Set No. 1

Question Booklet No.

14P/219/4

	(To be fi	lled up by the	candidate b	blue/	black b	all-point pe	n)	2)
Roll No.								
Reli No.	Write the	digits in word	is)	********		•••••		
Serial No	of OMR	Answer Sheet	***************			*******	,	*******************
Day and	Date		*************		···	(Sig	nature of Invi	gilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space prvided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set.no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Queston Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only OMR Answer Skeet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 32

[उपर्युक्त निर्देश किन्छै में अस्तिम सामस्य पृष्ट पर दिवे नम् हैं।]

ROUGH WORK रफ़ कार्य

No. of Questions: 150

प्रश्नों की संख्या : 150

Time: 2 Hours

Full Marks: 450

पूर्णाङ्कः : 450

समय : 2 घण्टे Note: (1) Attempt as many questions as you can. Each question carries 3 (Three) marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 (तीन) अंकों का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जायेगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक **शून्य** होगा।

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one. यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- 01. A plant in which saporophytic generation is represented by zygote only
 - Pinus (1)

Selaginella (2)

Chlamydomonas (3)

- Dryopteris (4)
- 02. Carrageenan, a jelly-like substance, is obtained from a marine alga called
 - Sargassum (1)

Fucus

Chondrus

- Kelp (4)
- 03. Palmella stages occurs in
 - Spirogyra (1) (3) Ampergillus

- Chlamydomonas/Ulothix
- **Funaria** (4)

P.T.O.

•	4 4			•
v	7. A	protein rich organism is		3
	(1) Spirulina/Nostoc	(2) Chlamydomonas
	(3) Spirogyra/Ulothrix	(4) Oedogonium
O	5. W	ater bloom is commonly cause	d by	
	(1)	Bacteria	(2	Green algae
	(3)	Hydrilla	(4)	Blue green algae
06	5. A	fungus whose extract of scle	rotia	can be chemically altered to
	pro	oduce a powerful hallucinoger	nic dr	ug is
	(1)	Aspergillus niger	(2)	Penicillium
	(3)	Agaricus	(4)	Claviceps purpurea
07	. Liti	mus was previously obtained f	rom	7
	(1)	Puffball	(2)	Citraria islandica
	(3)	Rocella tinctoria,	(4)	Cladonia rangifera
08.	. "Da	mping off of seedlings" is due	to	
	(1)	Nematode	(2)	Albugo candida
	(3)	Fusarium oxysporum	(4)	Pythium debaryanum
09.	Rice	crop was destroyed by a fung	us w	hich resulted in severe famine
	oi R	engal in 1942-1943. It was du	e to	
	(1)	Penicillium	(2)	Helminthosporium
	(3)	Rhizopus	(4)	Puccinia

10.	Phytoalexins produced by plants in response to fungal infection are							
	(1)	Proteins	(2)	Lipids				
	(3)	Glycoproteins	(4)	Phenolic compounds				
11.	Bryo	phytes are amphibians becau	se					
	(1)	They require a layer of water f	or ca	arrying out sexual repoduction				
	(2)	They occur in damp places						
	(3)	They are mostly aquatic						
	(4)	All the above						
12.	juve	nile state of Moss is						
	(1)	Protonema	(2)	Prothallus				
	(3)	Capsule	(4)	All the above				
13.	Nun	nber of peristome teeth in Fur	aria	capsule is				
	(1)	16 in one whorl	(2)	16 in two whorls				
	(3)	32 in two whorls	(4)	32 in one whorls				
14.	In E	3ryophytes, the posterior par	t of s	archegonium grows to protect				
	the	embryo. It is						
	(1)	Paraphysis	(2)	Apophysis				
	(3)	Calyptra	(4)	Hypophysis				
15.	Wh	ich one is true moss						
	(1)	Bog Moss	(2)	Reindeer Moss				
	(3)	Club Moss	(4)	Irish Moss				
				36				

