

Booklet No.:

AS - 16

Aerospace Engineering

Duration of Test: 2 Hours		Max. Marks: 120
	Hall Ticket No.	
Name of the Candidate :		
Date of Examination:	OMR A	nswer Sheet No. :
Signature of the Candidate		Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only.
- Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

AS-16-A

AEROSPACE ENGINEERING

			8.5	2	2	1		
1.	If 1, 1 and 5	are eigen values of	A =	1	3	1	, then the eigen values of A^{-1} are	îe
				1	2	2		

- (A) (1,-1,5)
- (B) (1,1,1/5) (C) (1,1,5)
- (D) (-1,1,1/5)
- The system of equations x+5y+3z=0, 5x+y-1=0, x+2y+p=0 has a nontrivial 2. solution if p =
 - $(A) \quad 0$
- $(\mathbf{B}) = 1$
- (C) -1
- (D) $\frac{1}{2}$
- If $f(x) = x x^3$ satisfy Lagrange Mean Value theorem in [-2,1] at c, then 3.
 - (A) c = -1
- (B) c=1
- (C) c = 0
- (D) c = 2

4. If
$$u = \frac{yz}{x}$$
, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$, then $\frac{\partial(u, v, w)}{\partial(x, y, z)} = \frac{\partial(u, v, w)}{\partial(x, y, z)}$

- (A) 4 (B) 1
- (C) 2
- (D) 3

5. The differential equation
$$y \frac{dx}{dy} + 2 = y$$
, $y(0) = 1$ has

(A) no solution

(B) two solutions

(C) many solutions

(D) unique solution

6. The integrating factor of the differential equation
$$\frac{dy}{dx} + y\sin x = \frac{\sin 2x}{x}$$
 is

- (A) $e^{\sin x}$
- (B) $e^{-\cos x}$
- (C) $e^{-\sin x}$ (D) $e^{\sin x^2}$

7. The steady state solution of the heat equation
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
 with boundary conditions $u(0,t) = 5^{\circ}C$ and $u(10,t) = 20^{\circ}C$ is

- (A) 20x + 5
- 15x + 20(B)
- (C) 10x + 5 (D) 1.5x + 5

8. The steady state solution of the heat equation
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
, $u(0,t) = 10$ and $u(5,t) = 15$ is

(A) u(x) = 15 + 10x

u(x) = 10 + x

u(x) = 2 + 1.5x

5 + 10x(D)

2

AS

9.	Whi	ch of these me	thods	is not a step me	ethod t	o solve ordina	ry diff	ferential equation ?	
	(A) (C)	Runge Kutta Taylor's met		d	(B) (D)				
10.	The	order of conve	rgence	e of bisection n	nethod	is			
	(A)	Linear	(B)	quadratic	(C)	cubic	(D)	None	
11.	In re (A) (B) (C) (D)	Stagnation property of the Stagnation of the Sta	essure ion ter ion pre	ocess of a perferance and stagnation of the comperature is constant and stagnation	n temp Instant Int.	erature are co			
12.	Entr	opy of perfect	gas inc	creases with					
	(A)	Stagnation Pr			(B)	Velocity cha	-	Z	
	(C)	Static pressur	re char	nge	(D)	Stagnation te	empera	iture change	
13.				the upstream ler for perfect g				nity, the resulting 1.4 is	
	(A)	1	(B)	0	(C)	0.378	(D)	Infinity	
14.		nate the Mach dard sea level t			ft flyii	ng in the air at	a spee	ed of 1000 kmph, at	
	(A)	1.0	(B)	0.817	(C)	0.917	(D)	1.917	
15.		nt a stagnation ber of the flow		of 3 atm and 30	0 K is	accelerated to	200 n	n/s. Determine the Mach	
	(A)	0.596	(B)	0.317	(C)	1.0	(D)	0.0	
16.		sider a flow the pressure, the	-	~	ergen	nozzle, if the	exit p	ressure is less than the	
	(A)	Under expand			(B)	Over expand	ed		
	(C)	Correctly exp	anded	ĺ	(D)	Choked			
17.	nozz is 1.	le is supplied t	from a Mach r	n air reservoir number when tl	at 68	$\times 10^5 \text{N/m}^2 (\text{al}$	os). Th	ach number of 1.75. The ne exit to throat area ratio 48. What is the maximum	
	(A)	68 atm	(B)	58 atm	(C)	48 atm	(D)	38 atm	
18.	air i	s discharging	to an	107	at atr	nospheric pres	ssure.	maintained at 300 K. The Determine the settling e.	
	(A)	7.82 atm	(B)	2.24 atm	(C)	1.42 atm	(D)	5.28 atm	
Set -	A				3			AS	

