JEE Main 2024 Question Paper with Solution Jan 31 Shift 2 (B.E./B.Tech)

JEE Main Physics Questions

Ques 1. The speed of sound in oxygen in STP will be approximately? Given that $R=8.3$ and $y=1.4$

Ans. $330.05 \mathrm{~m} / \mathrm{s}$
Ques 2. If the current through an incandescent lamp decreases by 20\%, how much change will be there in its illumination?

Ans. 36\%

Solution: The illumination provided by an incandescent lamp is directly proportional to the square of the current passing through it (assuming the voltage remains constant), according to the formula:

Illumination $\propto I^{2}$
Where:

- Illumination is the brightness or intensity of light produced
- l is the current passing through the lamp

If the current decreases by 20%, it means the new current $\left(I_{\text {new }}\right)$ is 80% of the original current ${ }^{\left(I_{\text {old }}\right)}$. Mathematically, we can represent this as:

$$
I_{\text {new }}=0.8 \times I_{\text {old }}
$$

Now, let's calculate the change in illumination:
Change in illumination=New illumination-Old illumination

$$
\begin{aligned}
& =\left(I_{\text {new }}\right)^{2}-\left(I_{\text {old }}\right)^{2} \\
& =\left(0.8 \times I_{\text {old }}\right)^{2}-\left(I_{\text {old }}\right)^{2} \\
& =\left(0.64 \times I_{\text {old }}^{2}\right)-\left(I_{\text {old }}\right)^{2} \\
& =-0.36 \times I_{\text {old }}^{2}
\end{aligned}
$$

So, the change in illumination will be a decrease of 36% from the original illumination.

Ques 3. Mass of the moon is $1 / 100$ times the mass of a planet. Its diameter is $1 / 16$ the diameter of the planet if the escape velocity of the planet is V then the escape velocity of the moon will be

Ans. V/3

Ques 4. The period of oscillation of system shown below is $\pi \sqrt{ }(\mathrm{aM} / 5 \mathrm{~K})$ then a is

Ans. 12

Ques 5. For the block shown, F_{1} is the minimum force required to move block upward and F_{2} is the minimum force required to prevent it from slipping find $\left|F_{1}-F_{2}\right|$
A. $50 \operatorname{sqrt}(3) \mathrm{N}$
B. 5 sqrt(3) N
C. $25 \operatorname{sqrt}(3) \mathrm{N}$
D. $(5 \mathrm{sqrt}(3)) / 2 \mathrm{~N}$

Ans. B

Ques 6. Unpolarised light incident on transparent glass at incident angle 60°. If reflected ray is completely polarized, then angle of refraction is
A. 45°
B. 60°
C. 30°
D. 37°

Ans. C

Ques 7. Force on a particle moving in a straight line is given by $F=6 t^{2} i$ $3 t j$ and velocity is $v=3 t^{2} i+6 t j$. Find power at $t=2$.
A. 216 W
B. 108 W
C. 0 W
D. 54 W

Ans. A

Solution: To find the power at time $t=2$, we'll use the formula for power:
$P=\vec{F} \cdot \vec{v}$
Where:

- \vec{F} is the force vector
- \vec{v} is the velocity vector

Given that:

$$
\begin{aligned}
& \vec{F}=6 t^{2} \hat{i}-3 t \hat{j} \\
& \vec{v}=3 t^{2} \hat{i}+6 t \hat{j}
\end{aligned}
$$

Let's calculate the force at $\mathrm{t}=2$

$$
\begin{aligned}
& \vec{F}(t=2)=6(2)^{2} \hat{i}-3(2) \hat{j} \\
& \vec{F}(t=2)=24 \hat{i}-6 \hat{j}
\end{aligned}
$$

Now, let's calculate the velocity at $\mathrm{t}=2$

$$
\begin{aligned}
& \vec{v}(t=2)=3(2)^{2} \hat{i}+6(2) \hat{j} \\
& \vec{v}(t=2)=12 \hat{i}+12 \hat{j}
\end{aligned}
$$

Now, let's find the dot product of \vec{F} and \vec{v} :

$$
\begin{aligned}
& \vec{F} \cdot \vec{v}=(24 \hat{i}-6 \hat{j}) \cdot(12 \hat{i}+12 \hat{j}) \\
& =(24 \times 12)+(-6 \times 12) \\
& =288-72 \\
& =216
\end{aligned}
$$

So, the power at $\mathrm{t}=2$ is 216 W

Ques 8. If $E=\left(A-x^{2}\right) / B t$ where E is energy, x is displacement and t is time. Find dimensions of $A B$
A. $\left[M^{-1} L^{2} T\right]$
B. $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
C. $\left[M^{-1} L^{2} \mathbf{T}^{-2}\right]$
D. $\left[\mathrm{ML}^{2} \mathbf{T}^{-2}\right]$

Ans. A

Ques 9. Two solid spheres each of mass $\mathbf{2 k g}$ and radius 75 cm are arranged as shown. Find MOI of the system about the given axis.