15	. Kio	iney-shaped soral covering	of Dryo	pteris is
	(1)	Ramentum	(2)	Placenta
	(3)	Indusium	(4)	Sporophyll
17	. Nec	k canal cells in <i>Dryopteri</i> s a	are	
	(1)	One with two nuclei	(2)	Two
	(3)	One with one nucleus	(4)	Four
18.	En	dodermis is trabecular in		
	(1)	Cpasule axis of Moss	(2)	Stem of Pinus
	(3)	Stem of Selaginella	(4)	Stem of Cycas
19.	Ind	ependent alternation of ger	neration	s is present in
	(1)	Bryophytes	(2)	Pteridophytes
	(3)	Gymnosperms	(4)	Angiosperms
20.	Bas	sal swollen part of ligule of	Selagine	ella is
	(1)	Protonema	(2)	Hydathodes
	(3)	Rhizopodium	(4)	Glossopodium '
21.	The	classification of Gymnospe	rms acc	ording to Sporne is based on
	(1)	Wood anatomy	(2)	Leaf form
į	(3)	Seed structure	(4)	All of these
2.	The	smallest Gymnosperm is		
	(1)	Ephedra triandra	(2)	Thuja orientalis
	(3)	Zamie pygmia	(4)	Microcycas calocapa

23.	It is	s generally accepted that the earliest Gymnosperms arose in						
	(1)	Devonian era	t.s		(2)	Carboniferou	s era	1
	(3)	Cretaceous er	ra		(4)	All of these		
	••		:	of Cwoos	ore f	aund in India		
24.		many living s					143	
	(1)	10 . ((2)	8	(3)	6	(4)	4
25.	Fron	n base to top, i	in a	series T.S. o	ut of	Pentoxylon st	em,	the number
	of xy	ylem at the top	is is			*85		
	(1)	3	(2)	4	(3)	5	(4)	6
26.	Whi	ch one is not a	a mo	notvoic gen	ta			
	(1)	Biota oriental		0	(2)	Pinus wallic	hian	a
				×	(4)	Welwitschia		
	(3)	Ginkgo bilob	ц		(+)	WCIWICOCIII	14444 34	
27.	Pres	sence of vessel	s is t	the characte	eristic	c of		
	(1)	Cycas		*	(2)	Ginkgo		
	(3)	Gnetum			(4)	Pinus		
28.	Mor	no, bi, tri tetra	, and	i penta folia	ır spı	ars occur in		
	(1)	Cycas	• PO 1009400		(2)	Ephedra		
	(3)	Gnetum			(4)	Pinus		٠
						•		
29.	Mai	iden hair tree i	is	•				¥
	(1)	Cephalotaxu	s	•,	(2)	Ginkgo		
	(3)	Gnetum			(4)	Winwardia		6

30	30. The seed bearing organ of Pentoxylon is										
	(1)	Sahnia	(2)	Bucklandia							
	(3)	Carnoconites	(4)	None of these							
31	. Tx	o sterile spines in micro/me	gaspor	ophylls are present in							
	(1)		(2)	Macrozamia							
	(3)	Zamia	(4)	1st and 3rd both							
32	. Th	e largest spermatozoids are p	resent	in							
	(1)	Cycadales	(2)	Coniferales							
	(3)	Gnetales	(4)	Ginkgoales							
33.	Bir	bal Sahni reconstructed		98							
	(1)	Williamsonia scottii	(2)	Williamsonia sahnii							
	(3)	Williamsonia sewardiana	(4)	Williamsonia indica							
34.	Inve	erted cortical vascular bundle	s are p	present in the stem of							
	(1)	Boerhaavia	(2)	Nyctanthes							
	(3)	Bignonia	(4)	Tinospora							
35.	Mul	tiple epidermis occur in		56							
	(1)	Strychnos stem	(2)	Leptadenia stem							
	(3)	Vanda root	1240000H	Bignonia root							
		· · •									

36.	The	anomalous feature in Dracae	na ste	em is
	(1)	Amphivasal V.B.	(2)	Amphicrival V.B.
	(3)	Included phloem	(4)	None of these
37.	Adn	ate stipules are present in		
	(1)	Potentilla supina	(2)	Prunus persica
	(3)	Rosa indica	(4)	Malva sylvestris
38.	The	caducous calyx is present in		81.0
	(1)	Papaveraceae	(2)	Asclepiadaceae
	(3)	Solanaceae	(4)	Acanthaceae
39.	Epi	petalous Androecium is prese	nt in	
	(1)	Myrtaceae	(2)	Cucurbitaceae
	(3)	Lamiaceae	(4)	Acanthaceae
40.	. Wi	thania somnifera belongs to		
	(1)	Solanaceae	(2)	Apocynaceae
	(3)	Apiaceae	(4)	Rubiaceae
41	. Wi	nich part of Ferula assfoeitida	yield	the Hing
	.(1)		(2)	Leaf
	(3)	Flower	(4)	Root .

