Practice Questions - Marking Scheme

Session 2022-23
Class XII
Mathematics (Code - 041)

	SECTION A - Multiple Choice Questions - 1 Mark each	
Q.No.	Answer/Solution	Marks
Q. 1	C. $\sec ^{-1} x$	1
Q. 2	B. P and Q must be square matrices of the same order.	1
Q. 3	D. all - i), ii) and iii)	1
Q. 4	A. -48	1
Q. 5	C. $\frac{1}{4}$	1
Q. 6	B. $-\tan \frac{1}{x}-\mathrm{B}$, where B is a constant.	1
Q. 7	D. 4	1
Q. 8	C. 9 sq units	1
Q. 9	B. $\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\frac{d y}{d x}=0$	1
Q. 10	C. $\frac{4}{3} e^{3 x}+1$	1
Q. 11	A. only ii)	1
Q. 12	$\text { C. } \frac{9}{2} \hat{i}+\frac{3}{2} \hat{j}+\frac{1}{2} \hat{k}$	1
Q. 13	D. 0	1
Q. 14	B. 60°	1
Q. 15	D. 8	1
Q. 16	B. It has a unique solution.	1
Q. 17	D. 0.08	1
Q. 18	A. Minimise $\mathrm{Z}=\mathrm{x}+\mathrm{y}$	1
Q. 19	C. (A) is true but (R) is false.	1
Q. 20	C. (A) is true but (R) is false.	1
	SECTION B - VSA questions of 2 marks each	
Q. 21	Solves the RHS to obtain $\frac{2 \pi}{3}$ as follows: $\begin{aligned} & \cos ^{-1}(-1)-\operatorname{cosec}^{-1}\left(\frac{2}{\sqrt{3}}\right) \\ & =\pi-\frac{\pi}{3} \\ & =\frac{2 \pi}{3} \end{aligned}$ Equates the LHS to obtain $x=-\frac{1}{\sqrt{3}}$ as follows:	0.5

$$
\begin{aligned}
\cot ^{-1}(x) & =\frac{2 \pi}{3} \\
x & =\cot \left(\frac{2 \pi}{3}\right) \\
x & =-\left(\frac{1}{\sqrt{3}}\right)
\end{aligned}
$$

Finds $\tan ^{-1}\left(\frac{1}{x}\right)$ as $-\frac{\pi}{3}$ as follows:

$$
\tan ^{-1}\left(\frac{1}{x}\right)=\tan ^{-1}(-\sqrt{3})=-\frac{\pi}{3}
$$

OR

i) Finds the domain as $\left(-\infty, \frac{2}{5}\right] \cup\left[\frac{4}{5}, \infty\right)$ as follows:
$5 x-3 \leq-1$ or $5 x-3 \geq 1$
$\therefore x \leq \frac{2}{5}$ or $x \geq \frac{4}{5}$
ii) Finds the range as $[-2,3 \pi-2]$ as follows:
$0 \leq \cos ^{-1}\left(\frac{1}{2 x-1}\right) \leq \pi$
$3(0)-2 \leq 3 \cos ^{-1}\left(\frac{1}{2 x-1}\right)-2 \leq 3(\pi)-2$
$3(0)-2 \leq y \leq 3(\pi)-2$
$-2 \leq y \leq 3 \pi-2$
Q. 22 Writes the expression for C as $\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\prime}\right)$.

