II), (D) (IV)
- 2. (A) (V), (B) (IV), (C) (I), (D) (III)
- 3. (A) (III), (B) (I), (C) (IV), (D) (II)
- 4. (A) (II), (B) (III), (C) (IV), (D) (V)

A1:1

A2:2

A3:3

		A4:4		
je	ctive Qu	estion		
2	152	Which of the following statement is/are correct: Statement (A): Expressed sequence tags are short sequences obtained by sequencing of cDNA clones. Reason (B): ESTs can be used as STS.	4.0	1.00
		In light of the above statements, choose the <i>most appropriate</i> answer from the options given below . 1. Both (A) and (B) are correct.		
		2. Both (A) and (B) are incorrect. 3. Only (A) is correct but (B) is incorrect. 4. Only (B) is correct but (A) is incorrect.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
oje	ctive Qu	uestion		
3	153	Which of the following hormone is preferred for rooting in plant tissue culture?	4.0	1.00
		(A). IAA		
		(B). BAP (C). Kinetin		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A) only.		
		2. (B) only.		
		3. (C) only. 4. (A), (B) and (C).		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Qu	nestion		
	154	Where is the Indian Institute of Agricultural Biotechnology located in India?	4.0	1.00
		1. Ranchi 2. New Delhi		
		3. Hyderabad 4. Bangalore		edu

		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohie	ective Qu	uestion		
	155		4.0	1.00
		What is the correct extended form of GEAC?		
		1. Genetic & Epigenetic Advanced Centre		
		2. Genetic Engineering Appraisal Committee		
		3. Genome Editing Approval Committee		
		4. Genome Engineering Approval Committee		
		A1:1		
		A2:2		
		A3:3		
		A3.3		
		A4:4		
Obje	ective Qu	uestion		
56	156		4.0	1.00
		Centrioles are present in the cytoplasm of the cells of the organism		
		2 2 3 3 W		
		1. Animal cell		
		2. Plant Cell		
		3. Fungi		
		4. E. coli		
		A1.1		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	157	uestion	1.0	1.00
37	137		4.0	1.00
		PCR based DNA amplification is an essential feature of which of the following combination of molecular markers		
		1. RFLP, AFLP and SSR		
		2. RFLP, RAPD and SSR		
		3. AFLP, SSR and RAPD		
		4. RAPD, RFLP and SSR		
		A1:1		
		col	1_	
1	II		I CH O	#(111)

		A2:2			
		A3:3			
		A4:4			
	ctive Qu	estion			
58	158			4.0	1.00
		Match List-I with List-II			
		List-I	List-II		
		(A). Alec Jeffery	(I). Reverse transcriptase		
		(A). Alec Jellely	ii. Neverse transcriptase		
		(B). Temin and Baltimore	(II). PCR		
		(C). F. Griffith	(III). DNA finger printing		
		(D). Karry Mulli	(IV).Transformation in Bacteria		
		Choose the correct answ	er from the options given below:		
		1. (A) - (IV), (B) - (II), (C) - (I), (D) - (III)		
		2. (A) - (III), (B) - (IV), (
		3. (A) - (I), (B) - (III), (C)			
		4. (A) - (III), (B) - (I), (C)	- (IV), (D) - (II)		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
	ctive Qu	estion			
59	159	The properties of RAPD N	arker are	4.0	1.00
			arket are		
		(A). Dominant Marker			
		(B). Single Primer			
		(C). Specific and target ba			
		(D). Low annealing tempe			
		Choose the correct answe	r from the options given below:		
		1. (A), (B) and (C) only.			
		2. (A), (B) and (D) only			
		 (A), (C) and (D) only (B), (C) and (D) only 			
		(e), (e) and (b) only			
		A1:1			
		A2:2			
				acc	du

		A3:3				
		A4:4				
	ective Q	uestion	140	1.00		
60	160	W/L-a '- al-	4.0	1.00		
		What is the year of establishment of NCBI?				
		1. 1991				
		2. 1988				
		3. 1990				
		4. 1989				
		A1:1				
		A2:2				
		A3:3				
		A4:4				
Obje	ective Q	uestion				
	161		4.0	1.00		
		What is not the query sequence in BLASTn?				
		1. DNA				
		2. RNA				
		3. Protein				
		4. trna				
		A1:1				
		A2:2				
		A3:3				
		A4:4				
01:						
Оbј 62	ective Q	uestion	4.0	1.00		
02	102	What is the most relevant use of BLAST	4.0	1.00		
		1. Protein disulfide bond identification				
		2. Sequence Tagging				
		3. Sequence Alignment				
		4. DNA Methylation identification				
		A1:1				
		A2:2				
		A3:3				
		A4·4		٠		
	11	$11.04 \cdot 4$	ک (ز) مبدر	-		