19.	The coefficient of pressure at a stagnation point in the compressible flow with freestream Mach number as M is									
	(A)	1			(B)	$1 + M^2/4 + M^4/$	40			
	(C)	$M^2/2$			(D)	$M^2/2 + M$				
20.		n airfoil at 12°	_					fficients are 1.2	and	
		respectively. 1.18 and 0.279		it and drag coe		1.18 and –0.2				
		-1.18 and -0.27			(D)	0.0 and 0.0	, ,			
21.		ational, incomp ld satisfy	ressib	le flow has bot	h velo	ocity potential a	ınd stı	eam function tha	at	
	(A)	Euler equation	1		(B)	Laplace equat	ion			
	(C)	Bernoulli equa	ation		(D)	Energy equation				
22.	Circu	lation around a	any cl	osed curve in a	unifo	rm flow is				
		Unity	(B)		(C)		(D)	Infinity		
23.	Fors	ource flow, the	veloc	rity potential li	nes ar	a.				
<i>20</i> •		Radial lines			(C)	Straight lines	(D)	Elliptical		
24.		what bodies the vake drag is ver		-	ccoun	ts for the majo	r port	ion of the total o	drag and	
	(A)	Bluff body			(B)	Automobiles				
	(C)	Streamlined b	ody		(D)	Pipes				
25.		reestream flow			be the			ncidence with re ncy of the aircra 29	3.5	
26.		semi-span of a retration of wing		gular wing of p	olanfo	rm area 8.4 m²	is 3.5	m. What could	be the	
		10.83	· (B)	8.83	(C)	3.85	(D)	5.83		
27.	in fre	2D wedge shap estream Mach To move away	numb	er will cause th	ne obli		e	olique shock, an	increase	
	(A)	19 To	(). 	10.500	Barrie B					
	(C)	To remain una	шеск	ea	(D)	To become no	rmai	snock wave		
28.		ls. If the freesti						t is -0.3 at very e coefficient at th		
		-0.375	(B)	0.375	(C)	2.67	(D)	-2.67		
Set -	A				4				AS	

29.	9. What is the value of lift coefficient for thin symmetrical airfoil at small angle of attack (α) if free stream Mach number is 0.7?								
	(A)	8.8α	(B)	6.28α	(C)	0.7α	(D)	0.12 α	
30.	Circu		rigin i					a finite elliptical v s 4 m. What could b	
	(A)	0.125 radians			(B)	0.4 radians			
	(C)	1.0 radians			(D)	8 radians			
31.	Supe	rimpose on thi	s flow	/ a uniform stre	eam w	ith velocity V_{α}	The	A located at the or value of stream fun lting flow pattern is	-
	(A)	$\Lambda/2$	(B)	2Λ	(C)	Zero	(D)	Λ	
32.		according to the	he Ku	tta condition is		x for both the f	inite a	ngle and cusped tra	iling
	(A)	Unity	(B)	Infinity	(C)	Zero	(D)	Finite	
33.		Source of volumine the radia						n flow of 2 m/s.	
	(A)	–0.2 m	(B)	0.2 m	(C)	1 m	(D)	2 m	
34.	Wha	t is the value o	f strea	m function of	stagna	tion the stream	line fo	or Rankine oval ?	
		3.14	(B)	Zero	(C)	90	(D)	180	
25	C	tu	: cı			- 1 C-11.4.	21 1		
35.		e cylinder whe			NOON INDEPONDED		the ic	ocations on the surfa	ice
	(A)	0, 60, 90, 120		25	(B)	and Alexander and the second	330 d	egrees	
	(C)	180, 270, 360	2,000		(D)	0 and 180 deg			
36.	5 4 3 4 9 4	Brayton cycle, 1		NOTES	η depe	ends			
	(A)	Only on press							
	(B)	Only on natur							
	(C)	2000 SANTON 1		itio and nature	of the	gas			
	(D)	None of the a	bove						
37.	Unde	er static conditi	ons i.	e., when intake	veloc	ity is zero			
	(A)	Thrust is max	imum		(B)	Propulsive eff	ficien	cy is maximum	
	(C)	Thrust is mini	imum		(D)	None of the a	bove		
Set -	A				5				AS
					~				, ,,,,