RT.O.

42.	. Be	ntham and Hooker's classifica	tion	n is based on
	(1)	Jussieu's system	(2)	2) de Candolle's system
	(3)	1st and 2nd both	(4)	4) None of these .
43.	The	e demerit of Bentham and Hoo	ker's	r's system of classification is
	(1)	Position of Gymnosperms be	twee	een dicots and monocots
	(2)	Based on artificial system		
	(3)	In Polypetalae, the familie afterwards	es w	with inferior ovary are place
	(4)	All of these		989
44.		sed on Takhatajan's system o er is	f cla	lassification, the most primitive
8.5	(1)	Annonales	(2)) Ranunculales
٠	(3)	Arales	(4)) All of these
45 .	On	the basis of chemotaxonomy,	the ı	unrelated family pair is
	(1)	Lolianceae and Amaryllidace		
	(2)	Asclepiadaceae and Gentiana	aceae	ac
	(3)	Chenopodiaceae and Cactace	eae	
	(4)	Liliaceae and Chenopodiacea	e	*
16. ·	The	role of coconut milk in the em	bryo	o culture is
	(1)	Nutritive	(2)	A COLUMN THE COLUMN TH
	(3)	Adhesive	(4)	(**)

47.	The functional position of an organism in the ecological system is								
	knov	yn as		×					
	(1)	Habitat	(2)	Niche					
	(3)	Population	(4) .	Herbivory					
48.	Amo	unt of living material in differe	nt tr	ophic levels or in a component					
	popi	ulation is known as	•						
	(1)	Functional kingdom	(2)	Standing crop					
	(3)	Ecological pyramid	(4)	Standing state					
49.	The	maintenance of relatively cor	nstan	t internal environment under					
	vary	ring external environment is d	efine	d as					
	(1)	Ectotherm .	(2)	Endothermic					
	(3)	Homeostasis	(4)	None					
50.	The	value of lapse rate is							
	(1)	6.5°c per 100 km	(2)	6.5°c per 1000 m					
	(3)	6.5°c per 100 m	(4)	None					
51.	Cor	ncept of r and k selection for po	pula	tion growth and dynamics was					
•	pro	posed by							
	(1)	E.P. Odum	(2)	Mc Arthur					
	(3)	Chapman	(4)	Barbour, Bork and Pitts					
			rs.						

P.T.O.

52	. Wi	no coined the term biocoenosis	3	
	(1)	Carl Mobius	(2)	Schroter and Kirchner
	(3)	Edward Forbes	(4)	Clements
53.	. Tra	unsition zone between two ecos	syste	ms is known as
	(1)	Ecocline	(2)	Ecotype
	(3)	Ecotone	(4)	Ecads
54.		the basis of variation in mean ion comes under	tem	perature along latitude tropical
	(1)	(0° - 20° latitude)	(2)	(60 - 80° latitude)
	(3)	(20° – 40° latitude)	(4)	(40° - 60° latitude)
55.	The as	zone of the lake water body w	vhere	light does not reach is known
	(1)	Limnetic	(2)	Littoral
	(3)	Benthic	(4)	Profundal
56 .	The	plant which grows better und	lcr su	ınlight is called as
	(1)	Sciophytes	(2)	Heliophytes
	(3)	Halophytes	(4)	Hydrophytes
7.	The	environmental resistance star	nds	
	(1)	r	(2)	dN/dt
	(3)	K-N/K	(4)	N
			67 39	

						£•			
58.	The	relationship b	etwee	n two sp	pecies w	here one specie	es is	benefit	ed
	while	e other unaffe	cted i	s known	28				
	(1)	Commensalis	sm		(2)	Protocooperation	on		
	(3)	Predation			(4)	Amensalism			
59.	Gras	ssland with so	atter	ed tree is	known	as .			
	(1)	Prairie			(2)	Steppe			
	(3)	Savanna		8	(4)	None			
	_		!		is	lenoum as			20
60.	The	number of sp	ecie8	per unit	area is	KIIOWII AB			
	(1)	Richness			(2)	Evenness		•	\$
3 • 3	(3)	Both		•	(4)	None		4	
61.	Bro	wn air pollutio	on is	generate	d in trai	ffic congested ci	ity i	s due to)
	9	O ₃			(2)	PAN			
	(3)	NO _x		ž.	(4)	None			
60	In r	ond water bo	dy the	ovran	d of bio	mass is			
U 2.				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(2)	Both	•	60	
	(1)	Upright			******	90000-000 12000000 20120			
	(3)	Inverted			(4)	None			
63.	Blu	e baby syndro	ome o	ccurs du	e to exc	ess of which ch	emi	cal efflu	ent
		groundwater							
	(1)	NO ₃	(2)	PO	(3)	SO-	(4)	CO,	
			104.00						