Finds A' as:
$A^{\prime}=\left[\begin{array}{lll}6 & 4 & 9 \\ 8 & 2 & 7 \\ 5 & 3 & 1\end{array}\right]$

\begin{tabular}{|c|c|c|}
\hline \& Finds C as:
\[
\begin{aligned}
C \& =\frac{1}{2}\left(\left[\begin{array}{lll}
6 \& 8 \& 5 \\
4 \& 2 \& 3 \\
9 \& 7 \& 1
\end{array}\right]-\left[\begin{array}{lll}
6 \& 4 \& 9 \\
8 \& 2 \& 7 \\
5 \& 3 \& 1
\end{array}\right]\right) \\
\& =\left[\begin{array}{rrr}
0 \& 2 \& -2 \\
-2 \& 0 \& -2 \\
2 \& 2 \& 0
\end{array}\right]
\end{aligned}
\] \& 1 \\
\hline Q. 23 \& \begin{tabular}{l}
Differentiates \(y\) with respect to \(x\) using chain rule as:
\[
\frac{d y}{d x}=4\left(e^{\sec x}+x\right)^{3} \frac{d}{d x}\left(e^{\sec x}+x\right)
\] \\
Simplifies the above differential as:
\[
\frac{d y}{d x}=4\left(e^{\sec x}+x\right)^{3}\left(e^{\sec x} \sec x \tan x+1\right)
\]
\end{tabular} \& \begin{tabular}{l}
1 \\
1
\end{tabular} \\
\hline Q. 24 \& \begin{tabular}{l}
Substitutes \(\vec{v}=k(\hat{q}+\hat{r})\) in \(\hat{p} \cdot \vec{v}=\hat{q} \cdot \vec{v}\) to get:
\[
\begin{aligned}
\& \hat{p} \cdot \hat{q}+\hat{p} \cdot \hat{r}=\hat{q} \cdot \hat{q}+\hat{q} \cdot \hat{r} \\
\& \hat{p} \cdot \hat{q}+\hat{p} \cdot \hat{r}=1+\hat{q} \cdot \hat{r}
\end{aligned}
\] \\
Rearranges the terms of the above equation as:
\[
1-\hat{p} \cdot \hat{q}+\hat{q} \cdot \hat{r}-\hat{p} \cdot \hat{r}=0
\] \\
Simplifies the above equation as:
\[
\begin{aligned}
\& \Longrightarrow \hat{p}(\hat{p}-\hat{q})-\hat{r}(\hat{p}-\hat{q})=0 \\
\& \Longrightarrow(\hat{p}-\hat{q}) \cdot(\hat{p}-\hat{r})=0
\end{aligned}
\] \\
OR \\
Uses the cross-product of vectors and writes:
\[
\text { Area of } Q R S T=|\overrightarrow{R Q} \times \overrightarrow{R S}|=\vec{a} \times \vec{b} \mid
\] \\
Uses the cross-product of vectors and writes: \\
Area of \(Q R T P=|\overrightarrow{R Q} \times \overrightarrow{R T}|\)
\end{tabular} \& 0.5

0.5

1
1

0.5
0.5

\hline
\end{tabular}

	Simplifies RHS of the above equation as: $\begin{aligned} & =\|\overrightarrow{R Q} \times(\overrightarrow{R Q}+\overrightarrow{Q T})\| \\ & =\|\vec{a} \times(\vec{a}+\vec{b})\| \\ & =\|(\vec{a} \times \vec{a})+(\vec{a} \times \vec{b})\| \\ & =\|0+\vec{a} \times \vec{b}\|=\|\vec{a} \times \vec{b}\| \end{aligned}$ Concludes that the area of parallelogram QRST is equal to the area of parallelogram QRTP.	1
Q. 25	i) Expands the vector form to get the following: $x \hat{i}+y \hat{j}+z \hat{k}=\left(x_{1}+\lambda x_{1}\right) \hat{i}+\left(y_{1}+2 \lambda y_{1}\right) \hat{j}+\left(z_{1}+3 \lambda z_{1}\right) \hat{k}$	0.5
	Eliminates λ by equating the like coefficients of the position vectors of the x, y and z axes to get the cartesian equation as follows: $\frac{x-x_{1}}{x_{1}}=\frac{y-y_{1}}{2 y_{1}}=\frac{z-z_{1}}{3 z_{1}}$	0.5
	ii) Assumes the coordinates of B as $\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ and compares the cartesian form of the equation from step 2 with the regular form of the cartesian equation to find: $x_{2}=2 x_{1}, y_{2}=3 y_{1} \text { and } z_{2}=4 z_{1}$	0.5
	Substitutes values $x_{1}=(-2), y_{1}=5$ and $z_{1}=(-3)$ in the equations from step 3 to get coordinates of B as $(-4,15,-12)$.	0.5