39.	For l	heat exchange cycle the decrease in	pressi	are ratio will cause the efficiency to
	(A)	Increase	(B)	Decrease
	(C)	Independent of pressure ratio	(D)	None of the above
40.	Slip	factor in the centrifugal compressor	â.	
	(A)	Increase with number of vanes		
	(B)	Decrease with number of vanes		
	(C)	Independent of the number of van	es	
	(D)	None of the above		
41.		a typical subsonic compressor casca ber (M _{cr}) is in the range of	de at	zero incidence the values of the critical mach
	(A)	0.2 - 0.5	(B)	0.7 - 0.85
	(C)	1 - 1.5	(D)	0 - 0.1
42.	Burr	ning rate modifiers are used in solid	prope	llants to
	(A)	Accelerate or decelerate the comb	ustion	rate
	(B)	Improve the elongation of the proj	pellani	at low temperatures
	(C)	Provides the structural matrix to h	old th	e propellant together
	(D)	None of the above		
43.	Stay	time (t _s) of the propellant gases is g	given l	ру
	(A)	$t_{\rm s} = \frac{V_{\rm c}}{\dot{m}v}$	(B)	$t_{s} = \frac{V_{c} \rho}{\dot{m}}$
	(C)	both (A) and (B)	(D)	only (A) is correct
	Whe			
		- chamber volume, υ-Specific volun		
	ρ, m	1-density and mass flow rate of the p	propel	lant
44.	The	combustion chamber pressure loss i	is maii	15 pt
	(A)	skin friction and turbulence	(B)	rise in temperature
	(C)	both (A) and (B)	(D)	None of the above
45.	Cent	trifugal stresses in the blades of turb	ine ar	
	(A)	N^2	(B)	N^3
	(C)	$1/N^2$	(D)	None of the above
į	whe	re N is the rotational speed.		
Set -	A		6	AS

If the initial mass of the rocket=200kg, mass after rocket operation=130kg and non

(C) 0.45

(D) 0.05

propulsive structure=110kg, find the propellant mass fraction (ξ)

(B) 0.778

38.