64.	Wh	Which greenhouse gas is more warming potential than other gases?									
	(1)	Methane			(2)	Nitrous oxid	ic				
	(3)	Carbon die	xide		(4)	Chlorofluro	Chloroflurocarbon				
65.	Wh	at proceeds	wood l	and stage	of hyd	irosere ?					
	(1)	Forest stag	ge	*	(2)	Rooted float	ing stage				
	(3)	Sedge-mea	dow s	tage	(4)	Reed-swam	stage				
66.	Wh	ich serves as	good	indicator o	of land	productivity	?				
	(1)	Grass land			(2)	Pond ecosys	item				
	(3)	Forests	¥		(4)	All of these					
67.	Wh	ich chemical	toxica	ints cause	s Kno	ck-Knee syndi	rome ?				
	(1)	Hg	(2)	Pb	(3)	Cd	(4) F				
68 .	sco	OPE defined	AS								
	(1)	Scientific C	ommit	tee on Pro	blems	of the Enviro	nment				
	(2)	Scientific C	orpora	tion on th	e prot	olems of the E	nvironmer	it			
	(3)	100				the Environm					
	(4)	Scientific C	ommit	tee on pol	lution	of the Enviro	nment				
59.	The as	regional biot	ic unit	s delimited	d by m	ajor vegetatio	n type is k	nown			
	(1)	Ecosystem			(2)	Landscape					
	(3)	Biome			(4)	None					

70.	Most-prevalent index organism for faecal contamination in ground							
	wate	water is					724	
	(1)	Şalmonella 1	typhi		(2)	Escherichia d	coli	
	(3)	Streptococcu	s fae	calis	(4)	Clostridium p	erfri	ngens
71	Wh:	ah af tha falla	i		alaa	in nutrient or		ration 2
/1.	2727207	H •		processes		in nutrient conservation?		
	(1)	Mineralization	on		(2)	Nitrification		
	(3)	Leaching	SS		(4)	Immobilizatio	n	
72.	In o	ceans, the pr	oduct	ivity is gene	erally	limited by		
	(1)	P	(2)	N	(3)	S	(4)	O ₂
	20 102		0 B (\$0)					353
73 .	Initi	ation codon o	of pro	tein synthe:	sis is:	:		
	(1)	AUG	(2)	GUA	(3)	GCA	(4)	CCA
74.	Cod	ons that do n	ot co	de for any a	mino	acid are know	vn as	s:
	(1)	Termination	codo	ns	(2)	Nonsense codons		
	(3)	Both A and	В	2	(4)	None of the above		
75.	Moly	ybdenum defi	cienc	y anects the	10/2/25		20	
	(1)	Nitrogenase		E	(2)	Nitrate reduc	ctase	
	(3)	Chlorate rec	lucta	se.	(4)	All of the abo	ove	
76.	In b	olue-green alg	ae, th	ne structure	spec	cialized for aer	obic	fixation is
•	(1)	Akinete			(2)	Heterocyst		e
	(3)	Aplanospore	.		(4)	Endospore	e e	
	\$ A.	ক সং•						

77.	How	many electro	ns ar	involved in	the r	eduction of nit	rate t	ammonia:
	(1)	8	(2)	6	(3)	4 .	(4)	10
78.	Resp	piratory quoti	ent fe	or germinati	ing c	arbohydrate s	eeds	is:
	(1)	One			(2)	Less than or	1e	<u>.11</u>
	(3)	More than o	ne		(4)	Variable		2
79.	Whi	ch of the follo	wing	exhibits th	e hig	hest rate of re	espira	tion ?
	(1)	Growing sho	ot ap	ex	(2)	Germinating	seed	I.
	(3)	Root tip			(4)	Leaf bud		(41)
8 0.	Glyd	oxylate cycle t	akes	place in:				
	(1)	Mitochondri	a		(2)	Glyoxysome	3	
	(3)	Both a and b)		(4)	None of the	above	et.
81.	The	presence of a	uxin	was first de	mon	strated by:		
	(1)	Charles Dar	win		(2)	Kogl		
	(3)	F.W. Went			(4)	Hagensmit		
82.	Cyto	kinins cause	9					2247
	(1)	Cell division						
	(2)	Expansion o	f coty	ledons and	leave	:s		
	(3)	Delay in sen	esen	ce				
	(4)	All of the abo	ove	ž.				