uestion		
Universally required vitamin in tissue culture medium is 1. Nicotinic acid 2. Glutamic Acid 3. Thiamine HCI 4. Sucrose A1:1	4.0	1.00
A3:3 A4:4		
uestion		
Which of the following statement is most correct in DNA replication 1. Helicase enzyme separates the two strands, DNA gyrase helps in opening of DNA double helix in front of replication fork and Tus protein helps in termination of replication 2. DNA polymerase enzyme separates the two strands, DNA gyrase helps in opening of DNA double helix in front of replication fork and Tus protein helps in termination of replication 3. Helicase enzyme separates the two strands, DNA ligase helps in opening of DNA double helix in front of replication fork and Tus protein helps in termination of replication 4. DNA ligase enzyme separates the two strands, DNA gyrase helps in opening of DNA double helix in front of replication fork and topoisomerase helps in termination of replication A1:1 A2:2 A3:3 A4:4	4.0	1.00
Terminating or stop codons are 1. UAA, UGA, UGG 2. UAA, UAG, UGA 3. UAG, UUU, UGG 4. UAA, UAG, UGG A1:1 A2:2 A3:3	4.0	1.00
	1. Nicotinic acid 2. Glutamic Acid 3. Thianine HCI 4. Sucrose Al : 1 A2 : 2 A3 : 3 A4 : 4 Which of the following statement is most correct in DNA replication 1. Helicase enzyme separates the two strands, DNA gyrase helps in opening of DNA double helix in front of replication fork and Tus protein helps in termination of replication 2. DNA polymerase enzyme separates the two strands, DNA gyrase helps in opening of DNA double helix in front of replication fork and Tus protein helps in termination of replication 3. Helicase enzyme separates the two strands, DNA ligase helps in opening of DNA double helix in front of replication 4. DNA ligase enzyme separates the two strands, DNA gyrase helps in opening of DNA double helix in front of replication fork and Tus protein helps in termination of replication 4. DNA ligase enzyme separates the two strands, DNA gyrase helps in opening of DNA double helix in front of replication fork and topoisomerase helps in termination of replication 4. DNA ligase enzyme separates the two strands, DNA gyrase helps in opening of DNA double helix in front of replication fork and topoisomerase helps in termination of replication 4. DNA ligase enzyme separates the two strands, DNA gyrase helps in opening of DNA double helix in front of replication fork and topoisomerase helps in termination of replication 5. DNA gyrase helps in opening of DNA double helix in front of replication fork and topoisomerase helps in termination of replication 6. DNA ligase enzyme separates the two strands, DNA gyrase helps in opening of DNA double helix in front of replication fork and topoisomerase helps in termination of replication fork and topoisomerase helps in termination of replication fork and topoisomerase helps in termination of replication fork and type in the form of the plant in the form of the f	Universally required vitamin in tissue culture medium is 1. Nicotinic acid 2. Glutamic Acid 3. Thismine HCI 4. Sucrose A1:1 A2:2 A3:3 A4:4 Which of the following statement is most correct in DNA replication 1. Helicase enzyme separates the two strands, DNA gyrase helps in opening of DNA double helix in front of replication fork and flus protein helps in termination of replication of replication fork and flus protein helps in termination of replication of replication fork and flus protein helps in termination of replication of replication fork and flus protein helps in termination of replication fork and flus protein helps in termination of replication fork and flus protein helps in termination of replication fork and flus protein helps in termination of replication fork and flus protein helps in termination of replication fork and flus protein helps in termination of replication A1:1 A2:2 A3:3 A4:4 A1:4 A2:2 A3:3 A4:4 A4:

