M.H.67

14P/288/26

Question	Booklet	No	
----------	---------	----	--

(To be filled up by the candidate by blue/blo	ack ball-point pen)
Roll No.	
Roll No. (Write the digits in words)	
Serial No. of OMR Answer Sheet	
Day and Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
 - 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
 - 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
 - 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
 - 7. Any change in the aforcsaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
 - 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
 - For each question, darken only one circle on the Answer Sheet. If you darken more than one circle
 or darken a circle partially, the answer will be treated as incorrect.
 - 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
 - 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- .12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिवे गए हैं।

[No. of Printed Pages: 28+2

14P/28B/26

2.	The bending of bea	am of light around	i corners o	of obstacles is	called	
	(1) reflection	(2) diffraction	(3) ref	fraction	(4) interference	
3.	How much flux wil 600 candel source	l pass through an is at its centre?	area of 0.2	2m2 on a sph	ere of radius 50 cm	if
	(1) 120 lumen	(2) 480 lumen	(3) 60	lumen	(4). 560 lumen	
4.	The efficiency of a	heat engine is alv	ways			
	(1) less than one		(2) mo	ore than one		
	(3) unity		(4) zer	ro		
5.	The Gibbs' tree en	ergy is defined as		•		
	(1) $G = H - TS$	(2) $G = U - TS$	(3) G=	= U + PV	(4) $G = H - P \wedge V$	
6.	In a reversible pro-	cess, the entropy of	of a system	n.		
	(1) increases		(2) dec	creases		
	(3) zero	1000	(4) ren	nains constar	at '	
7.	The number of noc energy level is equa	les is the radial p al to	robability	distribution c	urve of s-orbital of	an
	(1) n-2	(2) n/2	(3) n-	-1	(4) $n+1$	
8.	For a single electro	n in an atom the	wave func	tion is know	ı as	
	(1) molecular orbit	12		omic orbital		
	(3) electron change	density	(4) No:	ne of the abo	ve	
(164)			2	156		

9.	Number of molecular orbitals formed by this	he linear combinatio	n of two atomic orbitals
	(1) 1 (2) 2	(3) 4.	(4) 6
10.	A nucleus ruptures into two nuclear part 2:1. The ratio of their nuclear will be	s, which have their	velocity ratio equal 1 to
	(1) 2 ¹¹³ :1 (2) 1:2 ¹¹³	(3) 3112:1	(4) 1:3 ¹¹²
11.	The ratio of minimum to maximum wave	elength in Balmer se	tries is
	(1) 5:9 (2) 5:36	(3) 1:4	(4) 3:4
12.	Which of the following is not an electron	nagnetic wave?	3×3
d	(1) Optical rays	(2) Mićrowave radia	ations
	(3) X-rays	(4) β-ray	: . n
13.	Infrared radiations are detected by		
	(1) Spectrometer (2) Pyrometer	(3) Nanometer	(4) Photometer
14.	When absorbed by molecules, the energy	of infrared rays go	ets converted into
	(1) molecular vibration	(2) atomic vibration	1 .
	(3) sound vibration	(4) None of the abo	ove
15.	CO2-Laser provides infrared rays of wave	elength	5.00 1.000
	(1) 10.6×10^{-8} m (2) 10.6×10^{-9} m	(3) 10·6×10 ⁻⁶ m	(4) .20·3×10 ⁻³ m
54)	3	g	(P.T.O.)

				13
16.	A molecule contact	ining three electrons	bond is	
•1	(1) ClO ₂	(2) BH ₃	(3) CO ₂	(4) NO ₂
17.	lsoelectronic pair	of ions is	€ ***	•
	(1) Rb ⁺ , Br	(2) K ⁺ , Rb ⁺	(3) Mg ²⁺ , Ca ²⁺	(4) Cl ⁻ , Br ⁻
18.	Denticity of triam:	ino-propane is	ec .	
	(1) 3	(2) 4	(3) 2	(4) 5
19.	Lewis acid is		62	\$60 50
	(1) FeCl ₃	(2) Be(OH)2	(3) NH ₃	(4) NiCl ₂
20.	A soft acid is			
	(1) Cu+	(2) C1 ⁻	(3) K+ '	(4) Be ²⁺
21.	H ₂ O is conjugate a	acid of		
	(1) H ₃ O+	(2) OH^	(3) O ₂ H	(4) O ₂
22.	One of the weakes	t acid is		x .
	(1) HP	(2) HCl	(3) HBr	(4) HI
23.	Catalytic decompos	sition of PH ₃ on hot	tungsten at higher	pressure have rate law
••	(1) V = K	(2) V = K [PH ₃]	(3) V = K [P] [H+]	(4) $V = K (PH_3)^2$
			ava _	
(164)			•	