83.	Incr	ease in polyamine levels inhib	it s :	
	(1)	Auxin activity	(2)	Gibberellins activity
	(3)	Ethylene activity	(4)	All of the above
94	Faci	n monomer of phytochrome h	AS.	
U 7.	199	One Chromophore	(2)	Two Chromophores
	(3)	Three Chromophores	*	Five Chromophores
	(0)	Timee emoniophores		
85.	Cho	lesterol is the precursor of:		
	(1)	Progestrin	(2)	Corticoids
	(3)	Both a and b	(4)	None of the above
86.	Dur	ing cell cycle DNA replicates:		8.40 80-80 848
	(1)	Once	(2)	Twice
	(3)	Many times	(4)	Not at all
87.	Trai	nslocation of water and miner	al is :	
•	(1)	Apoplastic	(2)	Symplastic
	(3)	Both a and b	(4)	None of the above
8 8.	Allo	steric enzymes for which subs	trate	and modulators are indentical
	are	called:		
	11)	Homotropic	(2)	Heterotropic
	(3)	Isotropic	(4)	Mixotrpic

8 9.	Sol	ute if mixed in water:		
	(1)	Raises water potential		
	(2)	Lowers water potential		
	(3)	Equals the water potential		
	(4)	Does not have any impact or	ı wat	er potential
90.	Gut	tation results because of:		
	(1)	Increased relative humidity	(2)	Break in vein endings of leaf
	(3)	Root pressure	(4)	Substomatal activity
91.	Pun	nps are characterized as trans	port	protein across the membrane,
	link	ed with:		10027 10027
	(1)	NADPH	(2)	ATP
	(3).	NAD+	(4)	ADP
92.	Whi	ch of following energy rich ph	osph	orous compound is known as
	univ	versal currency of energy?		98 60
	(1)	Cytidine triphosphate (CTP)		88
	(2)	Adenosine triphosphate (ATF	P)	
	(3)	Phospkoenol pyruvate (PEP)		
	(4)	Adenosine diphosphate (ADF)	
93.	Qua	ntosomes are related with:		
	(1)	Respiration	(2)	Photosynthesis
	(3)	Transpiration	(4)	β-oxidation

94.	Pho	Photosynthetic oxygen evolution in plants is inhibited by:				
	(1)	DCCD	(2)	DCMU		
	(3)	Methyl viologen	. (4)	Arsenate		
95.		ch of the following elements gen evolving complex?	take	part in charge separation on		
	(1)	Fe .	(2)	Mo		
	(3)	Cu	(4)	Mn		
96.	The	end product of oxidative phos	sphor	ylation is:		
	(1)	NADH	(2)	Oxygen		
	(3)	ADP	(4)	ATP+H ₂ O		
07	Whi	ch of the following exhibits th	, a hia	hest rate of respiration 2		
91.			100	1		
	(1)	Growing shoot apex	(2)	Germinating seed		
	(3)	Root tip	(4)	Leaf bud		
98.	Elec	tron Transport System (ETS)	is loc	ated in mitochondrial:		
	(1)	Outer membrane	(2)	Inter membrane space		
	(3)	Inner membrane	(4)	Matrix		
99	in (Dedogonium, the androspore a	lwavs	germinates		
	(1)	On the oogonia				
	1000					
	(2)	On the soffulatory cell				
	(3)	Free in water	•			
	(4)	Any where close to oogoniur	n			
		M				