tive Question The chemical used for encapsulating somatic embryo to produce Synthetic seeds is 1. Sodium alginate 2. Sodium nitrate 3. Sodium chloride 4. Sodium acetate Al: 1	1.00
The chemical used for encapsulating somatic embryo to produce Synthetic seeds is 1. Sodium alginate 2. Sodium nitrate 3. Sodium chloride 4. Sodium acetate	1.00
The chemical used for encapsulating somatic embryo to produce Synthetic seeds is 1. Sodium alginate 2. Sodium nitrate 3. Sodium chloride 4. Sodium acetate	1.00
2. Sodium nitrate 3. Sodium chloride 4. Sodium acetate	
3. Sodium chloride 4. Sodium acetate	
4. Sodium acetate	
A1 · 1	
A2:2	
A3:3	
A4:4	
ctive Question	
167	1.00
The important features of Shine Dalgarno Sequence are	
(A).Determine Trasncription initiation site	
(B).Distinct means of determining the translational start site in prokaryote	
(C).Complementary to part of the 3' end of 16S rRNA	
(D).Termination recognition in prokaryotes	
Choose the <i>correct</i> answer from the options given below:	
1. (B) and (C) only.	
2. (A) and (B) only.	
3. (B) and (D) only	
4. (C) and (D) only.	
A1:1	
A2:2	
A3:3	
A4:4	
tive Question 4.0	1.00
Identify the nucleotide cap that is attached at the 5'end of mRNA	1.00
1. 5-methyl guanosine	
2. 7-methyl guanosine	
3. 5- acetyl guanosine	
4. 7- acetyl guanosine	
A1:1	
college	du
:/Users/ADMINI~1/AppData/Local/Temp/Rar\$EXa1136.18373/170_14_B1_Live_Plant_Biotech_PG_1-120.html	ent Ravie

	A2:2		
	A3:3		
	A4:4		
	Question		
69 169	DNA ligase is the molecular glue or gum, which joins together the cut-ends of DNA by creating	4.0	1.00
	Phosphotriester bond Phosphodiester bond		
	3. Hydrogen Bond		
	4. N-glycosidic bond		
	The grycostate bond		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
	Question		
70 170	The first crop plant genome sequenced	4.0	1.00
	1. Tomato		
	2. Wheat		
	3. Rice		
	4. Barley		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
	Question		
71 171	Batch cultures are type of suspension culture where	4.0	1.00
	1 Marilian in analysis and a second		
	Medium is continuously replaced A closed system and medium is loaded only at the begining		
	No depletion of the medium throughout the growth period		
	4. Cellular wastes are continuously removed and replaced		
	A1:1		
	A2:2		
		college	ا حال والم
	A3:3	COLLEGE	eaun

		A4 : 4		
Obje	ctive Qı	nestion		
72		The genes present in Bollgard II Cotton are 1. Cry1Ac and Cry 2Ab 2. Cry1Ac and CP4-EPSPS 3. Cry1Ac and Cry1Fa1 4. Barnase/Barstar genes A1:1	4.0	1.00
		A3:3 A4:4		
Obia	ctive Qı			
	173	T1 generation plants for Cry 1Ac gene showed 3:1 segregation for the selected trait and gene. When the 3 plants with the gene were selfed which one of the following statements explain the results 1. Two of three plants produced all the progeny plants with the gene 2. All three plants produced all the progeny plants with the gene 3. Only one out of 3 plants produced all the progeny plants which showed segregation for the gene 4. All the three plants produced progeny plants which showed segregation for the gene A1: 1 A2: 2 A3: 3 A4: 4	4.0	1.00
01:		· ·		
_	174	Which type of toxins are produced by Bacillus thuringiensis? 1. γ-Endotoxin 2. δ Endotoxin 3. α-Endotoxin 4. β-Endotoxin A1:1 A2:2 A3:3		1.00
			φσι	duk

oie	ctive Qu	estion				
	175	lestion		4.0	0	1 (
	173	The engume that dier	places histone octamer during transcription is	1.0		1.0
		The enzyme that disp	blaces historie octamer during transcription is			
		1. DNA polymera:	se			
		2. Gyrases				
		3. Helicases				
		4. RNA polymeras	se			
		A1:1				
		A2:2				
		A3:3				
		A4:4				
e	ctive Qu	estion				
	176			4.0	0	1.
		A type of B-lymphoc	yte that produces antibody is			
			♥ 1980-00-09-01 (
		1. Erythrocyte				
		2. Adipocyte				
		3. Plasma cell				
		4. Memory cell				
		A1:1				
		42.2				
		A2:2				
		A3:3				
		A4:4				
_	ctive Qu	estion		140	Λ	1
	177	Match List-I with List	t-II	4.0	0	1.'
			2			
		List-I	List-II			
		(A). Orthologues	(I). Removal of Introns			
		(B). Splicing	(II). Protein fingerprinting.			
		(C). Mass spectromet	try (III). Protein Database			
		(D). UniProt	(IV). Homologous genes found in different organisms			
		Choose the correct a	answer from the options given below:			
		1 (A) - (II) (D) (III	II), (C) - (IV), (D) - (I)			
			II), (C) - (IV), (D) - (I) III), (C) - (I), (D) - (II)			
						1
		3. (A) - (IV), (B) - (II), (C) - (I), (D) - (II) II), (C) - (IV), (D) - (I)			