collegedunia India's largest Student Review Platform

24.	The process, salt + water = acid + bas	e, is		6		
.5	(1) electrolysis (2) thermolysis	(3)	hydrolysis	(4)	photolysis	
25.	'Oxine' reagent is		·			
	distribution coupertain were a security and a security of the couper of the couper	13)	resorcinol			•
	(1) beta naphthol	A. (0.40)	\$21 \$21		•	
	(3) 8-hydroxyquinoline	(4)	phenol			
26.	In paper chromatography, both stations	ary a	nd mobile phase	:s a:	re	
	(1) liquid, liquid (2) solid, solid	(3)	liquid, solid	(4)	gas, gas	
		_	*		,	
27.	Lambert-Beer law is related with		955			
	(1) gravimetry	(2)	flame photomet	ry		
	(3) UV-visible spectrophotometry	(4)	IR spectroscopy		25	
28.	Tollen's reagent is used for the identifi	catio	a of			(#) (K)
	(1) carbobydrate (2) ketone	(3)	aldehyde	(4)	alcohol	ts.
		15 1650			9	缴
29.	Adipic acid is used in the preparation	of				
	(1) polyester (2) polyurethane		Nylon 66	(4)	Nylon 6	107 107
	(1) had and	2761 50	=	10 17	3.53	
					n= -	
30.	Terylene is a					
	(1) polyamide	10 4 .761 4 .7	cascade polyme	:1		
	(3) polyurethane	(4)	polyester			
				×		

31.	The first formed chemical compour	ds on the ear	th must have	been
	(1) glucose and fructose	(2) prote	in and fatty s	acids
	(3) oxygen and nitrogen	(4) gluco	ose and oxygen	n
32.	Bryophytes do not possess	. (4)		
	(1) chlorophyll a	(2) cutic	le	
	(3) vascular tissue	(4) emb	yo Yo	
33.	Cooksonia was a			
	(1) liverwort (2) trimesophy	e (3) equis	setophyte (4)	rhyniophyte
34,	A plant group not included under	he pteridophy	tes	
	(1) ferns (2) whiskferns	(3) lycop	ods (4)	hornworta
35.	'Sulphur showers' on hills are		*	
	(1) pollen grains of Cycas	100 M	n grains of Pi	nus
	(3) pollen grains of Cedrus	(4) poller	n grains of To	ucus
36.	Motile sperms are characteristic fea	ure of	*	
eg.	(1) Pinus (2) Cycas	(3) Gnet	ım (4)	Taxus
37.	Respiratory quotient for germinating	carbohydrate	rich seed is	€2
	(1) one	(2) less t	han one	
	(3) more than one	(4) varial	ble	

38.	In photosynthesis primary photochemic	y and charge sepa	aration takes place at
	(!) electron transport chain	(2) photosystem I	8
	(3) photosystem II	(4) photosystem I	and II both
39.	The production of ATP from ADP, with	it involving oxidati	ion of NADH, is called
•	(1) exidative phosphorylation	(2) electron trans	port reaction
	(3) substrate level phosphorylation	(4) β-oxidation	
40.	The pink colour of root nodules is due	· •	
	(1) hacmoglobin	(2) carotenoids	
	(3) leghaemoglobin	(4) astaxanthin	
	· ·		•
41.	Lysosomes are rich in enzymes	1 12 12 12 12 12 12 12 12 12 12 12 12 12	
ė	(1) acid posphatases	(2) alkaline phosp	hatases
	(3) dehydrogenases	(4) permeases	er gr
42.	Pseudomurein is the constituent of cell	vall of	
	(1) bacteria (2) cyanobacteria	(3) archaea	(4) mycoplasma
43.	One step growth curve is associated w		
	(1) bacteria (2) virus	(3) plant cells	(4) animal cells
64)	7	787	(P.T.O.)
/			,y

