Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

1. This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

2. Section A has 18 MCQs and 02 Assertion-Reason based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.

4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.

6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

Q.2	P and Q are matrices such that both $(P + Q)$ and (PQ) are defined.	1
	Which of the following is true about P and Q?	
	 A. P and Q can be any matrices but of the same order. B. P and Q must be square matrices of the same order. C. P and Q must be square matrices not necessarily of the same order. D. Order of P and Q must be of the form m × k and k × n respectively, with no condition on m and n. 	
Q.3		1
	$ A = \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$	
	x y z	
	Under which of the following conditions will A be equal to 0?	
	i) $a - 2p = b - 2q = c - 2r = 0$	
	ii) $x = y = z = 0$ iii) $a : b : c = x : y : z$	
	A. only ii)	
	B. only i) and ii)	
	C. only i) and iii) D. all - i), ii) and iii)	
Q.4	If $abc = 2$, what is the value of the determinant below?	1
	2a $2a$ $3b+c$	
	3b $2a+c$ $3b$	
	2a+3b c c	
	A48	
	B24 C. 48	
	D. (cannot be found without the values of a , b and c)	
		1
Q.5		

	For what value of k is the function f continuous at $x = 0$?	
	$f(x) = \begin{cases} \frac{\sin 2x}{8x}, & \text{if } x \neq 0\\ k, & \text{if } x = 0 \end{cases}$	
	A. 4 B. 1 C. $\frac{1}{4}$ D. $\frac{1}{8}$	
Q.6	What is the integral of the following expression?	1
	$\frac{1}{x^2 \cos^2\left(\frac{1}{x}\right)}$	
	A. $-\tan x + A$, where A is a constant. B. $-\tan \frac{1}{x} - B$, where B is a constant. C. $\frac{1}{2}\tan x + C$, where C is a constant. D. $\sec \frac{1}{x}\tan \frac{1}{x} - D$, where D is a constant.	
Q.7	What is the value of the following integral?	1
	$\int_{-1}^{1} 4x - x^2 dx$	
	A4 B2 C. 0 D. 4	
Q.8	Which of the following is CLOSEST to the area under the parabola given by $y = 4x^2$, bounded by the <i>x</i> -axis, and the lines $x = (-1)$ and $x = (-2)$?	1
	 A. 6 sq units B. 8 sq units C. 9 sq units D. 12 sq units 	
Q.9	Which of the following differential equation has an order of 2 and a degree of 3?	1

A. $\frac{d^2 y}{dx^2} - \left(\frac{dy}{dx}\right)^3 = 0$ B. $\left(\frac{d^2 y}{dx^2}\right)^3 + \frac{dy}{dx} = 0$ C. $\left(\frac{d^3 y}{dx^3}\right)^2 + \frac{d^2 y}{dx^2} = 0$ D. $\left(\frac{d^2 y}{dx^2}\right)^3 + \sin\left(\frac{d^2 y}{dx^2}\right) = 0$	
Q.10 Following is a differential equation. $\frac{dy}{dx} = 4e^{3x}$ If $y(0) = \frac{7}{3}$, which of the following is a particular solution of the differential equation A. $\frac{4}{3}e^{3x} - \frac{4}{3}e^{7}$ B. $12e^{3x} - \frac{29}{3}$ C. $\frac{4}{3}e^{3x} + 1$ D. $4e^{3x} - \frac{5}{3}$	1 ion?
Q.11	1

	Shown below is a regular hexagon whose two vertices are joined by a vector.	
	te te	
	Which of these statement(s) is/are true?	
	i) \vec{a} and \vec{d} are equal vectors.	
	ii) \vec{b} and \vec{e} are collinear vectors. iii) \vec{c} , \vec{d} and \vec{g} are coinitial vectors.	
	 A. only ii) B. only iii) C. only i) and ii) D. all - i), ii) and iii) 	
Q.12	The position vectors of the vertices P, Q and R of \triangle PQR are $-\hat{i} + 2\hat{j} + 4\hat{k}$,	1
	$3\hat{i} + 6\hat{j} + 8\hat{k}$ and $4\hat{i} + \hat{j} + \hat{k}$ respectively.	
	Which of the following is the vector that represents the median $\overrightarrow{PS?}$	
	A. $\frac{7}{2}\hat{i} + \frac{9}{2}\hat{j} + \frac{9}{2}\hat{k}$ B. $2\hat{i} + 3\hat{j} + \frac{13}{3}\hat{k}$ C. $\frac{9}{2}\hat{i} + \frac{3}{2}\hat{j} + \frac{1}{2}\hat{k}$ D. $-\frac{1}{2}\hat{i} + \frac{5}{2}\hat{j} + \frac{7}{2}\hat{k}$	
Q.13		1