\begin{tabular}{|c|c|c|}
\hline \& SECTION C - Short Answer Questions of 3 Marks each \& \\
\hline Q. 26 \& \begin{tabular}{l}
Finds \(\frac{d u}{d \theta}\) as:
\[
\frac{d u}{d \theta}=e^{\sin ^{-1} \theta} \times \frac{1}{\sqrt{1-\theta^{2}}}
\] \\
Finds \(\frac{d v}{d \theta}\) as:
\[
\frac{d v}{d \theta}=e^{-\cos ^{-1} \theta} \times \frac{1}{\sqrt{1-\theta^{2}}}
\] \\
Uses parametric differentiation and finds \(\frac{d u}{d v}\) as:
\[
\frac{d u}{d v}=\frac{e^{\sin ^{-1} \theta}}{e^{-\cos ^{-1} \theta}}=e^{\sin ^{-1} \theta+\cos ^{-1} \theta}=e^{\frac{\pi}{2}}
\] \\
Concludes that the given statement is true as \(e^{\frac{\pi}{2}}\) is a constant. \\
OR \\
Rewrites the given equation by taking logarithm on both sides as:
\[
m(\log x)-n(\log y)=(m-n)(\log x+\log y)
\] \\
Differentiates the above equation as:
\[
\frac{m}{x} d x-\frac{n}{y} d y=(m-n)\left(\frac{1}{x} d x+\frac{1}{y} d y\right)
\] \\
Rearranges the above equation to get:
\[
\frac{n}{x} d x=\frac{m}{y} d y
\] \\
Finds \(\frac{d y}{d x}\) to be \(\frac{n y}{m x}\).
\end{tabular} \& \begin{tabular}{l}
1 \\
\\
\\
0.5 \\
\\
\\
0.5 \\
1 \\
1 \\
1 \\
\\
\hline 0.5 \\
0.5
\end{tabular} \\
\hline Q. 27 \& \begin{tabular}{l}
Interprets the question statement and writes it as:
\[
(3 x-1) f(x)=\frac{d}{d x}\left(3 x^{4}-\frac{13}{3} x^{3}+\frac{3}{2} x^{2}+C\right)
\] \\
Finds the derivative in the above step as:
\[
(3 \mathrm{x}-1) \mathrm{f}(\mathrm{x})=12 x^{3}-13 x^{2}+3 \mathrm{x}
\]
\end{tabular} \& 0.5

1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Factorises the above cubic polynomial as:
\[
(3 \mathrm{x}-1) \mathrm{f}(\mathrm{x})=(3 \mathrm{x}-1)\left(4 x^{2}-3 \mathrm{x}\right)
\] \\
and determines the value of \(f(x)\) as \(\left(4 x^{2}-3 \mathrm{x}\right)\). \\
Substitutes \(x=6\) in \(f(x)\) and evaluates \(f(6)\) as 126 .
\end{tabular} \& 1

0.5

\hline Q. 28 \& | Rewrites the integral using the identity $\operatorname{cosec}^{2} x=1+\cot ^{2} x$ as: $\int \cot ^{2} x\left(1+\cot ^{2} x\right)^{2} \operatorname{cosec}^{2} x d x$ |
| :--- |
| Substitutes $\cot x=u$ and hence $\operatorname{cosec}^{2} x d x=-d u$ in the above step and rewrites the integral as: $-\int u^{2}\left(1+u^{2}\right)^{2} d u$ |
| Integrates the above expression as: $-\left[\frac{u^{3}}{3}+\frac{u^{7}}{7}+\frac{2 u^{5}}{5}\right]$ |
| Substitutes cot x in place of u in the above expression to get: $-\left[\frac{\cot ^{3} x}{3}+\frac{\cot ^{7} x}{7}+\frac{2 \cot ^{5} x}{5}\right]$ |
| Substitutes the limits in the above expression to get $\frac{92}{105}$. | \& 0.5