44.	Hig	heat level of nitrogen fixed by	•	
	(1)	free living cyanobacterium	(2)	Rhizobium sp.
	(3)	Azotobacter	(4)	Clostridium
45.	Cel	l to cell communication in plant cell	occ	urs through
	(1)	pit connections	(2)	mesosomes
6	(3)	desmosomes	(4)	plasmodesmeta
•3:		9		
46.	Wh	at happens when a neuron's membr	ane	depolarizes?
	(1)	There is a net diffusion of Na+ out	of t	he cell
	(2)	The neuron's membrane voltage bed	come	s more positive
	(3)	The neuron becomes less likely to	gene	rate an action potential
•	(4)	The inside of the cell becomes more	e ne	gative relative to the outside
47.	Wh	ere are neurotransmitter receptors le	ocate	ed?
	(1)	At nodes of Ranvier		
	(2)	On the postsynaptic membrane	Pil.	•0
	(3)	On the membranes of synaptic vesi	cles	₩
	(4)	In the myelin sheath		2/

	(1) the formation of a fertilization envelope
	(2) the production of a fast block to polyspermy
(*)	(3) the release of hydrolytic enzymes from the sperm
	(4) the fusion of egg and sperm nuclei
49 .	In a frog embryo, the blastocoel is
	(1) completely obliterated by yolk
	(2) lined with endoderm during gastrulation
	(3) located in the animal hemisphere
ē.	(4) the cavity that becomes the coelom
50.	The first cells to migrate through the blastopore in chick embryo are destined to become
	(1) endoderm (2) mesoderm (3) foregut (4) head process
51.	An epitope associates with which part of an antibody?
	(1) The antibody-binding site
	(2) The heavy-chain constant regions only
	(3) Variable regions of a heavy chain and light chain combined
	(4) The light-chain constant regions only
	mma.
164	g (P.T.O.)

48. The cortical reaction of sea urchin eggs functions directly in

- 52. Which statement best describes the difference in responses of effector B cells (plasma cells) and cytotoxic T cells?
 - (i) B cells confer active immunity; cytotoxic T cells confer passive immunity
 - (2) B cells kill viruses directly; cytotoxic T cells kill virus-infected cells
 - (3) B cells secrete antibodies against a virus; cytotoxic T cells kill virus-infected cells
 - (4) B cells accomplish the cell-mediated response; cytotoxic T cells accomplish the humoral response
- 53. HIV targets include all of the following, except
 - (1) macrophages

(2) cytotoxic T cells

(3) helper T cells

- (4) cells bearing CD4
- 54. A distinctive feature of the mechanism of action of thyroid hormones and steroic hormones is that
 - (1) these hormones are regulated by feedback loops
 - (2) target cells react more rapidly to these hormones than to local regulators
 - (3) these hormones bind with specific receptor proteins on the plasma membrane of target cells
 - (4) these hormones bind to receptors inside cells
- 55. Vertebrates and tunicates share
 - (1) jaws adapted for feeding
 - (2) a high degree of cephalization
 - (3) the formation of structures from the neural crest
 - (4) a notochord and a dorsal hollow nerve cord

(164)

10

×	(1)	endothermy
	{2}	descent from a common amniotic ancestor
72	(3)	a dorsal, hollow nerve cord
	(4)	an archosaur common ancestor
57.	As	hominins diverged from other primates, which of the following appeared first?
,	(1)	Reduced jawbones (2) Bipedal locomotion
	(3)	The making of stone tools (4) An enlarged brain
58.	Syc	on belongs to a group of animals, which are best described as
	(1)	multicellular having tissue organisation but nobody cavity
	(2)	unicellular or acellular
	(3)	multicellular with cell-tissue grade of organisation
	(4)	multicellular with a gastrovascular system
59.	Pac	dogenesis refers to
	(1)	precocious development of gonads
	(2)	retention of larval characters by adults
	(3)	retention of rudimentary characters in adults
	(4)	retrogressive metamorphosis

11

164)

56. Mammals and living birds share all of the following characteristics, except

(P.T.O.)