		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obie	ctive Q	uestion		
	178		4.0	1.00
		DNA sequencing followed by genome annotation are steps of		
		1. Comparitive Genomics		
		2. Functional Genomics		
		3. Transcriptomics		
		4. Structural Genomics		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Q	uestion		
)	179		4.0	1.00
		The inter-chelating agent used as a stain for visualizing DNA in a UV spectrophotometer is		
		1. Ethidium Bromide		
		2. Bromophenol		
		3. Silver Nitrate		
		4. X Gal		
		4. A Gai		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
bie	ctive Q	uestion		
	180		4.0	1.00
		An example for a scorable marker in Genetic engineering		
		1. hpt		
		2. gus		
		3. amp		
		4. nptll		
		A1:1		
		A2:2	ollege	ubs
///C	:/User	s/ADMINI~1/AppData/Local/Temp/Rar\$EXa1136.18373/170_14_B1_Live_Plant_Biotech_PG_1-120.html	's largest Stud	ent Revie

		A3:3		
		A4:4		
Ohi				
	ective Qu	lestion	4.0	1.00
		The outer layer of the primary plant body, which protects the underlying tissues, is called	1.0	1.00
		1. Xylem		
		2. Ground tissue		
		3. Epidermis		
		4. Phloem		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Qu	uestion	4.0	1.00
02	162	The correct order of light reaction elements is	4.0	1.00
		a. PSI		
		b. PSII		
		c. Plastocyanin		
		d. Plastoquinol		
		1. b, d, c, a		
		2. b, c, d, a		
		3. a, d, c, d		
		4. b, c, a, d		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Qu	nestion		
83	183	The end product of anaerobic respiration is	4.0	1.00
		1. Ethanol		
		2. Pyruvate		
		3. 3-Phosphoglyceric acid		
		4. Glycerol		
		A1:1		٠,١
		A1:1	48	zu u

		A2:2				
		A3:3				
		A4:4				
Obje	ective Qu	uestion			4.0	1.00
04	104	Match List-I with List-II			4.0	1.00
		List-I	List-II			
		Plant hormone	Responses			
		(A). Gibberellins	(I). Inhibition of vivipary			
		(B). Indole-3-acetic acid	(II). Cell division factor			
		(C). 6-Benzylaminopurine	(III). Cell elongation			
		(D). Abscisic Acid	(IV). Seed germination			
		Choose the correct answe	r from the options given b	elow:		
		1. (A) - (I), (B) - (II), (C) -	(III) (D) - (IV)			
		2. (A) - (IV), (B) - (III), (C)				
		3. (A) - (II), (B) - (I), (C) -				
		4. (A) - (III), (B) - (IV), (C)				
		A1:1				
		A2:2				
		A3:3				
		A4:4				
	ective Qu	uestion			10	1.00
85	185	A conner containing prote	in that takes part in alastro	on transport in the chloroplast is	4.0	1.00
		A copper-containing prote	ein that takes part in electro	on transport in the chloropiast is		
		1. Cytochrome C-oxida:	se			
		2. Plastocyanin				
		3. Riboflavin				
		4. Plastoquinone				
		A1:1				
		A2:2				
		A3:3				
		A4.4				
		A4:4				
Obje	ective Qu	uestion				
86	186			colle	eg	adol

	s/ADMINI~1/AppData/Local/Temp/Rar\$EXa1136.18373/170 14 B1 Live Plant Biotech PG 1-120.html	ege	edu
189			
jective Q	uestion	4 0	1.00
	A4:4		
	A3:3		
	A2:2		
	A1:1		
	4. Atomic absorption spectroscope (AAS)		
	Inductively coupled plasma optical emission spectrometer (ICP-OES) Infrared Gas Analyzer (IRGA)		
	Isotope-ratio mass spectrometer (IRMS)		
188	The portable instrument used to record photosynthesis in plants is	4.0	1.00
ojective Q	uestion		
	A4:4		
	A3:3		
	A2:2		
	A1:1		
	Leaf Area Duration (LAD) Specific leaf area (SLA)		
	Leaf area ratio (LAR) Lead Area Index (LAI)		
	Extent of canopy cover at a particular developmental stage of crop is termed as		
187		4.0	1.00
bjective Q	uestion		
	A4:4		
	A3:3		
	A2:2		
	A1:1		
	4. trans-zeaun		
	3. 2,4,5-Trichlorophenoxyacetic acid 4. trans-zeatin		
	2. Napritialene Needle Neid		
	Paclobutrazol Naphthalene Acetic Acid		