0.5

0.5

0.5

1

\hline Q. 29 \& | Rearranges the given differential equation as: $\frac{d y}{d x}+\frac{y}{\sqrt{1-x^{2}}}=\frac{e^{-\sin ^{-1} x}}{\sqrt{1-x^{2}}}$ |
| :--- |
| Finds the integrating factor as follows as the equation obtained in the above step is of the form $\frac{d y}{d x}+\mathrm{yP}(\mathrm{x})=\mathrm{Q}(\mathrm{x})$. $\begin{aligned} & \text { Integrating factor }=e^{\int P(x) d x} \\ & =e^{\int \frac{1}{\sqrt{1-x^{2}}} d x}=e^{\sin ^{-1} x} \end{aligned}$ | \& 0.5

0.5

\hline
\end{tabular}

> Finds the solution as:
> $y e^{\int P(x) d x}=\int Q(x) \times e^{\int P(x) d x} d x+C$
> $\Rightarrow y e^{\sin ^{-1} x}=\int \frac{e^{-\sin ^{-1} x}}{\sqrt{1-x^{2}}} \times e^{-\sin ^{-1} x} d x+\mathrm{C}$
> $\Rightarrow y e^{\sin ^{-1} x}=\sin ^{-1} x+\mathrm{C}$

Where C is the constant of integration.
Substitutes $x=y=0$ in the above equation and finds the value of C as 0 .
Writes the particular solution as:
$y e^{\sin ^{-1} x}=\sin ^{-1} x$

OR

Rearranges the given equation in terms of $\frac{y}{x}$ as:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{y}{x}+\frac{y}{x^{2}} \sqrt{y^{2}-x^{2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{y}{x}+\frac{y}{x} \sqrt{\frac{y^{2}}{x^{2}}-1}
\end{aligned}
$$

Considers $\mathrm{y}=\mathrm{vx}$ and finds $\frac{d y}{d x}$ in terms of v as:
$\frac{d y}{d x}=\mathrm{v}+\mathrm{x} \frac{d y}{d x}$
Equates the RHS obtained in steps 1 and 2 to get:
$x \frac{d v}{d x}=v \sqrt{v^{2}-1}$
Rearranges the terms using the variable separable method as:
$\frac{d v}{v \sqrt{v^{2}-1}}=\frac{d x}{x}$
Integrates on both sides to find the general solution as:
$\sec ^{-1} v=\log |\mathrm{x}|+\mathrm{C}$

Q. 30	Takes the number of hens and cows to be x and y respectively and formulates the linear programming problem as follows: Maximise Z $=12 x+40 y$ subject to constraints, $\begin{aligned} & 25 x+75 y \leq 900 \\ & x+y \leq 16 \\ & x \leq 10 \\ & x \geq 0 \\ & y \geq 0 \end{aligned}$ Graphs the constraints and marks the feasible region as:	1.5

Takes E, F and G to be the events of taking out green marbles in the first,
$P(E)=P($ green marble in first draw $)=\frac{8}{14}$
Finds the probability that the second marble taken out is green provided first is also green as:
$P(F \mid E)=P($ green marble in the second draw $)=\frac{7}{13}$
Finds the probability that the third marble taken out is green provided first two are also green as:
$P(G \mid E F)=P($ green marble in third draw $)=\frac{6}{12}$

Finds the probability that all three marbles taken out are green in colour as:
$P(E) \times P(F \mid E) \times P(G \mid E F)$
$=\frac{8}{14} \times \frac{5}{13} \times \frac{6}{12}$
$=\frac{10}{91}$

OR

Assumes the number of students as a random variable X and writes that it can take values of 0,1 and 2 .