60.	Which of the following morphological changes in not involved in human evolution?
	(1) Attainment of erect posture and bipedal locomotion
	(2) Increase in brain size and intelligence
	(3) Increase in body hair
	(4) Narrowing and elevation of nose
61.	In the cell cycle, mitosis occurs between
	(1) S and G2 phase (2) S and G1 phase
	(3) G1 and G2 phase (4) G2 and S phase
62.	Where does the duplication of chromosomes occur?
	(1) Interphase (2) Prophase (3) Metaphase (4) Anaphase
63.	The major structural protein of the extracellular matrix is
	(1) fibronectin (2) collagen (3) elastin (4) laminin
64.	Ribosomal subunits are assembled in
	(1) cytoplasm (2) endoplasmic reticulum
	(3) Golgi complex (4) nucleus
65.	If the eyepiece lens magnifies 10 times, what objective lens will give x40(magnification?
r	(1) x0·4 (2) x4 (3) x40 (4) x400

66.	Cro	ossing-over occur	re in					\$1
85	(1)	pachytene	(2)	zygotene	(3)	leptotene	(4)	diplotene
67.	Bea	side nucleus, DN	iA is	also present in	85	9 2	•	•
	(1)	ribosomes	(2)	lysosomes	(3)	mitochondria	(4)	Golgi complex
68.	The	708 ribosomes	атс	composed of				9
	(1)	35S and 35S	(2)	508 and 208	(3)	50S and 30S	(4)	60S and 20S
69.	Bac	cterial genome is	pre	vented by its ow	n e	ndonucleases by	9	: :-
	(1)	methylation at	resti	riction sites -		N		19
	(2)	immune mecha	nisn	L . 4		E 2		
	(3)	nuclease resista	ınt g	genome			97	100 NO.
	(4)	the ability to de	cstro	y all endonuclea	ses			39
70.	Hol	iday junction is	obse	erved during		* ×		
	(1)	mitosis	(2)	interphase	(3)	recombination	(4)	DNA repair
71.		ne code for an an ild be	onio	acid is AGC on t	he E	NA molecule, th	e an	ticodon on the tRNA
	(1)	AGC .	(2)	TGC	(3)	UCG	(4)	UAG
72.		v many DNA mo ge of cell cycle?	lecui	les are present i	n th	e nucleus of hu	man	somatic cell in G2
	(1)	23	(2)	46	(3)	69	(4)	92
64}				13		-	10	(P.T.O.)

73. [*]	Schwann and Schleiden stated		
	(1) plants are not made of cells		70
¥1	(2) cells are basic unit of life	*	
	(3) animals have cells		
	(4) all cells come from pre-existing cells		
74.	. The structure in the membrane needed for p	potassium ciflux and sodi	um influx
	(1) Nucleopore (2) Capillaries (3)	Ion channels (4) Vacu	oles
75.	. What is the alternative name of cell death?		
	(1) Necrosis (2)	Lysis	
	(3) Oxidative burst (4)	Apoptosis	
76.	. The centricle is comprised of how many gro	ups of microtubules?	
1.52	(1) 9 (2) 12 (3)	6 (4) 18	
77.	. What is the correct order of different stages	of mitosis?	
	(1) Prophase—Metaphase—Telophase—Anap	hase—Cytokinesis	
	(2) Prophase—Cytokinesis—Metaphase—Tele	phase—Anaphase	
	(3) Anaphase—Prophase—Metaphase—Telop	hase Cytokinesis	
	(4) Prophase—Metaphase—Anaphase—Telop	hase—Cytokinesis	
		909	z i

78,	Which of the following forms of life is not eukaryotic?
	(1) A protist such as an amoeba
	(2) A plant cell such as elodea
	(3) A bacterial cell such as streptococcus
	(4) A human cell such as a red blood cell
79.	An electron microscope is needed for seeing
٠	(1) the cell membrane (2) chloroplasts
	(3) nerve cells (4) the nucleus
80.	A cell that had relatively few energy needs would probably have a relatively small number of
	(1) chromosomes (2) lysosomes (3) ribosomes (4) mitochondria
81.	Which of the following processes requires both carrier molecules and energy?
	(1) Osmosis (2) Facilitated transport
	(3) Active transport (4) All of the above
82.	Digestive enzymes or hydrolytic enzymes are terms that would be associated with
	(1) Golgi apparatus
	(2) smooth endoplasmic reticulum
	(3) ribosomes
	(4) lysosomes
(164)	15 . (P.T.O.)