	The position vectors of the points X, Y and Z are $\hat{i} + 4\hat{j} + 3\hat{k}$, $4\hat{j} + M\hat{j} + \frac{15}{2}\hat{k}$	
	and $7\hat{i} - 4\hat{j} + 12\hat{k}$ respectively.	
	If the points X, Y and Z are collinear, which of the following could be the value of M?	
	A. 8 B. 4 C. 2 D. 0	
Q.14	A line makes an angle of 135° with the positive direction of the <i>x</i> -axis, and an angle of 300° with the positive direction of the <i>y</i> -axis.	1
	Which of the following could be the angle it makes with the negative direction of the <i>z</i> -axis?	
	 A. 45° B. 60° C. (Such a line does not exist.) D. (A unique angle made with the z-axis cannot be determined.) 	
Q.15	\overrightarrow{PQ} is perpendicular to \overrightarrow{QR} . The position vectors of P, Q and R are $(4\hat{i} + 7\hat{j} - \hat{k}), (5\hat{i} + y\hat{j} + \hat{k})$ and $(-2\hat{i} + 9\hat{j} + 4\hat{k})$ respectively.	1
	What is the value of <i>y</i> ? A9 B8 C. 7 D. 8	
Q.16	A linear programming problem (LPP) along with its constraints is given below. Minimize: $Z = 3x + 2y$	1
<u> </u>	Subject to:	

	$x \leq 4$	
	$x \ge 0, y \ge 0$	
	Which of the following is true about the above LPP?	
	A. It has no solution.	
	B. It has a unique solution.	
	C. It has two distinct solutions.	
	D. It has infinitely many solutions.	
Q.17	M and N are two events such that $P(M N) = 0.3$, $P(M) = 0.2$ and $P(N) = 0.4$.	1
	Which of the following is the value of $P(M \cap N')$?	
	A. 0.8	
	B. 0.12	
	C. 0.1	
	D. 0.08	
		1
Q.18	The constraints of a linear programming problem along with their graphs is shown below:	-
	$x + 2y \ge 3$	
	$\begin{array}{c} x + 2y \geq 3 \\ x \geq 10 \end{array}$	
	$x \ge 10$ $y \ge 0$	

	Shown below is the graph of the function	
	$f: \mathbb{R} - \{0\} \longrightarrow \mathbb{R}$ defined by, $f(x) = \frac{9 - x^2}{9x - x^3}$.	
	Based on the above function, two statements are given below - one labelled Assertion (A) and the other labelled Reason (R). Read the statements carefully and choose the option that correctly describes statements (A) and (R).	
	Assertion (A): The function f is not onto.	
	<i>Reason</i> (<i>R</i>): $3 \in \mathbb{R}$ (co-domain of <i>f</i>) has no pre-image in the domain of <i>f</i> .	
	A. Both A and R are true and R is the correct explanation of A.B. Both A and R are true but R is not the correct explanation of A.C. A is true but R is false.D. Both A and R are false.	
Q.20	Two statements are given below - one labelled Assertion (A) and the other labelled Reason (R). Read the statements carefully and choose the option that correctly describes statements (A) and (R).	1
	Assertion (A): The function $f(x) = x - 6 (\cos x)$ is differentiable in $R - \{6\}$.	
	<i>Reason (R)</i> : If a function f is continuous at a point c , then it is also differentiable at that point.	
	 A. Both (A) and (R) are true and (R) is the correct explanation for (A). B. Both (A) and (R) are true but (R) is not the correct explanation for (A). C. (A) is true but (R) is false. D. (A) is false but (R) is true. 	

	SECTION B	
	(This section comprises of very short answer type-questions (VSA) of 2 marks each.)	
Q.21	$\cot^{-1}x = \cos^{-1}(-1) - \csc^{-1}\left(\frac{2}{\sqrt{3}}\right)$	2
	Based on the above equation, find $tan^{-1}\left(\frac{1}{x}\right)$ using the principal values of the inverse trigonometric functions. Show your work.	
	OR	
	i) Find the domain of the function below.	
	$f(x) = \frac{1}{2}\sec^{-1}(5x - 3)$	
	ii) Find the range (principal value branch) of the function below.	
	$f(x) = 3\cos^{-1}\left(\frac{1}{2x-1}\right) - 2$	
	Show your work.	
Q.22	The matrix $\mathbf{A} = \begin{bmatrix} 6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1 \end{bmatrix}$ is the sum of a symmetric	2
	matrix B and a skew symmetric matrix C.	
	Find C. Show your work.	
Q.23	Find $\frac{dy}{dx}$ if $y = (e^{secx} + x)^4$. Show your work.	2