A. $3.15 \mathrm{~kg} \mathrm{~m}^{2}$
B. $31.5 \mathrm{~kg} \mathrm{~m}^{2}$
C. $0.9 \mathrm{~kg} \mathrm{~m}^{2}$
D. $9 \mathrm{~kg} \mathrm{~m}^{2}$

Ans. A

Ques 10. Find average power in electric circuit if source voltage $(\mathrm{V})=$ $20 \sin (100 \omega t)$ and current in the circuit $(I)=2 \sin (100 \omega t+\pi / 3)$
A. 10 W
B. 20 W
C. 5 W
D. 15.5 W

Ans. A

Ques 11. In a photoelectric experiment, frequency $f=1.5 f_{0}\left(f_{0}\right.$: threshold frequency). If the frequency of light is changed to $f / 2$, then photocurrent becomes (intensity of light has doubled)
A. Zero
B. Doubled
C. Same
D. Thrice

Ans. A

Solution: In the photoelectric effect, the stopping potential (and hence the photocurrent) depends on the frequency of incident light. When the
frequency of incident light is below the threshold frequency $\left.{ }^{(} f_{0}\right)$, no photoelectrons are emitted, resulting in zero photocurrent.
Given that the frequency of light in the first scenario is $1.5 f_{0}$ and the frequency of light is changed to $f / 2$ in the second scenario, let's analyze the effect on the photocurrent:

In the first scenario, the frequency of light is $1.5 f_{0}$. Since this is above the threshold frequency, photoelectrons are emitted, resulting in a non-zero photocurrent.

In the second scenario, the frequency of light is halved to $f / 2$. This frequency is now below the threshold frequency $\left(f_{0}\right)$. Therefore, no photoelectrons are emitted, resulting in zero photocurrent. So, the correct answer is option A: Zero.

Ques 12. Radius of curvature of the equiconvex lens is $\mathbf{2 0} \mathbf{~ c m}$. Material of the lens has a refractive index of 1.5. Find image distance from the lens if an object is placed 10 cm away from the lens.
A. 20 cm
B. 10 cm
C. 40 cm
D. 5 cm

Ans. A

Ques 13.

Draw truth table of given gate circuit.

A	B	X	A	B	X	A	B	X		A	B
X											
0	0	0	0	0	0		0	0	1		0

Ans. B

Ques 14. The magnetic flux through a loop varies with time as $\boldsymbol{\Phi}=\mathbf{5} \mathbf{t}^{\mathbf{2}} \mathbf{- 3 t}$
+5. If the resistance of loop is 8 , find the current through it at $\mathbf{t}=\mathbf{2} \mathbf{s}$
A. $15 / 8 \mathrm{~A}$
B. $5 / 8 \mathrm{~A}$
C. $17 / 8 \mathrm{~A}$
D. $13 / 8 \mathrm{~A}$

Ans. C

Ques 15. In the system shown below, the pulley 4 string are ideal. If the acceleration of blocks is $\mathrm{g} / 8$, find $\mathrm{m}_{1} / \mathrm{m}_{2}$

A. $9 / 7$
B. $8 / 7$
C. $5 / 7$
D. $9 / 8$

Ans. A

JEE Main Chemistry Questions

Ques 1. Which of the following is least iconic

A. BaCl 2
B. KCl
C. AgCl
D. CoCl 2

Ans. D

Solution: Iconicity generally refers to the ability of an ion or compound to form ions with a stable electronic configuration similar to that of noble gases. The closer the electronic configuration of an ion or compound is to that of a noble gas, the more iconic it is considered to be.

Let's analyze the given compounds:
CoCl2: Cobalt (Co) typically forms Co $2+$ ions, which do not have a noble gas configuration. Chlorine (Cl) typically forms Cl - ions, achieving the electronic configuration of argon. So, CoCl2 is less iconic compared to the others.
Therefore, the least ionic compound among the given options is:
D. CoCl 2

Ques 2. Select the option of the correct property Paramagnetic \&

$$
\left[\mathrm{Ni}\left(\mathrm{CO}_{4}\right)\right],\left[\mathrm{Ni}\left(\mathrm{Cl}_{4}\right)\right]^{-2}
$$

Diamagnetic

Ans. Diamagnetic, Paramagnetic

Ques 3. Number of isomeric products formed by monochlorination Of 2-methyl butane in presence of sunlight is

Ans. 6

Ques 4. From the vitamins $A, B-1, B-6, B-12, C, D$, and K, the number of vitamins that can be stored in our body is