	(1) Production of two identical daughter cells	
	(2) Production of two nuclei with identical genetic content	
	(3) Precise division of the cytoplasm and its distribution to two daughter cells	
	(4) Reproduction of mitochondria and chloroplasts	,
84.	Meiosis involves division(s) of a nucleus.	
	(1) one (2) two (3) four (4) eight	135
85.	Which of the following statements best describes the 'fluid mosaic model' of the structure of the cell membrane?	h•
	(1) Two layers of protein with lipid layers between the protein layers	٠
	(2) Two layers of lipid with proteins between the lipid layers	:
	(3) A double layer of lipid molecules with protein molecules suspended in the layer	:
	(4) A single layer of protein on the outside and a single layer of lipids on the inside	•
86.	A nonsense mutation is the one that	
	(1) replace one amino acid with another in the gene product	
	(2) replace an amino acid codon with a stop codon	
26	(3) can be produced by deletions, insertions or splicing errors	
•	(4) create or destroy signals for exon-intron splicing	
		200
164)	16	Ł

83. Which of the following does mitosis normally accomplish?

87.	The chromosomal constitution of an Edward syndrome patient is					
¥ 88	(1) 46,XY,+13 (2) 46,XY,+16 (3) 46,XY,+18 (4) 46,XY,+21					
88.	Crossing-over between homologous chromosomes during meiosis occurs at					
	(1) zygotene (2) pachytene (3) diplotene (4) metaphase l					
89.	Mendel's 3:1 monohybrid and 9:3:3:1 dihybrid ratios are hypothetical predictions based on the assumption that					
	(1) each altele is dominant or recessive					
	(2) segregation is unimpeded					
18	(3) fertilization is random					
	(4) All of the above					
90.	The term aneuploidy refers to					
	(1) all or part of one or more chromosomes is added					
	(2) only part of one or more chromosomes is added					
	(3) all or part of one or more chromosomes is added or deleted					
	(4) only one or more full length chromosomes is added					
91.	The nomenclature of human autosomes depend on					
	(i) length of the chromosomes					
	(2) size of the chromosomes					
	(3) centromere position of the chromosomes					
	(4) All of the above					
(164)	17 (P.T.O.)					

- 92. The 1946 Nobel Prize in Physiology or Medicine was given to
 - (1) T. H. Morgan for discovery of production of mutations by means of X-ray irradiation
 - (2) T. H. Morgan for discovery of production of mutations by means of UV irradiation
 - (3) H. J. Müller for discovery of production of mutations by means of X-ray irradiation
 - (4) C. Stern for discovery of production of mutations by means of X-ray irradiation
- 93. CpG island is usually found in the
 - (1) promoter region of eukaryotic genes
 - (2) exons of eukaryotic genes
 - (3) promoter region of prokaryotic genes
 - (4) plasmids
- 94. Alu repeats
 - (1) are restricted to the centromeric region of human chromosomes
 - (2) are interspersed throughout the genome equally in heterochromatic and euchromatic regions of human genome
 - (3) have a relatively high GC content and mainly dispersed in the euchromatic region of human genome
 - (4) have a relatively high AT content and mainly dispersed in the heterochromatic region of human genome
- 95. In a family with three children, what is the probability that two are boys and one it girl?
 - (1) 2/3
- (2) 1/2
- (3) 3/8
- 14) 1/3