Finds $\mathrm{P}(\mathrm{X}=0)$ as:
P (non-student and non-student)
$=\frac{10}{18} \times \frac{9}{17}$
$=\frac{90}{306}$
Finds $\mathrm{P}(\mathrm{X}=1)$ as:
P (student and non-student) or P (non-student and student)
$=\frac{8}{18} \times \frac{10}{17} \times \frac{10}{18} \times \frac{8}{17}$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Finds \(\mathrm{A}^{-1}\) using \(|\mathrm{A}|\) and \(\operatorname{adj} \mathrm{A}\) as:
\[
\begin{aligned}
\& \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \times \operatorname{adj} \mathrm{A} \\
\& =\frac{1}{5500}\left[\begin{array}{rrr}
32 \& 4600 \& -197 \\
-5 \& 1000 \& 5 \\
-13 \& -2900 \& 123
\end{array}\right]
\end{aligned}
\] \\
Writes that \(\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}\) and finds X as
\[
\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]
\] \\
Concludes that 2 litres of orange juice, 3 litres of beetroot juice and 1 litre of kiwi juice should go into the mixture.
\end{tabular} \& 1

0.5

\hline Q. 33 \& | Writes the endpoints of the ellipse as $(-9,0),(9,0),(0,6)$ and $(0,-6)$ respectively. |
| :--- |
| Expresses y in terms of x as: $y= \pm \frac{6}{9} \sqrt{9^{2}-x^{2}}$ |
| Sets up the equation for the area of the shaded region as: $\begin{aligned} & \text { Shaded Area }=\left\|\int_{-9}^{0} \frac{6}{9} \sqrt{9^{2}-x^{2}} d x\right\|+\text { Area of } 2 \text { triangles }+\int_{0}^{9} \frac{6}{9} \sqrt{9^{2}-x^{2}} d x \\ & =2 \int_{0}^{9} \frac{6}{9} \sqrt{9^{2}-x^{2}} d x+\text { Area of } 2 \text { triangles } \end{aligned}$ |
| Evaluates the $1^{\text {st }}$ part of the above equation as: $\begin{aligned} & 2 \int_{0}^{9} \frac{6}{9} \sqrt{9^{2}-x^{2}} d x \\ & =2 \times \frac{6}{9}\left[\frac{x}{2} \sqrt{81-x^{2}}+\frac{81}{9} \sin ^{-1} \frac{x}{9}\right]_{0}^{9} \end{aligned}$ | \& 1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Applies the upper and the lower limit and finds the value of the integral as:
\[
\begin{aligned}
\& =2 \times \frac{6}{9}\left\{\left[\frac{9}{2} \sqrt{81-81}+\frac{81}{2} \sin ^{-1} \frac{9}{9}\right]-\left[\frac{0}{2} \sqrt{81-0}+\frac{81}{2} \sin ^{-1} \frac{0}{9}\right]\right\} \\
\& =2 \times \frac{6}{9} \times \frac{81}{2} \times \frac{\pi}{2}=27 \pi
\end{aligned}
\] \\
Evaluates the \(2^{\text {nd }}\) part of the equation from step 2 as: \\
Area of 2 triangles \(=2 \times \frac{1}{2} \times 9 \times 6=54\) sq units \\
Adds the area obtained in step 3 and 4 to find the area of the shaded region in terms of \(\pi\) as: \\
\((27 \pi+54)\) sq units or \(27(\pi+2)\) sq units.
\end{tabular} \& 1