	s/ADMINI~1/AppData/Local/Temp/Rar\$EXa1136.18373/170 14 B1 Live Plant Biotech PG 1-120.html	ege	edu
jective Qu	estion	4.0	1.00
entire O	partion		
	A4:4		
	A3:3		
	A2:2		
	A1:1		
	4. Net Assimilation Rate (NAR)		
	3. Crop Growth Rate (CGR)		
	1. Harvest Index (HI) 2. Relative Growth Rate (RGR)		
	1. Harvest Index (HI)		
191	[(Grain yield / Biological yield)× 100] =	4.0	1.00
ctive Qu	nestion		
	A4:4		
	A3:3		
	A2:2		
	A1:1		
	4. Mango		
	3. Mulberry		
	2. Bamboo		
	1. Teak		
190	An example of a perennial plant exhibiting monocarpic senescence is	4.0	1.00
ective Qu	nestion	4.0	1.00
	A4:4		
	A3:3		
	A2:2		
	A1:1		
	4. Leaf rosetting and the poor internode elongation		
	Interveinal chlorosis of young leaves Necrotic spots on old leaves and fruits		
	1. Interveinal chlorosis of older leaves		
	The typical earliest symptom of Iron (Fe) deficiency in the crop plant is		

	An example of non-climacteric fruit is		
	1. Banana		
	2. Mango		
	3. Avocado		
	4. Citrus		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
	Question	4.0	1.00
3 193	The common chemical agents used as preservative solutions to improve the keeping quality of cut flowers is	4.0	1.00
	1. Silver thiosulfate		
	2. Magnesium sulfate		
	3. Sodium chloride		
	4. Sodium hydroxide		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
bjective (Question		
194	A herbicide which belongs to a synthetic-auxin type is	4.0	1.00
	1. Glyphocine		
	2. Dicamba		
	Thidiazuron Atrazine		
	4. Atrazine		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
bjective (Question Question	4.0	1.00
	ers/ADMINI~1/AppData/Local/Temp/Rar\$EXa1136.18373/170_14_B1_Live_Plant_Biotech_PG_1-120.html	eσ	edu
∥ ///C⁺/Use	□ India's largers/ADMINI~1/AppData/Local/Temp/Rar\$EXa1136.18373/170_14_B1_Live_Plant_Biotech_PG_1-120.html	est Stu	lent Review

experiments helped researchers in understanding of photosynthesis in plants is Joseph Priestley's experiments Jan Ingenhousz's experiments C B van Neil's experiments T W Engleman's experiments		1.00
experiments helped researchers in understanding of photosynthesis in plants is Joseph Priestley's experiments Jan Ingenhousz's experiments C B van Neil's experiments I W Engleman's experiments 1 2 3 4	4.0	1.00
experiments helped researchers in understanding of photosynthesis in plants is Joseph Priestley's experiments Jan Ingenhousz's experiments T W Engleman's experiments T W Engleman's experiments	4.0	1.00
experiments helped researchers in understanding of photosynthesis in plants is Joseph Priestley's experiments Jan Ingenhousz's experiments T W Engleman's experiments T W Engleman's experiments	4.0	1.00
experiments helped researchers in understanding of photosynthesis in plants is Joseph Priestley's experiments Jan Ingenhousz's experiments C B van Neil's experiments T W Engleman's experiments	4.0	1.00
experiments helped researchers in understanding of photosynthesis in plants is Joseph Priestley's experiments Jan Ingenhousz's experiments C B van Neil's experiments T W Engleman's experiments	4.0	1.00
experiments helped researchers in understanding of photosynthesis in plants is Joseph Priestley's experiments Jan Ingenhousz's experiments C B van Neil's experiments T W Engleman's experiments	4.0	1.00
experiments helped researchers in understanding of photosynthesis in plants is Joseph Priestley's experiments Jan Ingenhousz's experiments C B van Neil's experiments	4.0	1.00
experiments helped researchers in understanding of photosynthesis in plants is Joseph Priestley's experiments Jan Ingenhousz's experiments C B van Neil's experiments	4.0	1.00
experiments helped researchers in understanding of photosynthesis in plants is Joseph Priestley's experiments Jan Ingenhousz's experiments	4.0	1.00
2 3 4 experiments helped researchers in understanding of photosynthesis in plants is Joseph Priestley's experiments	4.0	1.00
2	4.0	1.00
2	4.0	1.00
2		
2 3		
2 3		
2		
1		
4. Stomata		
B. Hydathodes		
E. Lenticell		
. Pneumatophores		
process of the discharge of liquid from the tip of a healthy leaf under numid conditions is called guttation, and this process irs through specialized pores called		
process of the discharge of liquid from the tip of a healthy leaf under humid conditions is called guttation, and this process	4.0	1.00
	4.0	1.00
4		
3		
2		
E. Carbon Assimilation		
2. Transpiration ratio		
. Water use efficiency		
amount of water transpired by a plant divided by the amount of carbon dioxide assimilated is known as		
. Wa . Tra . Qu	ater use efficiency anspiration ratio antum Efficiency	anspiration ratio Jantum Efficiency