100	.Dich	notomously branched sporang	iphor	re is characteristic feature of		
	(1)	Peronospora	(2).	Phythium		
	(3)	Saprolegnia	(4)	Phytophthora		
101. Name a bryophyte which harbours Nostoc colonies in its thallus						
	(1)	Riccia	(2)	Marchantia		
	(3)	Sphagnum	(4)	Anthoceros		
102	.Whi	ch of the following is known a	s 'res	surrection plant'? is due to		
	(1)	Marchantia	(2)	Selaginella		
	(3)	Anthoceros	(4)	Curcuma		
103	. Soil	nibblers fungi				
	(1)	Deteriorate the soil quality				
•	(2)	Enrich the soil quality				
	(3)	Kill some roots of plant to pr	omot	e more root formation		
	(4)	Cause excessive damage to the	he pa	nt by killing all the roots of		
104		mportant characteristic feature		40 00		
	of 'b	ars of Sanio'. These bars are i	orme	d by deposition of		
	(1)	Cellulose and terpenes	(2)	Cellulose and pectin		
	(3)	Pectin and tannins	(4)	Lignin and resin		

105.'Sh	nower of sulphur' occurs due	to				
(1) Reaction of SO ₂ with water during rain forming H ₂ SO ₄						
(2)	Release of sulphur rich poll	lutan	ts from oil refineries			
(3)	Mass release of microspores	s of C	ycas			
(4)	Mass release of microspores	of Pi	inus _,			
106. In a type of apomixis called adventive embryony embryos develor						
dire	ectly from					
(1)) Synergids or antipodal cells of embryo sac					
(2)	Zygote		(98.0 (9)			
(3)	Nucellus or integument					
(4)	Accessory embryo sacs in th	e ovu	le			
107.The	phenomenon where transfer	of pol	llen grains from the anthers to			
the	stigma of another flower of th	e san	ne plant is referred as			
(1)	Xenogamy	(2)	Cleistogamy			
(3)	Geitonogamy	(4)	Autogamy			
108. Slov	w rate of decomposition of fall	en log	gs is due to			
(1)	Low moisture contents	(2)	Anaerobic environment			
(3)	Low cellulose contents	(4)	Poor nitrogen content			

P.T.O.

109. 'Agenda 21' an outcome of 'Earth Summit'

- (1) is a blue print for the nations for reducing pollution level at a certain level within given time in 21st century.
- (2) is a blue print for encouraging sustainable development of diversity through social, economic and environmental mesures.
- (3) is a blue print for establishing high tech special industrial zones in developing countries to boost their economy and reduce pollution level.
- (4) is a blue print for the development of pucca house to every BPL family in 21st.

110. Ozone day is

(1) September 6

(2) April 21

(3) December 25

(4) January 30

111. Which particulate size is most harmful?

- (1) $8.0 \mu m 5.5 \mu m$
- (2) $4.5 \mu m 4.0 \mu m$
- (3) $2.5\mu m or less$
- (4) $5.2 \mu m 3.5 \mu m$
- 112. Active transport of solutes across a membrane against their gradient of electrochemical potential by coupling the uphill transport of one solute to the downhill transport of another is referred as
 - (1) Facilitated transport
- (2) Secondary active transport
- (3) Primary active transort
- (4) Kinetic transport

- 1.13. Pheophytin is a chlorophyll in wheih the central magnesium atom has been replaced by
 - (1) One manganese atom
- (2) One iron atom.
- (3) Two iron atoms
- (4) Two hydrogen aroms
- 114. The NodB enzyme encoded by nodB gene
 - (1) is a chitin-oligosaccharide deacetylase that removes the acetyl group from terminal non reducing sugar.
 - (2) is a chitin-oligosaccharide synthase that links N-acetyl-D-glucosamine monomers.
 - (3) is an N-acetyltransferase that catalyzes the addition of a fatty acyl chain.
 - (4) determine the length and degree of saturation of the fatty acyl chain.
- 115. In N-linked glycoproteins, the carbohydrate is attached to the nitrogen atom in the side chain of
 - (1) Asparagine

(2) Serine

(3) Threonine

- (4) Either serine or threonine
- 116. In lysogeny CIII protein
 - (1) binds next to the promoter for the cll gene and stimulates RNA polymerase binding.
 - (2) binds to O_R and O_L , turns off the transcription of the repressor Gene and represses P_{RM} function
 - (3) protects cll protein from degradation by a host enzyme, the HFLA protease
 - (4) stimulates transcription of somewhat early genes, one of which produces the sigma factor gp55