								- 60
96.	What percent	t the total	human genome	is tr	anacribed?	9.7		
	(1) less than	1 30 (2)	40-50	(3)	60-70	(4)	80-90	•
97:	Mutations ar	rc	•					10 gr
	(1) caused b	y genetic r	ecombination		٠			
	• Statement of the particular to the particular of the particu		genetic inform	ation	1			0
	◆ constant and the state of th	Average Area () to the large sets	anscription of th		•		3	
	W. S.				the individuals	in w	hich they oc	cur
	(+) manage -							
98.	A man of whi	ch blood gro	oup could not be	the i	father of a child v	vith i	blood group A	B?
e	(1) A	(2)	В	(3)	0	(4)	AB`	9
99.	Mitochondria	l DNA in e	ukaryotes is mo	st p	robably derived	from		
	(1) chloropis	ıst (2)	virus	(3)	bacteria	(4)	fungi	
00.	In a plant, re	ed fruit (R) as (t). If a pla	is dominant ove ant with RRTt ger	r yel notyj	llow fruit (r) and pe is crossed with	talb a p	ness (T) is do lant that has	minant rrtt
	(1) 25% will	be tall, all	with red fruit		•		•	
	(2) 50% will	be tall, all	with red fruit		t			1
	80 80		with red fruit		(M)			
	10. 10 0		tall with red fr	uit	e	ı		
01.	Lack of indep	endent ass	ortment of two go	nes	A and B in fruit f	ly Di	rosophila is d	ue to
	(1) repulsion	ı (2)	recombination	(3)	linkage	(4)	crossing-ove	er
(64)			19					(P.T.O.)
					<u></u>			•

102.	The recessive genes located on X-chromosomes of humans are always
	(1) lethal (2) sub-lethal
	(3) expressed in males (4) expressed in females
103.	Which of the following is not a hereditary disease?
	(1) Cystic fibrosis (2) Thalassaemia (3) Haemophilia (4) Cretinism
104.	Genes for cytoplasmic male sterility in plants are generally located in
	(1) mitochondrial genome (2) chloroplast genome
	(3) nuclear genome (4) cytosol
105.	Hacmophilia is more commonly seen in human males than in human females because
	(1) a greater proportion of girls die in infancy
	(2) this disease is due to an Y-linked recessive mutation
	(3) this disease is due to an X-linked recessive mutation
	(4) this disease is due to an X-linked dominant mutation
106.	Gyaecomastia is a symptom of
	(1) Turner's syndrome (2) Klinefelter's syndrome
	(3) Down syndrome (4) SARS
107.	DNA fingerprinting technique was first developed by
	(1) Schleiden and Schwaan (2) Edward and Steptoe
	(3) Jeffreys, Wilson and Thien (4) Boysen and Jensen
(164)	

108.	A protein having molecular weight of 440 Dalton, will have how many amine acids?				
	(1) 4 (2) 44 (3) 10 (4) 40				
109.	Peptide bonds, which covalently link two amino acids, result from				
	(1) the oxidation of amino acids				
	(2) the condensation of amino acids				
	(3) the hydrolysis of amino acids				
	(4) hydrogen bonds between amino acids				
L 10.	The isoelectric point, or pl, of an amino acid or a protein is				
i	(1) the pH at which the amino acid or protein has no net charge				
	(2) zero at pH 7-0				
59	(3) the pH at which the amino acid or protein is neither hydrophobic nor hydrophilic				
	(4) the measure of the hydropathy of an amino acid or protein				
111.	What happens to the activation energy in an enzyme catalyzed reaction?				
*	(1) Increases (2) Decreases (3) Unchanged (4) None of the above				
112.	The Mihaelia constant km is a measure of				
	(1) stability of the ES complex (2) affinity				
	(3) Both (4) None of these				
164)	21 (P.T.O.)				

113.	Olycosidic linkages are present in		
	(1) nucleic acids (2) proteins	(3) lipids (4) carbohydrates	
114;	Under the anaerobic condition pyruve products?	vate is converted into which one of the follow	ní
	(1) Acetyl CoA	(2) Lactate	
	(3) Phosphoglycerate	(4) Citric acid	
115.	Enzyme succinate dehydrogenase is	s competitively inhibited by	
	(1) succinate (2) fumarate	(3) malonate (4) isocitrate	
116.	A Ceramide having either a phospho	rocholine or phosphoethanolamine is known i	88
	(1) phosphatidylcholine	(2) phosphatidylethanolamine	
	(3) sphingosine	(4) sphingomyeline	
117.	Number of base pairs per helical tu	urn in 'Z' form of DNA is	
	(1) 10-5 (2) 11	, (3) 12 (4) 13	
118.	Which of the RNA polymerase synth	thesizes tRNA in eukaryotic cell?	
	(1) RNA polymerase III	(2) RNA polymerase II	
	(3) DNA polymerase	(4) RNA polymerase I	
119.	Protein involved in keeping the DN	VA single stranded during replication is	
	(1) DNA binding protein	(2) helicase II	
*	(3) topoisomerase	(4) SSB protein	
(164)	PE. 1	22	