(A) 0.35

46.	Froude's efficiency (η_p) is the ratio of								
	(A)	Useful propulsive e	nergy to the su	m of t	hat energy and	unused kinetic energy	of the		
		jet.							
	(B)	and the second s				gy supplied in the fuel.			
	(C)	Useful work done in	891 997 691	drag to	the energy in	the fuel supplied.			
	(D)	input energy to the	engine output.						
47.	Whi	ch of the following th	ruet relation is	truo C)				
₩/.		$F=C_FA_tP$	must relation is		F=C _F ṁ C [*]				
	300	Both (A) and (B)		(D)	None of the a	hova			
	()		ficiant	(1)	None of the a	ibove			
	- 4-	optimum thrust coef characteristic velocit							
		Chamber pressure	,						
	A_t —	Throat area							
48.	The	typical values of criti	ical proceura re	itio fo	r nozzla ie in tl	na range of			
70.	(A)		icar pressure ra	(B)	0.53 - 0.57	ne range or			
	(C)			(D)	0.6 - 0.8				
	(0)	0.00 - 0.00		(12)	0.0 - 0.0				
49.	Whic	ch of the following st	atements is tru	e?					
	(A)	Under expanded no	zzle – exit area	is too	small for an o	optimum area ratio.			
	(B)	Over expanded noz	zle – exit area	is too	small for an op	ptimum area ratio.			
	(C)	Under expanded no	zzle – exit area	is too	large for an o	ptimum expansion.			
	(D)	None of the above							
50.	Wha	t is the effect of dive	rgence angle ir	conic	eal nozzlec?				
50.	(A)	Small angle gives h			ai nozzies.				
	(B)	Large angle gives b							
	(C)	Both (A) and (B)	etter periorman	icc					
	(D)	None of the above							
	(D)	Trone of the doore							
51.	The	velocity correction fa	actor (ζ _v) is rela	ited to	energy conver	rsion efficiency (e) by			
	(A)	e^2 (B)	1/e	(C)	\sqrt{e}	(D) e^3			
and the state of			9740 SA40 97	334332000 E3	227 27	70000			
52.		value of discharge co		7000	20 7450				
	(A)	molecular weight o	10 mm				190		
	(B)	density.	o the walls low	ering	the temperatur	e and thereby increasing	the		
	(C)	both (A) and (B)							
	(D)	Only (B)							
S'.4 [<u>A</u>	entertree 🗸 Noble		7			AC		
Set -	H			7			AS		

53.	The give	correct relation between mixture ratio (r) and mass flow rate of oxidizer or fuel is n by								
	(A)	$\dot{\mathbf{m}}_0 = \frac{r\dot{m}}{(r+1)}$ (oxidizer)	(B)	$\dot{\mathbf{m}}_{\mathrm{f}} = \frac{r\dot{m}}{(r+1)}$ (fuel)						
		both (A) and (B)		None of the above						
54.	The (A) (B) (C) (D)	specific impulse of a liquid rocket educated Directly proportional to the molecular Inversely proportional to chamber Inversely proportional to molecular None of the above	ular w tempe	reight. erature.						
55.	Wha (A) (B) (C) (D)	Low freezing point and specific grant Low freezing point and high specific grant High freezing point and high specific through freezing point and high specific Low boiling point.	ravity. fic gra	nvity.						
	701	VOLUME - 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70							

The relation among velocity(ζ_v), discharge (ζ_d) and thrust (ζ_F) correction factors is given 56. by, (B) $\zeta_F = \zeta_v \zeta_d$ (C) $\zeta_d = \zeta_F \zeta_v$ (D) None of the above (A) $\zeta_v = \zeta_F \zeta_d$

The burning rate of composite propellants can be increased by,

(A) Decreasing the oxidizer particle size

(B) Increasing oxidizer percentage

(C) Both (A) and (B)

57.

(D) None of the above

In the burning rate law given by r=apⁿ, the value of combustion index(n) 58.

(A) Depends on initial grain temperature

(B) Describes the influence of chamber pressure on the burning rate

(C) Both (A) and (B)

(D) None of the above

For an end burning grain the web thickness is 59.

(A) Half of the length of the grain (B) Equal to the length of the grain

(C) Cannot be related to length

(D) None of the above

60. The time interval between the initial and final 10% pressure points on the pressure-time trace (in burning solid propellants) is called

Burning time (A)

Action time (B)

Deflagration time (C)