117.	Мус	oplasmas do not have cell wa	ill an	d are pleomorphic in nature
	and	that's why they are insensitive	e to	
	(1)	Erythromycin	(2)	Chloramphenicol
	(3)	Methicilin	(4)	All
118	The	resistance of pears to fire blig	ght ca	aused by Erwinia amylovora is
	due	to presence of a phenolic gluc	cosid	e
	(1)	Ipomeamarone	(2)	Arbutin
	(3)	Lycomarasmine	(4)	Victorin
119	. Puc	cinia graminis tritici is conti	rolled	d by using hyperparasitism
	appi	roach with the help of	*	
	(1)	Fusarium roseum	(2)	Bacillus subtilis
	(3)	Trichothesium roseum	(4)	Trichophyton harzianum
120	.The	most common types of transp	oson	s in human being belongs to
	(1)	Alu family	(2)	SINE family
	(3)	LINE family	(4)	Mu family
121	. Catı	abolic activator protein (CAP) a	active	ites lac genes only when
	(1)	Glucose is present in the me	diun	1
	(2)	Glucose is absent in the med	lium	
	(3)	Allolactose is absent in the	medi	um ·
	(4).	Both glucose and allolactose	is pr	esent in the medium
			53 4 2	

122. Genetic maps of chromosomes are based on										
•	(1)	Non disjunction	(2)	Translocation						
	(3)	Chromosomal aberrations	(4)	Genetic recombination						
123	123. Grain colour of wheat is determined by three pairs of polygenes. In									
	cros	ss AABBCC×aabbcc, progeny	res	embling either parent in F2						
	gene	eration is		•						
	(1)	Half	(2)	One third						
	(3)	Less than 5%	(4)	75%						
124	. Len	gth of DNA with 23 base pairs	is	E 170						
	(1)	78.4 A°	(2)	78.2 A°						
	(3)	78.4 nm	(4)	78.2 nm						
125.	.Whi	ch of the following cell organel	le is	semi-autonomous in nature ?						
	(1)	Lysosomes	(2)	Golgi bodi						
	(3)	Mitochondria	(4)	Ribosomes						
126.	. Mide	ile lamellae are present betwe	en							
	(1)	Soma cells								
	(2)	Polsen mother cells		•						
	(3)	Pollen grains	93							
	<u>(4)</u>	Both, pollen mother cells and	l poll	en grains						
				100						

P.T.O.

127	.Dur	ing cell cycle the cell grows in					
	(1)	Prophase	(2)	Metaphase			
	(3)	Telophase	(4)	Interphase			
128	. Mer	ndelian principle which have a	lways	s stood the test of time is			
	(1)	Law of segregation					
	(2)	Law of dominance					
	(3)	Law of independent assortment					
2	(4)	All above					
129	.Whi	ich of the following is incorpor	ated i	into DNA as a base analogue			
	(1)	Ethyl methane sulphonate	(2)	Nitrous acid			
	(3)	5- Bromouracil	(4)	Sodium azide			
130	.Telo	omeres is acetocarmine stain	ed p	reparations of chromosomes			
	(1)	Lightly stained	(2)	Moderately stained			
	(3)	Dark stained	(4)	Unstained			
131	.7:1:	1:7 phenotypic ratio in a dihy	brid (cross refers to			
	(1)	Incomplete dominance	(2)	Co-dominance			
	(3)	Interaction of genes	(4)	Linkage			
		NO.007					

132	132.A chromosomal region commonly known to contain most of the rRNA						
	sequences is						
	(1)	Centromere	(2)	NOR			
	(3)	Telomere	(4)	Kinetochore			
100	Th.		1.				
133.	ine	amount of DNA in mitotic me	tapna	ase is equal to			
	(1)	1C (2) 2C	(3)	4C (4) 8C			
134.	meio	osis. A chromosmal variant of		es which form 6 bivalents at organism with 4 bivalents and			
	200	univalents would be called					
	(1)	Disomic	(2)	Double monosomic			
	(3)	Nullisomic	(4)	Trisomic			
135	.Whi	ch of the following is consider	red a	most potent mutagen ?			
20	(1)	Ethyl methane sulphonate	(2)	Nitroso guanidine			
	(3)	Colchicine	(4)	Hydroxyl amine			
136	Bres	nd wheat (Triticum aestivum) o	ontai	ns			
	(1)	Two different genomes	(2)	Two similar genomes			
	(3)	Three different genomes	(4)	Six different genomes			
137	.Whi	ch of the following is most pre-	valent	in natural plant populations?			
	(1)	Aneuploids	(2)	Triploids			
	(3)	Autopolyploids	(4)	Allopolyploids			
	(a) (b) (c)		,	Р.Т.О.			