120.	Nucleolus plays ar	important role i	production of				
	(1) rRNA	(2) tRNA	(3) mRNA (4) Al	l of these			
121.	Harshey and Chas	e in their experin	ents labeled DNA with				
	(1) ³ H	(2) ³² P	(3) ^{15}N (4) 35	s			
122.	Deamination of ad	enine leads to the	formation of				
	(1) xanthine	(2) hypoxantine	(3) uracil (4) cy	tocine			
123.	The common form	of DNA present i	the living organism is				
. 1	(1) A form	(2) B form	(3) C form (4) Z	form.			
124.	Methylation of DN	A at promoter car	ics .	in the second se			
	(1) activation of transcription (2) increase of gene expression						
	(3) prevention of t	ranscription	(4) increase in translation	L			
125.	The factor Transcr	iption Biding Prot	in (TBP) is required for initiat	ion by			
	(1) RNA polymera	se I	(2) RNA polymerase II				
32	(3) RNA polymeras	se III	(4) All of them				
126.	miRNA based silen	cing of genes is	type of				
	(1) transcriptional	gene silencing	(2) post-transcriptional sil	encing			
	(3) translational s	ilencing	(4) post-translational gene	silencing			
164	* *	69	23	(P.T.O.)			
1				75 mm			

127.	The	primer of the lagging strand during	DN.	A replication is removed by
	(1)	DNA primase		*
	(2)	3' to 5' exonuclease activity of pol I	II	-1 ₋₁
	(3)	5' to 3' exonuclease activity of DNA	pol	I.
	(4)	3' to 5' exonuclease activity of pol I		74
128.		ich of the following is not directly aspression?	880C	iated with regulation of eukaryotic gene
	(1)	Acetylation of histones	(2)	Methylation of DNA
	(3)	Alternative splicing	(4)	Activation of caspases
129.	Wh	ich one of the following is not direct	ly re	elated to gene regulation?
	(1)	Glycosylation in ER	(2)	Acetylation of histones
	(3)	Activators	(4)	Silencer
130.	3357	ich one of biotechnological products ; AIDS therapy?	prod	luced by recombinant technology is used
	(1)	Interferon a2b	(2)	Interferon-y
	(3)	Interferon-β	(4)	Interferon a.2a
131.	Ŵb	sich one is not true for modern Biote	chn	ology?
	(1)	Recombinant DNA technology is us capabilities	ed t	o confer on cells entirely new synthetic
	(2)	It is used to produce recombinant bo	vine	somatotropin used for boosting milk yield
	(3)	Used to develop herbicide resistant	plar	it
	(4)	Unable to splice together in vitro Di	NA 1	nolecules derived from different sources
(164)		24		\$10 #17
0		3/2	12.5	

132.	Which one is correct for the plant cell culture?
	(1) Enables production of hundreds of plants in a single experiment
	(2) Could not produce virus free crops
7.	(3) Could not be used to increase the yield of plants
	(4) Could not be used for hybrid plant production
133.	Which one is not true for the biotechnological use of animal cell line?
	(1) Namalwa cells line used for interferons production
	(2) Namalwa cell line is used for the anti-viral and anti-cancer proteins
	(3) Namalwa cell line is used for monoclonal antibody production
	(4) Myeloma cells and spleen lymphocytes are used for monoclonal antibody production
34.	First antibiotic produced by using biotechnological technique is
3	(1) Streptomycin (2) Neomycin (3) Penicillin (4) Amoxicillin
.35.	Fermentation is a
	(1) an aerobic process
	(2) an anaerobic process
	(3) first it is an aerobic but later it is an anaerobic .
1	(4) first it is an anaerobic but later it is an aerobic
36.	Which one is the first chemical to produced by the aid of Biotechnology?
SettleDistrict.	(1) Methanol (2) Acetone (3) Butanol (4) Ethanol
64)	25 (P.T.O.)