0.5

0.5

\hline Q. 34 \& | Compares $\overrightarrow{r_{1}}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}_{2}=\vec{a}_{2}+\mu \vec{b}_{2}$ with the given equations to get $\vec{a}_{1}=\hat{i}-2 \hat{j}+2 \hat{k}, \vec{a}_{2}=2 \hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}_{1}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}_{2}=-\hat{i}+\hat{j}+2 \hat{k}$. |
| :--- |
| Notes that the lines are skewed and writes the formula to find the shortest distance between the lines (d) as follows: $d=\left\|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\left\|\vec{b}_{1} \times \vec{b}_{2}\right\|}\right\|$ |
| Solves $\left(\overrightarrow{b_{1}} \times \vec{b}_{2}\right)$ as $\left\|\begin{array}{rrr}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ -1 & 1 & 2\end{array}\right\|=7 \hat{i}+\hat{j}+3 \hat{k}$. |
| Finds $\left\|\vec{b}_{1} \times \vec{b}_{2}\right\|=\sqrt{49+1+9}=\sqrt{59}$, and $\left(\vec{a}_{2}-\vec{a}_{1}\right)=\hat{i}+\hat{k}$. |
| Finds $\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)$ as $7+3=10$. |
| Substitutes values from above steps to find distance as $\frac{10}{\sqrt{59}}$ units. |
| OR |
| Writes that $\frac{x-4}{1}=\frac{y-2}{3}=\frac{z-1}{2}=\lambda$. |
| Assumes $\mathrm{P}(x, y, z)$ to be the point of intersection of the two lines. Finds $\mathrm{x}=\lambda+4, \mathrm{y}=3 \lambda+2$ and $\mathrm{z}=2 \lambda+1$. |
| Takes Tara's position as $\mathrm{T}(2,-2,1)$ to find the direction ratios of TP as $(\lambda+2),(3 \lambda+4)$ and (2λ). | \& 1

A

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Notes that the dot product of the direction ratios of the given line and TP will be 0 , since they are perpendicular, and \(\cos 90^{\circ}=0\). \\
Writes that \(1(\lambda+2)+3(3 \lambda+4)+2(2 \lambda)=0\). \\
Solves the above equation to find \(\lambda=(-1)\). \\
Substitutes the value of \(\lambda\) to find \(\mathrm{x}=3, \mathrm{y}=7\) and \(\mathrm{z}=2\). \\
Finds the length of TP as \(\sqrt{ } 83\) units, using the following formula:
\[
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
\]
\end{tabular} \& 1.5

0.5
1

\hline Q. 35 \& | Rewrites the given integral as: $\int x^{4} x^{3} \sin \left(2 x^{4}\right) d x$ |
| :--- |
| Substitutes $x^{4}=u$ and hence $x^{3} d x=\frac{1}{4} d u$ in the above integral to get: $\frac{1}{4} \int u \sin (2 u) d u$ |
| Uses integration by parts to integrate the above expression as: $\frac{1}{4}\left[u \int \sin (2 u) d u-\int\left(\int \sin (2 u) d u\right) d u\right]$ |
| Integrates the above expression to get: $-\frac{1}{8} u \cos (2 u)+\frac{1}{16} \sin (2 u)+C$ |
| Substitutes x^{4} in place of u in the above expression to get: $-\frac{1}{8} x^{4} \cos \left(2 x^{4}\right)+\frac{1}{16} \sin \left(2 x^{4}\right)+C$ |
| OR |
| Expands the denominator using the identity $\left(a^{3}-b^{3}\right)$ as: $\int \frac{1}{(2-x)\left(x^{2}+2 x+4\right)} d x$ |
| Rewrites the integral as a sum of two integrals using partial fractions as: $\frac{1}{12} \int \frac{1}{(2-x)} d x+\frac{1}{12} \int \frac{x+4}{x^{2}+2 x+4} d x$ | \& 0.5