138	.Whi	ch of the followi	ing changes is	calle	d transversior	1 ?	: :		
	(1)	Adenine↔Gu	anine	(2)	Adenine ↔T	hymi	ne i		
	(3)	Cytosine ↔ Thy	yminė	(4)	Cytosine ↔	Jraci.			
139	.Syn	aptonemal com	plex helps in	:					
	(1)	Chromosome of	condensation	(2)	chromosome	repl	ication		
	(3)	chromosome d	ioubling	(4)	chromosome	alig	nment		
140	140. Which of the following is called "suicide bag"?								
	(1)	Peroxysome		(2)	Mesosome				
	(3)	Lysosome		(4)	Dictyosome				
141	.The	secret of Mende	el's success lie	es in t	the fact that				
	(1)	He worked on garden pea							
	(2)	He studied onl	ly seven chara	cters					
	(3)	All characters	were located of	on diff	ferent pairs of	chro	mosomes		
	(4)	All characters	segregated in	ıdeper	ndently				
142	. Nuc	eleoli are reposit	ory of		•		DS.		
	(1)	RNA		(2)	DNA				
	(3)	Protein		(4)	Chromatin				
143	.Cros	ss-over percenta	age between a	ny tw	o genes can·n	ever	exceed		
	(1)	15% (2		(3)	50%	(4)	75%		
		.5)	•						

	F81201286	eneration plants in a dihyb			
	(1) (2)	. Jr			
-	(2)	The office of the four genetypes			
((3)	Two phenotypes and eight	t geno	types	
(4)	Four phenotypes and eigh	it geno	types	
145.	(y S	Sex-determining mechanism	n was o	demonstrated in	
(1)	Zea mays	(2)	Coccinia midica	
(3	3)	Datura stramonium	(4)	Nicotiana tabaccaum	
146 .S	ate	llite DNA is made up of			
C	1)	Minichromosomes			
(2	2)	Tandemly repeated sequences			
(3	3)	Unique sequences			
(4	+)	Interspersed repeated sequences			
147. 9	:7 p	henotypic ratio results from	m an ir	iteraction of	
0000		Complementary genes	(2)	Supplementary genes	
(3	3)	Epistatic genes	(4)	Inhibitory genes	
148. W	/hic	h of the following genom	ic com	bination refers to segmental	
		olyploidy ,			
(1	.) .	AAAA	(2)	AABB	
(3	3)	AAA,A,	(4)	AACC	
696 6		55 			
	3	•	0		

149. Karyotype changes occur due to

- (1) Chromosome structural changes
- (2) Chromosome numerical changes
- (3) Molecular changes
- (4) All above

150. Ideal homozygosity can be attained through

(1) Selfing

- (2) Wide crosses
- (3) Tissue culture
- (4) Pollen culture

2,100

ROUGH WORK एक कार्य

P.T.O.

31

अभ्यर्थियों के लिए निर्देश

(इस पुत्तिका के प्रथम आवरण वृष्ट पर स्था उत्तर-यत्र के दोनों पृष्टों पर केवल नीली-काली बाल-धाइंड पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई
 प्रश्न छूटा नहीं है। पुस्तिका दोवयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण
 प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त,* लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिवा गवा है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिवा आवेगा।
 केवल उत्तर-पत्र का ही मूल्यांकन किया आवेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्घारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिने वृत्तों को गाड़ा कर दें। अहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुत्तिका का क्रमांक तथा सेट का नम्बर ढिचत स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुरितका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुरितका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविद्यों में उपरिलेखन की अनुमति नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रवाणित होना चाहिये अन्यथा यह एक अनुधित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के बार वैकल्पिक उत्तर दिवे गवे हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित थेंक्ति के सामने दिवे गवे वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिवे गये निर्देशों के अनुसार पेन से याड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्वान दें कि एक बार स्वाही द्वारा अंकित उत्तर बदला नहीं था सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना बाहते हैं, तो संबंधित यंक्ति के सामने दिखे गर्ब सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिखे जायेंगे।
- रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-एम परीक्षा भवन में अमा कर दें।
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधना का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित एंड का/की, भागी होगा/होगी।