(D) Delay time

Set - A 8 AS

61.	 The biharmonic equation ∇⁴ Ø = 0, in the absence of bodyforces, for 2-D problem in theory of elasticity is derived (A) by combining equilibrium equation and compatibility condition. (B) by combining equilibrium equation, stress-strain relation and compatibility condition. (C) by combining stress-strain relation and compatibility condition. (D) by combining equilibrium equation and stress-strain relation. 									
62.	The biaxial stress field components are: $\sigma_{xx} = a x^2 y^2$, $\sigma_{yy} = b y^4$, $\tau_{xy} = x y^3$. The values a and b for the stress field to satisfy the equilibrium equations are: (A) (-3/2) and (-1/4) (B) (-3/4) and (-1/2) (C) (-1/2) and (-1/3) (D) (1/3) and (1/4)									
63.	The state of pure shear stress is defined by the stress function (A) $\emptyset = c x y$ (B) $\emptyset = c x^2 y$ (C) $\emptyset = c x y^2$ (D) $\emptyset = c x^2 y^2$									
64.	The value of c for the following strain field is to be possible one is $ \in_{xx} = c(x^2 + y^2); \in_{yy} = x^2; \ \gamma_{xy} = 4 c x y $ (A) 1 (B) 2 (C) 4 (D) (1/2)									
65.	The normal stresses with respect to x and y axes are $\sigma_{xx}=55$ MPa, $\sigma_{yy}=28$ MPa . One of the principal stress values is 66 MPa. What is the value of other principal stress ? (A) 20 MPa (B) 17 MPa (C) 25 MPa (D) 12 MPa									
66.	A beam subjected to pure bending has its radius of curvature 3000 cm. The second moment of area of its cross section is 60 cm^4 and $E = 200 \text{ GPa}$. The bending moment value is (A) 5000 N-m (B) 2000 N-m (C) 4000 N-m (D) 6000 N									
67.	Point of contra flexure is (A) at which shear force is maximum. (B) at shear force and bending moment are maximum. (C) at which shear force and bending moment are zero. (D) at which bending moment is zero.									
68.	A beam of length L and uniform section is simply supported at its ends and is subjected to a shear force P at its midpoint. In the second case the length of the beam is doubled with load at mid span. The ratio of the maximum bending stress of second case to the first case is (A) 4 (B) 1 (C) 2 (D) 3									
Set -										

69.	A cantilever beam of length L is subjected to load P at its free end. Another identical cantilever beam is subjected moment M at its free end. If the slope at the tip of the beams is to be same, the ratio of M to P is									
	(A) 2 L	(B) L	(C) I	_/2 ((D) L^2					
70.	is applied at its mid	dpoint. The twist a	at the free e	nd is		other end. A torque T				
	(A) TL/(2GJ)	(B) TL/(GJ)	(C) 2	2TL/(GJ) ((D) T	L/(4GJ)				
71.	A solid shaft of diagends. If τ is the mass			~ [] [[[[]]] [] [[]] [[]		cted to torque T at its				
	(A) $\tau/2$	(B) 4 τ	(C) 1	τ (D) 3	τ				
72.	A solid shaft of length L and diameter d is fixed at its ends. It is subjected to a torque T at point L/4 from left fixed end. The maximum shear stress is									
	(A) $16T/(\pi d^3)$	(B) $32T/(\pi d^3)$	(C) 8	$ST/(\pi d^3)$	(D) 12	$2T/(\pi d^3)$				
73.	A shaft of uniform section and diameter d is subjected to torque T. In the second case the diameter of the shaft is doubled with torque remaining same. The ratio of the maximum shear stress of the second case to that in the first case is									
	(A) 2	(B) 1/2	(C)	1/4 ((D) 1/	8				
74.	The cross section of a column is rectangle of width 15 cm and depth 20 cm and cross section is in x-y plane. The width is parallel to x-axis. During buckling the bending will be (A) about y-axis (B) about diagonal line (C) about x-axis (D) about z-axis									
75.	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			nds is 8000 N.	If the	end condition of the				
	column is made fix (A) 16000 N	(B) 4000 N	-	32000 N	(D) 50	00 N				
76.		rovided at the mid				ompressive load P. If zero at the midpoint,				
	(A) $\pi^2 EI/4L^2$		(C) 1	$\tau^2 EI/2L^2$	(D) π^2	² EI/L ²				
77.	The cross section slenderness ratio is		circle of	diameter 100	mm ai	nd length 3 m. The				
	(A) 100	(B) 120	(C) 2	240 ((D) 30	00				
78.					20.70	$a_0 = 4c$ (in MPa).The $a_0 = 4c$ (in MPa).The				
	(A) 120	(B) 150	(C) 6	50 ((D) 90)				
Set -	A		10			AS				