Ans. 3

Ques 5. If 5 moles of an ideal gas expands from 10 L to a volume of 100 L at 300 k under isothermal and reversible condition then work, W , is - x J . The value of x is (even $n=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

Ans. 2.303

Ques 6. Statement I: So disproportionates into $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{S}_{2}{ }^{-}$in alkaline medium
Statement II: ClO_{4}^{-}undergoes disproportionation in acidic medium
A. Statement I is correct but Statement II is incorrect
B. Statement I is incorrect but Statement II is correct
C. Both Statement I and Statement II are correct
D. Both Statement I and Statement II are incorrect

Ans. A

Ques 7. A compound (\mathbf{x}) with molar mass $108 \mathrm{~g} \mathrm{~mol}-1$ undergoes acetylation to give product with molar mass $192 \mathrm{~g} \mathrm{~mol}-1$

Ans. 2

Ques 8. Half life of a first order reaction is 36 hr . Find out time (in hour) required for concentration of reactant to get reduced by $\mathbf{9 0 \%}$.

Ques 9. Statement-I: Among 15th group hydrides reducing character decreases from NH3 to BiH 3 .
Statement-II : E2O3 and E2O5 are always basic. [Where E is group 15 element]
A. Both statement-I and Statement-II are correct
B. B. Statement-I is correct and Statement-II is false
C. Statement-I is false and Statement-II is correct
D. Both Statement-I and Statement-II are false

Ans. B

Ques 10. Which of the following has maximum ionic character?
A. KCl
B. $\mathrm{B} . \mathrm{AgCl}$
C. CoCl 2
D. BaCl 2

Ans. A

Ques 11. Match the following:
(a) $[\mathrm{Cr}(\mathrm{H} 2 \mathrm{O}) 6]{ }^{+3}$ (i) $\mathrm{t}^{2}{ }_{2 g} \mathrm{eg}^{0}$
(b) $[\mathrm{Fe}(\mathrm{H} 2 \mathrm{O}) 6]{ }^{+3}$ (ii) $\mathrm{t}^{3}{ }_{2 g} \mathrm{eg}^{0}$
(c) $[\mathrm{Ni}(\mathrm{H} 2 \mathrm{O}) 6]^{+2}$ (iii) $\mathrm{t}^{3}{ }_{29} \mathrm{eg}^{2}$
(d) $[\mathrm{V}(\mathrm{H} 2 \mathrm{O}) 6]^{+3}$ (iv) $\mathrm{t}^{6}{ }_{2 \mathrm{~g}} \mathrm{eg}^{2}$
A. (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
B. (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
C. (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)
D. (a)-(ii), (b) - (iv) (c) - (i) (d)-(iii)

Ans. A

Ques 12. Quantum number for outermost electron of K-atom are given by
A. $n=4, I=0, m=0, s=1 / 2$
B. $n=4, l=1, m=0, s=1 / 2$
C. $n=3, l=0, m=0, s=1 / 2$
D. $n=4, l=0, m=1, s=1 / 2$

Ans. A

Ques 13. Choose the correct answers.
(A) Mn207 is a oil at room temperature.
(B) V2O4 react with acid to give V02+
(C) CrO is a basic oxide
(D) V205 does not react with acids.
A. A, B and C only
B. B, C and D only
C. A only
D. B and C only

Ans. A

Ques 14. What will be the reactivity order of following compounds towards electrophilic substitution reaction?
1
 2

3

4

A. $1>3>2>4$
B. $4>1>2>3$
C. $3>2>1>4$
D. $4>3>1>2$

Ans. A

Ques 15. Statement-I : Aniline on reaction with concentrated H2SO4 at 475 K gives p-amino benzene sulphonic acid. This gives blood red colour with Lassaigne's test.
Statement-II : Aniline forms a salt with anhydrus AICl3 in Friedel Craft's reaction.
A. Both Statement-I and Statement-II are correct
B. Both Statement-I and Statement-II are incorrect
C. Statement-I is correct and Statement-II incorrect
D. Statement-I is incorrect and Statement-II correct

Ans. A

Ques 16. How many of the following vitamins are stored in Human Body?

$$
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~K} ?
$$

Ans. 4

Ques 17. Number of moles of H^{+}required by 1 mole $\mathrm{MnO}_{4}{ }^{-}$to oxidize oxalate ion to CO_{2} is \qquad .