	(1) K. Blackman (2) T. A. Brown (3) K. Mullis (4) T. D. Brock							
138.	Plasmid used for genetic engineering must carry following features							
	(1) Selectable maker, single restriction endonuclease cut site, single copy with original of species	r						
	(2) Multiple endonuclease cut site, multiple copies and origin of replication	20						
	(3) Selectable marker, multiple endonuclease cut site, multiple copies and origin replication	;						
	(4) Selectable marker, multiple endonuclease cut site, single copy and origin replication	í						
139.	Which of the following is not true for the pGEM3Z vector?							
	(1) LacZ is absent in this vector							
	(2) It contains two promoter T7 and SP6	8						
	(3) It contains ampR gene as selection marker							
	(4) It contains two binding sites for RNA polymerase							
140.	Restriction endonuclease was discovered by							
	(1) Arber, Smith and Nathans (2) Arber, Klenow and Nathans	400						
	(3) Klenow, Smith and Nathans (4) Arber, Smith and Klenow							
141.	Recognition sequence to cut DNA by Akı I is							
	(1) GATC (2) AGCT (3) GAATTC (4) GGATCC							
(164)	26							
		٠						

137. PCR which is an important technique for recombinant DNA technology was invented by

	(1)	Type I restriction endonuclease									
8	(2)	Type II restriction endonuclease									
	(3)	Type III restriction endonuclease									
•	(4)	Type I and II restriction endonuclease									
l 43.	Tag	q I restriction endonuclease produced from Thermus aquaticus cut DNA to produce									
	(1)	sticky end recognizing hexanucleotide sequence									
	(2)	blunt end recognizing hexanucleotide sequence									
	(3)	3) sticky end recognizing fournucleotide sequence									
	(4)	(4) blunt end recognizing fournucleotide sequence									
.44.	Hir	and III is produced by bacterium									
	(1)	Haemophilus influenza Rd	(2)	Haemophilus influenza Rf							
	(3)	Haemophilus aegyptius	(4)	Proteus vulgaris							
145.	GA	TC sticky ends are produced by follo	win	g enzyme pairs							
	(1)	Bam HI and Bgl II	(2)	Bam HI and Eco RI							
	(3)	Eco RI and Bgl II	(4)	Taq I and Bam HI							
146.	Flu	sh end is also known as		· · · · · · · · · · · · · · · · · · ·							
	(1)	cohesive end [2] blunt end	(3)	sticky end (4) overhangs end							
164}		27	3200 3000	(P.T.O.)							
		₩.									

142. Which one of the following is most usable and acceptable type of restriction

endonuclease used in genetic engineering simply called as restriction endonuclease?

147. (One	important	feature	of	aticky	end	enzymes	is	that
--------	-----	-----------	---------	----	--------	-----	---------	----	------

- (1) two different endonuclease with different recognition sequence can produce same sticky ends
- (2) two different endonuclease with different recognition sequence cannot product same sticky ends
- (3) two different
- (4) None of these
- 148. Most restriction endonuclease function adequately at pH
 - (1) 6.0
- (2) 6.4
- (3) 7.0
- . (4) 7.4
- 149. Dithiothreitol (DTT) is added into the restriction endonuclease digestion buffer to
 - (1) act as reducing agent to destabilize enzyme
 - (2) act as reducing agent to stabilize DNA
 - (3) act as reducing agent to stabilize enzyme
 - (4) act as reducing agent to inactivate enzyme
- 150. Which of the following is true?
 - (1) Different endonuclease requires similar ionic strength for its function provided b NaCl
 - (2) Different endonuclease requires different ionic strength for its function provided b MgCl₂
 - (3) Different endonuclease requires similar ionic strength for its function provided b NaCl and MgCl₂
 - (4) Different endonuclease requires different ionic strength for its function provided b NaCl and MgCl₂

28

D/4(164)-160

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र कें दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्त पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ट पर पैन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें:
- 6. ओ॰ एम॰ आर॰ एत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका अनुक्रमांक सं॰ और ओ॰ एम॰ आर॰ पत्र सं॰ को प्रविष्टियों में उपिरलेखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रमाना जायेगः।
- 8. प्रश्त-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये एथे हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से ग. करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अधया । वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना का है, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ०एम०आर० उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो यह विश्वविद्यालय द्वारा निर्धारित दंड का/की, १ होगा/होगी।