79.	subje	B) varies parabolically between the lumped areas C) is constant between lumped areas									
80.	cons is	tant shear flow	of 15	N/cm around	the co	ntour. The tore	que pr	oduced by the she			
	(A)	3000 N-cm	(B)	4000 N-cm	(C)	8000 N-cm	(D)	6000 N-cm			
81.	sprir		and m	ass is reduced				nass. The stiffness frequency in the			
	(A)	1	(B)	4	(C)	1/2	(D)	2			
82.						uency of oscill	lation	is found to be 90%	% of its		
		ral frequency. 7				(0.10)0.5	(D)	(0.4)0.5			
02						$(0.19)^{0.5}$		$(0.4)^{0.5}$	notuvol		
83.		mass in spring uency of vibrat:				farman — meneranan menaran banan bilana	omg r	atio is 0.25. The	naturai		
	(A)	0.2 N-s/m	(B)	2 N-s/m	(C)	4 N-s/m	(D)	3 N-s/m			
84.		number of degr									
	(A)	4	(B)	2	(C)	infinite	(D)	10			
85.	The (A) (B) (C) (D)	rigid body move both ends fixed both ends sime one end fixed Both ends are	ed iply su and c			ase of vibratio	n of a	beam with			
86.		re exists a part e of attack. Thi		0.6	wing a	bout which the	e mor	ments are indepen-	dent of		
		Centre of pres		it is known as	(B)	Aerodynamic	cente	er.			
	(C)	Centre of grav			(D)	Stagnation po		·•			
	(~)	Common on Bru	,		(~)	2.1.g	coor				
87.		airplane in the nent about	stead	y, equilibrium	flight	at its trim ang	gle of	attack has zero p	itching		
	(A)	Centre of grav	vity		(B)	Centre of pre	ssure				
	(C)	Aerodynamic	s cent	er	(D)	Quarter chord		t			
Set -	A				11				AS		
Det -	7. A.				**				IND		

88.	The	contribution of	wing	with positive	cambe			al static stability	is
	(A)	Stable			(B)	Destabilizing	5		
	(C)	Negligible			(D)	None			
89.	For l	ongitudinal sta	tic sta	bility, the cent	re of g	ravity of an ai	irplane	must always be	
	(A)	ahead of neutr	ral po	int					
	(B)	behind neutra	l poin	t					
	(C)	on the neutral	point						
	(D)	positioned at	10% c	of chord length	of the	wing			
90.	The	airplane trim ar	ngle o	f attack can be	contro	olled by deflec	eting		
	(A)	Rudder	(B)	Aileron	(C)	Elevator	(D)	Flap	
91.	The	stick forces at t	trim c	an be made ze	ro by i	incorporating		on either the ele	evator or
	rudd							777	
	(A)	flap	(B)	trim tab	(C)	slat	(D)	aileron	
92.	The	difference betw	een tl	ne neutral poin	it and t	he actual cent	re of g	ravity position is	called
	(A)	Static margin		Martin (1994)	(B)	Chord	_	•	
	(C)	Quarter chord			(D)	Sideslip			
93.	The	yawing momen	it crea	ted due to rate	of rol	l is called			
	(A)	Weathercock	effect		(B)	Adverse yaw			
	(C)	Dihedral			(D)	Cross effect			
94.	The rudder lock can be prevented by adding a small extension at the beginning of the								
	verti	cal tail. It is cal	lled						
	(A)	Dorsal fin			(B)	Rudder fin			
	(C)	Rudder delta			(D)	Rudder tip			
95.	When the tips of the wing are at higher level than the root of the wing, the wing is said to								
	have				(D)	D.1. 1. 1.			
	(A)	Twist			(B)	Dihedral			
	(C)	Anhedral			(D)	Taper			
96.	The	yawing momen	it crea	ted due to side	eslip is	called			
	(A)	Rolling			(B)	Adverse yaw	•		
	(C)	Weathercock	effect		(D)	Pullup			
97.	The	rolling moment	t creat	ed due to sides	slip is	called			
	(A)	Dihedral effec	et		(B)	Adverse Yav	V		
	(C)	Weathercock	effect		(D)	Pulldown			
Set -	A				12				AS
1000 1000	100 CO				0.00				