		· · · · · · · · · · · · · · · · · · ·
Q.24	The position vectors of the points P, Q and R are \hat{p} , \hat{q} and \hat{r} respectively. A vector $\vec{v} = k(\hat{q} + \hat{r})$ is such that $\hat{p}.\vec{v} = \hat{q}.\vec{v}$, where <i>k</i> is a scalar. Prove that $(\hat{p} - \hat{r}) \cdot (\hat{p} - \hat{q}) = 0$.	2
	OR	
	In the figure below, QRST and QRTP are parallelograms.	
	Using the vectors shown for RQ and RS, prove that the area of QRST is equal to the area of QRTP.	
Q.25	The vector equation of a line AB is given by $\vec{r} = x_1(1 + \lambda)\hat{i} + y_1(1 + 2\lambda)\hat{j} + z_1(1 + 3\lambda)\hat{k}$. The coordinates of A are (x_1, y_1, z_1) and \vec{r} is the position vector of a point (x, y, z) on AB.	2
	i) What is the equation of this line in cartesian form? ii) If A's coordinates are (–2, 5, –3), use the cartesian equation of the line to find the coordinates of B.	
	Show your steps.	
	SECTION C (This section comprises of short answer type questions (SA) of 3 marks each)	
Q.26	Check whether the following statement is true or false.	3
	If $u = e^{\sin^{-1}\theta}$ and $v = e^{-\cos^{-1}\theta}$, then $\frac{du}{dv}$ is a constant for any value of θ .	
	Show your work with valid reason.	
	OR	

	If $\frac{x^m}{y^n} = (xy)^{(m-n)}$, $(y \neq 0)$, find $\frac{dy}{dx}$. Show your work.	
Q.27	The anti-derivative of a function of the form $(3x - 1)f(x)$, $(x \neq \frac{1}{3})$, is given by $3x^4 - \frac{13}{3}x^3 + \frac{3}{2}x^2 + C$, where C is the constant of integration. Find the value of f(6). Show your steps.	3
Q.28	Evaluate the following definite integral and show your work. $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \operatorname{cosec}^{6} x \operatorname{cot}^{2} x dx$	3
Q.29	Find the particular solution when $x = y = 0$ for the following differential equation. $dy \sqrt{1 - x^2} + (y - e^{-\sin^{-1}x})dx = 0$ Show your steps. OR Find the general solution of the following differential equation.	3
	$\left(x^{2}y + yx\sqrt{y^{2} - x^{2}}\right)dx - x^{3}dy = 0$ Show your steps.	
Q.30	Frame the below optimisation problem as a linear programming problem and determine its feasible region graphically.Bhavani Singh, a farmer, decides to raise hens and cows to make some extra money apart from his agricultural income. He wants to raise no more than 16 animals including no more than 10 hens. On an average it will cost him Rs 25 and Rs 75 per day to raise one hen and one cow respectively. He will make an average profit of Rs 12 from each hen and Rs 40 from each cow every day. He has a budget of Rs 900 per day to raise the animals. How many of each type of animals should he raise to maximise his profit?	3

	SECTION E (This section comprises of 3 case-study/passage-based questions of 4 marks each with two sub-questions. First two case study questions have three sub questions of marks 1, 1, 2 respectively. The third case study question has two sub questions of 2 marks each.)
6	Answer the questions based on the given information.
	Port Blair, the capital city of Andaman and Nicobar Islands is directly connected to Chennai and Vishakapatnam via ship route. The ships sail from Chennai/Vishakapatnam to Port Blair and vice versa.
	Swaraj Dweep and Shaheed Dweep are two popular tourist islands in Andaman Islands. One has to take a ferry from Port Blair to reach these islands. There are ferries that sail frequently between the three islands - Port Blair (PB), Swaraj Dweep (SwD) and Shaheed Dweep (ShD).
	Shown below is a schematic representation of the ship routes and ferry routes.
	Khammam stago Rajamahandravaram Descuber Rajamahandravaram Descuber Guntur Guntur Guntur Chennai C Visakapatnam Pot Blair Shahead Dweep SwD Chennai C Visakapatnam PB Shabead Dweep SwD
	Nellore Register Regi
	Chennel Ship Port-Blair Ferry
	(Note: The image is for representation purpose only.)
	X is the set of all 5 places and Y is the set of 3 places in Andaman Islands.
	That is, $X = \{C, V, PB, SwD, ShD\}$ and $Y = \{PB, SwD, ShD\}$.
	A relation R defined on the set X is given by, $R = \{(x_1, x_2): \text{ there is a direct ship or direct ferry from } x_1 \text{ to } x_2\}.$

A function $f: Y \to X$ is defined by, f(PB) = V, f(SwD) = PB, f(ShD) = SwD.