Ans. 8

JEE Main Mathematics Questions

Ques 1. Let $\mathrm{f}: \rightarrow \mathrm{R} \rightarrow(0, \infty)$ be increasing function such that

$$
\operatorname{Lt}_{\mathrm{x} \rightarrow \infty} \frac{\mathrm{f}(7 \mathrm{x})}{\mathrm{f}(\mathrm{x})}=1 \text { then } \quad \operatorname{lt}_{\mathrm{x} \rightarrow \infty}\left\{\frac{\mathrm{f}(5 \mathrm{x})}{\mathrm{f}(\mathrm{x})}-1\right\} \text { is equal to }
$$

A. 0
B. 4
C. 1
D. $4 / 5$

Ans. A

Ques 2.

$$
z_{1}^{3}+z_{2}^{3}=20+15 i \text { then }\left|z_{1}^{4}+z_{2}^{4}\right| \text { is equal to }
$$

A. $15 \sqrt{ } 15$
B. 75
C. $30 \sqrt{ } 3$
D. $25 \sqrt{ } 3$.

Ans. B

$$
a=\sin ^{-1}(\sin (5))
$$

Ques 3. and

$$
b=\cos ^{-1}(\cos (5))_{\text {then }} a^{2}+b^{2}=
$$

Ans.

$$
8 \pi^{2}-40 \pi+50
$$

Ques 4. A coin is biased so that a head is twice as likely as a tail. If the coin is tossed 3 times, then the probability of getting two tails and one head is
A. $1 / 9$
B. 2/9
C. 2/27
D. 1/27

Ans. B

Solution: Let's denote:

- $P(H)$ as the probability of getting a head,
- $P(T)$ as the probability of getting a tail.

Given that a head is twice as likely as a tail, we have:

$$
\begin{aligned}
& P(H)=2 \times P(T) \\
& P(T)=\frac{1}{3} \\
& P(H)=2 \times \frac{1}{3}=\frac{2}{3}
\end{aligned}
$$

Now, to find the probability of getting two tails and one head when the coin is tossed 3 times, we can use the binomial probability formula:

Ques 5. The number of solution of equation $e \sin x-2 e-\sin x=2$ is
A. more than 2
B. 2
C. 1
D. 0

Ans. D

Ques 6. Let mean and variance of 6 observations $a, b, 68,44,40,60$ be 55 and 194. If $a>b$ then find $a+3 b$
A. 211.83
B. 201.59
C. 189.57
D. 198.87

Ans. B

Ques 7. If $2^{\text {nd }}, 8^{\text {th }}, 44^{\text {th }}$ terms of A.P. are $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ terms respectively of G.P. and first term of A.P. is 1 then the sum of first 20 terms of A.P. is
A. 970
B. 916
C. 980
D. 990

Ans. A

Ques 8. The area of the region enclosed by the parabolas $y=4-x^{2}$ and $3 y=(x-4)^{2}$ is in (sq. unit)?
A. $14 / 3$
B. 4
C. $32 / 3$
D. 6

Ans. D

Ques 9. Let $z 1$ and $z 2$ be two complex numbers such that $z_{1}+z_{2}=5$ and $z_{1}{ }^{3}+z_{2}{ }^{3}=20+15 i$, then the value of $\left|z_{1}{ }^{4}+z^{4}{ }_{2}\right|$ is equal to
A. 75
B. 15sqrt(15)
C. $25 \mathrm{sqrt}(5)$
D. $30 \mathrm{sqrt}(3)$

Ans. A

Ques 10. The line passes through the centre of circle $x^{2}+y^{2}-16 x-4 y=$ 0 , it interacts with the positive coordinate axis at $A \& B$. Then find the minimum value of $O A+O B$, where O is origin.
A. 20
B. 18
C. 12
D. 24

Ans. A

Ques 11. If (α, β, γ) is mirror image of the point $(2,3,4)$ with respect to the line $(x-1) / 2=(y-2) / 3=(z-3) / 4$. Then $2 \alpha+3 \beta+4 \gamma$ is
A. 29
B. 30
C. 31
D. 32

Ans. A

Ques 12. A parabola has vertex $(2,3)$, equation of directrix is $2 x-y=1$ and equation of ellipse is $x 2 / a 2+y 2 / b 2=1, e=1 / \sqrt{ } 2$ and ellipse passing through focur of parabola then square of length of latus rectum of ellipse is
A. $6564 / 25$
B. $3288 / 25$
C. $6272 / 25$
D. $4352 / 25$

Ans. D

Ques 13. The value of

$$
\frac{120}{\pi^{3}}\left|\int_{0}^{\pi} \frac{x^{2} \sin x \cdot \cos x}{(\sin x)^{4}+(\cos x)^{4}} d x\right|_{\text {is }}
$$

Ans. 15

Ques 14. The number of ways to distribute the 21 identical apples to three children's so that each child gets at least 2 apples.

Ans. 136

Ques 15. If $A=\{1,2,3, \ldots 100\}, R=\{(x, y) \mid 2 x=3 y, x, y \in A\}$ is symmetric relation on A and the number of elements in R is n, the smallest integer value of n is

Ans. 0