	Drag force 'D' by					
	(A)	Tan $\theta = L/D$	(B)	Tan $\theta = D/L$		
	(C)	$Sin \theta = L/D$	(D)	$\cos \theta = L/D$		
99.	The absolute ceiling of transport aircraft is defined as the altitude					
	(A) Where maximum rate of climb is 100ft/min					
	(B)	Above service ceiling				
	(C)	Where maximum rate of climb is	infinit	y		
	(D)	Where maximum rate of climb is	zero			
100.	The stall speed of a given airplane at a given altitude is					
	(A)	Proportional to Maximum lift coe	- efficier	nt		
	(B)	Inversely proportional to Maximu	ım lift	coefficient		
	(C)	Proportional to lift coefficient				
	(D) Inversely proportional to lift coefficient					
101.						
		b angle θ_{max} will occur when the Lift to drag ratio is maximum	(B)	Lift to drag ratio is minimum		
	(C)	Lift to drag ratio is maximum Lift to drag ratio is one	(D)	Thrust is maximum		
	(C)	Lift to drag fatio is one	(D)	Thrust is maximum		
102.	In the case of a steady level flight, the value of minimum thrust requiredwith altitude.					
	(A)	changes	(B)	increases		
	(C)	decreases	(D)	remains constant		
103.	 Identify the TRUE statement from the following choices. (A) Wing dihedral and high wing reduce roll stability. 					
(B) Wing dihedral increases roll stability and high wing configuration stability.						
	(C) Wing dihedral and high wing increase roll stability.					
(D) Wing dihedral and low wing configuration reduce roll stability.						
104.	In the case of steady level flight, the relation between velocity corresponding to power required minimum ($V_{pr min}$) and velocity corresponding to thrust required minimum ($V_{tr min}$) is					
	requ is	ired minimum (V _{pr min}) and velocity	y corre	esponding to thrust required minimum (V _{tr min})		
	requ is (A)		y corre (B)			
Set -[requis (A) (C)	fired minimum ($V_{pr min}$) and velocity $V_{pr min} = 0.76 \; V_{tr min}$	y corre (B)	esponding to thrust required minimum ($V_{tr min}$) $V_{pr min} = V_{tr min}$		
Set -[requis (A) (C)	fired minimum ($V_{pr min}$) and velocity $V_{pr min} = 0.76 \; V_{tr min}$	y corre (B) (D)	esponding to thrust required minimum ($V_{tr min}$) $V_{pr min} = V_{tr min}$ $V_{pr min} = 1.32 \ V_{tr min}$		

For unpowered gliding flight, the angle ' θ ' is determined in terms of Lift force 'L' and

98.

	(A)	0.25 kg	(B)	1 kg		
	(C)	3 kg	(D)	9 kg		
106.	An aircraft of mass 2000 kg in steady level flight at a constant speed of 100 m/s I available excess power of 2.0×10^6 W. The steady rate of climb (approximately) it					
	attair	n at that speed is				
	(A)	100 m/s	(B)	150 m/s		
	(C)	200 m/s	(D)	10 m/s		
107.	The purpose of winglets used on wings is to					
	(A)	Minimize induced drag	(B)	Minimize wave drag		
	(C)	Minimize skin friction drag	(D)	Minimize profile drag		
108.	Identify the TRUE condition for smallest possible turn radius and largest possible turn rate in a level turn flight.					
	(A)	Highest possible load factor and lo	west j	possible velocity.		
	(B)	Lowest possible load factor and hi	ghest	possible velocity.		
	(C)	Highest possible load factor and hi	ighest	possible velocity.		
	(D)	Lowest possible load factor and lo	west p	possible velocity.		
109.	Consider a straight wing of aspect ratio with an NACA 2412 airfoil. For low-speed flow the lift coefficient at an angle of attack of 6 deg is 0.648. Assume the span efficiency facto is 0.95. Calculate the induced drag coefficient.					
	(A)	0.234	(B)	0.423		
	(C)	0.0234	(D)	0.0423		
110.	The propeller is feathered when an engine failure occurs in flight. This is preferred becau			ure occurs in flight. This is preferred because		
	(A)	minimizes drag	(B)	maximizes lift		
	(C)	maximizes drag	(D)	minimizes lift		
111.	For a	a NACA 2412 airfoil of chord 'c', ic	lentify	the correct combination from given choices.		
	(A)	Camber is 0.02c located at 0.4c from	m the	leading edge.		
	(B) Camber is 0.2c located at 0.04c from the leading edge.					
	(C)					
	(D)	Camber is 0.4c located at 0.02c from	m the	leading edge.		
~						
Set -	A		14	AS		
Set -	A		14	AS		