		1. 30-40 per cent 2. 20-30 per cent 3. 80-90 per cent 4. 3 - 8 per cent A1: 1 A2: 2 A3: 3 A4: 4	ble horticultural produce with a short shelf life is		
_	ctive Qu	uestion			
	199	{Note: soil water potential (Ψ ^{soi} (Ψ ^{atmosphere})} 1. Ψsoil > Ψroot > Ψleaf > Ψatmosphere > 2. Ψroot > Ψsoil > Ψatmosphere > 4. Ψroot > Ψatmosphere > 4. Ψroot > Ψatmosphere > 4. Ψroot > Ψatmosphere > 4. 2 2 A3:3 A4:4	osphere , ψleaf	4.0	1.00
	ctive Qu	uestion		4.0	1.00
		Match List-I with List-II			
		List-I	List-II		
		(Activity/event)	(Description of the post-harvest system)		
		(A). Harvesting of farm produce	(I). Quantity loss of harvested produce		
		(B). Marketing of farm produce	(II). Quality loss of produce		
		(C). Loss of physical substance	(III). The technical activity of the post-harvest system		
			1 de 90 yeu		
		(D). Loss of seed viability Choose the correct answer from 1. (A) - (III), (B) - (IV), (C) - (I), (2. (A) - (I), (B) - (II), (C) - (III), (I 3. (A) - (I), (B) - (II), (C) - (IV), (I 4. (A) - (III), (B) - (IV), (C) - (II),	(D) - (II) D) - (IV) D) - (III)		

		A1:1		
		A2:2		
		A3:3		
		A3:3		
		A4:4		
Obie	ctive Qı	estion		
101			4.0	1.00
		In trees at a height of 75 meters, the magnitude of gravitational component of water potential in leaves is:		
		1 0.25 MPa		
		2 0.50 MPa		
		3 0.75 MPa		
		4 1.00 MPa		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Qu	uestion	4.0	1.00
102	202	An example of single membrane cell organelle associated with oil bodies in plant cells is:	4.0	1.00
		1. Peroxisome		
		2. Lysosome		
		3. Vacuole		
		4. Glyoxysome		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Qu	uestion	4.0	1.00
103	203		4.0	1.00
			leσ	edunia
 e:///C	:/Users	s/ADMINI~1/AppData/Local/Temp/Rar\$EXa1136.18373/170_14_B1_Live_Plant_Biotech_PG_1-120.html	rgest Stu	edunia dent R40748 Blatfor
				-

Enzymes of HMP shunt pathway are located in:

- (A). Cytosol
- (B). Plastids
- (C). Mitochondria
- (D). Peroxisomes

Choose the correct answer from the options given below:

- 1. (A) and (D) only
- 2. (A), (B) and (C) only
- 3. (A), and (C) only
- 4. (A) and (B) only
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

104 204

Match **List-I** with **List-II** pertaining to scientists and their contribution in various processes/ functioning in plant cells through equations/ laws/ models

List-I	List-II
(Scientist)	(Association)
(A). Mitchel	(I). Rate of diffusion of molecules down the concentration gradient/ chemical gradient
(B). Ficks	(II). Ion distribution across cell membranes - related to the membrane potential
(C). Giaquinta	(III). Chemi-osmotic machanism - ATP synthesis
(D). Nernst	(IV). Sucrose-proton transport model involving energy

Choose the correct answer from the options given below:

- 1. (A) (III), (B) (IV), (C) (I), (D) (II)
- 2. (A) (III), (B) (I), (C) (IV), (D) (II)
- 3. (A) (II), (B) (III), (C) (I), (D) (IV)
- 4. (A) (III), (B) (II), (C) (IV), (D) (I)
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

105 205

4.0 1.00

	s/ADMINI~1/AppData/Local/Temp/Rar\$EXa1136.18373/170 14 B1 Live Plant Biotech PG 1-120.html	lego	edu
3 208	_	4.0	1.00
jective Q	uestion		
	A4:4		
	A3:3		
	A2:2		
	A1:1		
	4. H ⁺		
	3. Ca ⁺⁺		
	1. Mg ⁺⁺ 2. K ⁺		
	In plant cells, the principal ion that is electrogenically pumped across membranes in plasmamembrane and tonoplast is		
7 207		4.0	1.00
ojective Q	estion		
	A4:4		
	A3:3		
	A2:2		
	A1:1		
	4. Aspartate		
	3. Serine		
	2. Glutamate		
	1. Glycine		
200	The amino donor to oxoglutarate during photorespiration is	7.0	1.00
ojective Q	uestion	4.0	1.00
	A4:4		
	A3:3		
	A2:2		
	A1:1		
	4. Mg		
	3. Fe		
	2. Mo		
III .			
	1. Mn		

Identify the crop(s) requiring vernalization :

- (A). Barley
- (B). Sunflower
- (C). Carrot
- (D). Ragi

Choose the correct answer from the options given below:

- 1. (A) only
- 2. (A) and (C) only
- 3. (C) and (D) only
- 4. (B) only
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

109 209

Match List-I with List-II pertaining to the highest agricultural crop production in states in India

4.0 1.00

List-I	List-II
(Crop)	(State with highest Production)
(A). Chickpea	(I). Karnataka
(B). Cotton	(II). Madhya Pradesh
(C). Mustard	(III). Maharashtra
(D). Pigeon Pea	(IV). Rajasthan

Choose the correct answer from the options given below:

- 1. (A) (IV), (B) (II), (C) (III), (D) (I)
- 2. (A) (II), (B) (III), (C) (IV), (D) (I)
- 3. (A) (III), (B) (I), (C) (II), (D) (IV)
- 4. (A) (I), (B) (IV), (C) (III), (D) (II)
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

110 210

	Most commonly used chemicals to break dormancy in seeds requiring light (Ex. Oats, Lettuce, Gladiolus etc.) are:		
	(A). Potassium nitrate		
	(B). Kinetin		
	(C). Thiourea		
	(D). NAA		
	Choose the <i>correct</i> answer from the options given below:		
	1. (A), (B) (C) and (D) 2. (B), (C) and (D) only.		
	3. (B) and (D) only.		
	4. (A) and (C) only.		
	A1:1		
	A2:2		
	A3:3		
	A4 : 4		
Objecti 111 21	re Question	4.0	1.00
	Examples of Non-climacteric fruits		
	(A). Lemon		
	(B). Cherry		
	(C). Guava		
	(D). Grape		
	Choose the <i>correct</i> answer from the options given below:		
	1. (A), (C) and (D) only.		
	2. (A), (B) and (D) only.		
	3. (A), (B) and (C) only		
	4. (B), (C) and (D) only.		
	A1:1		
	AI:1		
	A2:2		
	A3:3		
	A4:4		
Objecti	ve Question		
112 21		4.0	1.00
	colle		

		"Richmond-Lang effect" on the process of ageing and remobilization of nutrients is associated with this hormone in plants: 1. Abscisic acid 2. Cytokinins 3. Gibberellins 4. Ethylene A1:1 A2:2 A3:3 A4:4			
Oh	jective Qı	lestion			
	jective Qu 213	uestion	4.0	1.00	
		Identify the crop plants with "zero" or "nearly zero" CO ₂ compensation point (A). Ragi, Pearlmillet, Amaranthus (B). Cowpeas, Groundnut, Pineapple (C). Sugarcane, Maize, Foxtailmillet (D). Pineapple, Wheat, Sorghum			
		Choose the <i>correct</i> answer from the options given below: 1. (A), (B) and (D) only 2. (B) and (C) only. 3. (A) and (C) only 4. (C) and (D) only			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
	jective Qu	uestion			
114	214		4.0		
∥ le:///	∥ 'C:/Users	s/ADMINI~1/AppData/Local/Temp/Rar\$EXa1136.18373/170_14_B1_Live_Plant_Biotech_PG_1-120.html	st Stud	ent Revie 45/	nia 48 ^{latform}