1
1

1
1

2

0.5

0.5
1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Solves the first integral as:
\[
\left.\left|-\frac{1}{12} \log \right| 2-x \right\rvert\,
\] \\
Rewrites the second integral as:
\[
\frac{1}{24} \int \frac{2 x+2}{x^{2}+2 x+4} d x+\frac{1}{4} \int \frac{1}{(x+1)^{2}+(\sqrt{3})^{2}} d x
\] \\
Solves the above integral as:
\[
\frac{1}{24} \log \left|x^{2}+2 x+4\right|+\frac{1}{4 \sqrt{3}} \tan ^{-1}\left(\frac{x+1}{\sqrt{3}}\right)
\] \\
Concludes the final answer as:
\[
\left.\left|-\frac{1}{12} \log \right| 2-x\left|+\frac{1}{24} \log \right| x^{2}+2 x+4 \right\rvert\,+\frac{1}{4 \sqrt{3}} \tan ^{-1}\left(\frac{x+1}{\sqrt{3}}\right)+C
\]
\end{tabular} \& 0.5

1

1.5

0.5

\hline \& SECTION E - Case Studies/Passage based questions of 4 Marks each \&

\hline Q.36i) \& Lists all the elements of R as:

$$
\begin{aligned}
& \mathrm{R}=\{(\mathrm{C}, \mathrm{~PB}),(\mathrm{PB}, \mathrm{C}),(\mathrm{V}, \mathrm{~PB}),(\mathrm{PB}, \mathrm{~V}),(\mathrm{PB}, \mathrm{SwD}),(\mathrm{SwD}, \mathrm{~PB}), \\
& (\mathrm{PB}, \mathrm{ShD}),(\mathrm{ShD}, \mathrm{~PB}),(\mathrm{SwD}, \mathrm{ShD}),(\mathrm{ShD}, \mathrm{SwD})\}
\end{aligned}
$$ \& 1

\hline Q.36ii) \& | Writes that the relation R is symmetric. |
| :--- |
| Gives a reason. For example, for every $\left(x_{1}, x_{2}\right) \in \mathrm{R},\left(x_{2}, x_{1}\right) \in \mathrm{R}$ as every direct ship/direct ferry runs in both the directions. | \& \[

$$
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
$$
\]

\hline Q.36iii) \& | Writes that R is not transitive. |
| :--- |
| Gives a reason. For example, |
| $(\mathrm{C}, \mathrm{PB}) \in \mathrm{R}$ as there is a direct ship from Chennai to Port Blair. |
| $(\mathrm{PB}, \mathrm{SwD}) \in \mathrm{R}$ as there is a direct ferry from Port Blair to Swaraj Dweep. |
| But (C, SwD) $\notin \mathrm{R}$ as there is no direct ship/ferry from Chennai to Swaraj Dweep. | \& 0.5

1.5

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Writes that the function \(f\) is one-one. \\
Gives a reason. For example, no two elements of set Y are mapped to a common element in set X . \\
Writes that the function \(f\) is not onto. \\
Gives a reason. For example, \(\mathrm{C} \in \mathrm{X}\) (co-domain of \(f\)) but it has no pre-image in Y.
\end{tabular} \& \[
\begin{aligned}
\& 0.5 \\
\& 0.5 \\
\& 0.5 \\
\& 0.5
\end{aligned}
\] \\
\hline Q.37i) \& Finds the rate at which the amount of drug is changing in the blood stream 5 hours after the drug has been administered as:
\[
\begin{aligned}
\& C^{\prime}(\mathrm{t})=-3 t^{2}+9 \mathrm{t}+54 \\
\& \Rightarrow \mathrm{C}^{\prime}(5)=24 \mathrm{mg} / \mathrm{hr}
\end{aligned}
\] \& 1 \\
\hline Q.37ii) \& \begin{tabular}{l}
Equates the derivative \(C^{\prime}(\mathrm{t})\) to 0 and factorises \(C^{\prime}(\mathrm{t})\) as \(3(3+\mathrm{t})(6-\mathrm{t})\). \\
Writes that for \(t \in(3,4)\),
\[
\begin{aligned}
\& 3>0 \\
\& (3+t)>0 \\
\& \text { and }(6-\mathrm{t})>0 \\
\& \text { Therefore, } \mathrm{C}^{\prime}(\mathrm{t})>0
\end{aligned}
\] \\
Concludes that \(C(t)\) is strictly increasing in the interval (3, 4). \\
OR \\
Equates the derivative \(C^{\prime}(\mathrm{t})=-3 t^{2}+9 \mathrm{t}+54\) to 0 and finds the critical points as \(t=6\) hours and \(t=(-3)\) hours. \\
Differentiate \(C^{\prime}(\mathrm{t})\) to get \(\mathrm{C}^{\prime \prime}(\mathrm{t})\) as:
\[
C^{\prime \prime}(t)=-6 t+9
\] \\
Finds C " \((6)\) as \((-27)\) and writes that \(\mathrm{C}(\mathrm{t})\) attains its maximum at \(\mathrm{t}=6\) hours, as C" \((6)=(-27)<0\). \\
Concludes that 6 hours after the drug is administered, \(C_{\max }\) is attained.
\end{tabular} \& 0.5
1.5