Match List-I with List-II	170_14_B1_Liv
List-I	List-II
(Institution)	(Location)
(A). National Institute for Rural Development	(I). Barrackpore
(B). ICAR-Indian Institute of Sugarcane Research	(II). Hyderabad
(C). ICAR - National Dairy Reserch Institute	(III). Lucknow
(D). ICAR - Central Institute for Jute and Allied Fibres	(IV). Karnal
Choose the correct answer from the options given be	elow:
1. (A) - (II), (B) - (IV), (C) - (I), (D) - (III)	
2. (A) - (IV), (B) - (I), (C) - (III), (D) - (II)	
3. (A) - (II), (B) - (III), (C) - (IV), (D) - (I)	
4. (A) - (II), (B) - (I), (C) - (III), (D) - (IV)	

A1:1

A2:2

A3:3

A4:4

	Ouestion

115	215		4.0	1.00
		An appropriate statistical tool used to compare the differences among three or more than three groups is :		
		1. t - test		
		2. Correlations		
		3. ANOVA		
		4. Regression		
		A1:1		
		A2:2		
		A3:3		
		A4:4		

Objective Question

Desmotubule in the plasmodesmata joing the adjacent plant cells is formed from :

- 1. Transvacuolar strand
- 2. Endoplasmic reticulum network
- 3. Golgi apparatus
- 4. Microtubules

A1:1

4.0 1.00

	A2:2		
	A3:3		
	A4:4		
	AT.T		
	Question		
117 217		4.0	1.00
	Identify the crop plants with "Albuminous" seeds :		
	(A). Castor, Cashew, Coconut		
	(B). Cucumber, Tamarind, Groundnut		
	(C). Sunflower, Tomato, Papaya		
	(D). Mustard, Redgram, Pea		
	Choose the <i>correct</i> answer from the options given below:		
	1. (B) and (D) only.		
	2. (A) and (C) only		
	3. (C) and (D) only		
	4. (B) and (C) only		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
Objective	Question		
118 218		4.0	1.00
	Given below are two statements:		
	Statement (I): As per "Harrington thumb rules" (ISTA rules), Viability of seeds depends on storage conditions where a) For each		
	10% decrease in seed moisture content, the storage life of the seeds is doubled; b) For each 10°F (5.6°C) decrease in seed		
	storage temperature, the storage life of seed is doubled.		
	Statement (II) : The arithmetic sum of storage temperature in ⁰ F and the % relative humidity should not exceed 100, with no more than half the sum contributed by the temperature.		
	In light of the above statements, choose the <i>most appropriate</i> answer from the options given below.		
	Both Statement (I) and Statement (II) are correct.		
	2. Both Statement (I) and Statement (II) are incorrect.		
	3. Statement (I) is correct but Statement (II) is incorrect.		
	4. Statement (I) is incorrect but Statement (II) is correct.		
	A1:1		
	A2:2		
	A2.2		
	A3:3		
	A4:4	Δα.	di

Obje	ctive Qu	estion						
119	219	Based on Distribution and Arrangement of STOMATA in leaves, M	latch List-I with List-II :		4.0	1.00		
		List-I	List-II					
		(Description)	(Crop/ plant)					
		(A). Present on lower surface only	(I). Maize, Rice					
		(B). Present more on the lower surface and less on upper surface	(II). Nelumbo, Nymphaea					
		(C). Equally distributed on both upper surface and lower surface	(III). Potato, Tomato					
		(D). Present only on upper surface	(IV). Apple, Mulbery					
		Choose the correct answer from the options given below:						
		1. (A) - (IV), (B) - (I), (C) - (III), (D) - (II) 2. (A) - (IV), (B) - (III), (C) - (I), (D) - (II)						
		3. (A) - (I), (B) - (II), (C) - (IV), (D) - (III)						
		4. (A) - (IV), (B) - (I), (C) - (II), (D) - (III)						
		The first of the f						
		A1:1						
		A2:2						
		A3:3						
		A4:4						
Obje	ctive Qu	re Question						
120					4.0	1.00		
		Occurrence of "Indole Acetoldoxime Pathway" of auxin biosynthesis is characteristic to the members of this family						
		1. Compositae						
		2. Chinapodiaceae						
		3. Brassicaceae						
		4. Malvaceae						
		A1:1						
		A2:2						
		A3:3						
		A4:4						