0.5
0.5
0.5
0.5
0.5

\hline Q.37iii) \& Finds the value of $C(t)$ at $t=6$ hours as:

$$
\begin{aligned}
& C(6)=-(6)^{3}+4.5(6)^{2}+54(6) \\
& \Rightarrow C(6)=270
\end{aligned}
$$ \& 1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& Writes the amount of drug in the bloodstream when the effect of the drug is maximum as 270 mg . \& \\
\hline Q.38i) \& \begin{tabular}{l}
Takes \(\mathrm{P}(\mathrm{S}), \mathrm{P}(\mathrm{C})\) and \(\mathrm{P}(\mathrm{T})\) as the probabilities that a person selected randomly from the staff prefers sugar, coffee and tea respectively. \\
Finds \(\mathrm{P}(\mathrm{T})=\mathrm{P}\left(\mathrm{C}^{\prime}\right)=1-0.6=0.4\). \\
Finds \(\mathrm{P}(\mathrm{S} \mid \mathrm{T})=1-0.2=0.8\). \\
Uses theorem on total probability and finds the probability that a randomly selected staff prefers a beverage with sugar as:
\[
\begin{aligned}
\& \mathrm{P}(\mathrm{~S})=\mathrm{P}(\mathrm{C}) \times \mathrm{P}(\mathrm{~S} \mid \mathrm{C})+\mathrm{P}(\mathrm{~T}) \times \mathrm{P}(\mathrm{~S} \mid \mathrm{T}) \\
\& =0.6 \times 0.9+0.4 \times 0.8=0.86 \text { or } \frac{86}{100} \text { or } \frac{43}{50}
\end{aligned}
\]
\end{tabular} \& 1

1

\hline Q.38ii) \& | Uses the sum of probabilities $=1$ and finds the following probabilities: |
| :--- |
| - $\mathrm{P}($ without sugar\|coffee $)=1-0.9=0.1$ |
| - $\mathrm{P}($ tea $)=1-0.6=0.4$ |
| Uses Bayes' theorem to find the probability that a staff selected at random prefers coffee given that it is without sugar, P (coffee\|without sugar) as: $\begin{aligned} & \frac{\mathrm{P}(\text { coffee }) \times \mathrm{P}(\text { without sugar } \mid \text { coffee })}{\mathrm{P}(\text { coffee }) \times \mathrm{P}(\text { without sugar } \mid \text { coffee })+\mathrm{P}(\text { tea }) \times \mathrm{P}(\text { without sugar } \mid \text { tea })} \\ & =\frac{0.6 \times 0.1}{0.6 \times 0.1+0.4 \times 0.2} \end{aligned}$ |
| (Award 0.5 marks if only the formula for Bayes' theorem is written correctly.) |
| Simplifies the above expression and finds the required probability as $\frac{6}{14}$ or $\frac{3}{7}$. | \& 0.5

\hline
\end{tabular}