105. For critically damped single degree of freedom spring-mass-damper system with a

damping constant of 3 Ns/m and spring constant k of 9 N/m, then mass m is

112.	The	main function of swept back wings	of sub	sonic aircraft is	
	(A)	to increase the drag divergence Ma	ach nu	mber	
	(B)	to decrease the drag divergence M	ach nu	ımber	
	(C)	to increase the lift			
	(D)	to increase the strength			
113.	What are the necessary criteria for longitudinal balance and static stability? $C_{M,cg}$ is coefficient of pitching moment about center of gravity and α_a is absolute angle of attack (A) $C_{M,cg}$ at zero lift must be positive, $\partial C_{M,cg}/\partial \alpha_a$ must be negative. (B) $C_{M,cg}$ at zero lift must be negative, $\partial C_{M,cg}/\partial \alpha_a$ must be negative. (C) $C_{M,cg}$ at zero lift must be positive, $\partial C_{M,cg}/\partial \alpha_a$ must be positive. (D) $C_{M,cg}$ at zero lift must be zero, $\partial C_{M,cg}/\partial \alpha_a$ must be zero.				
114.	An a	airplane requires longer ground roll	to get	off the ground during	
	(A)	summer	(B)	winter	
	(C)	cross-winds	(D)	rainy day	
115.	The (A) (C)	amount of time that an airplane can Range Load factor	stay is (B) (D)	the air on one load of fuel is called Endurance Time to climb	
116.	In ar	n elliptical orbit at which point the ra	adial c	component of velocity is zero.	
	(A)	Perigee	(B)	Every point in the trajectory	
	(C)	Apogee	(D)	both perigee and apogee	
117.	Whi	ch of the following is always conser	ved in	an orbit?	
	(A)	Kinetic Energy	(B)	Potential Energy	
	(C)	Potential and Kinetic Energy	(D)	Angular Velocity	
118.	The	ratio of escape velocity to orbital ve	locity	at the point in a circular orbit is equal to)
	(A)	1.414	(B)	0.707	
	(C)	1	(D)	2	
119.	The total energy of an orbit is equal to zero in				
	(A)	Circular Orbit	(B)	Hyperbolic Orbit	
	(C)	Elliptic Orbit	(D)	Parabolic Orbit	
120.		ees without changing velocity to the		nge the orbital plane inclination to 90 al velocity in circular orbit is equal to	
	(A)	1.414	(B)	1	
	(C)	2	(D)	0.707	
ا			1.5		. ~
Set -	A		15		AS

SPACE FOR ROUGH WORK

Aerospace Engineering (AS)

SET-A

Question No	Answer	Question No	Answer
1	В	61	В
2	В	62	Α
3	Α	63	Α
4	Α	64	Α
5	D	65	В
6	В	66	C
7	D	67	D
8	В	68	C
9	С	69	C
10	Α	70	Α
11	Α	71	C
12	Α	72	D
13	С	73	D
14	В	74	Α
15	Α	75	D
16	В	76	В
17	В	77	В
18	Α	78	C
19	В	79	C
20	Α	80	D
21	В	81	D
22	С	82	C
23	В	83	C
24	С	84	C
25	С	85	D
26	D	86	В
27	В	87	Α
28	Α	88	В
29	Α	89	Α
30	А	90	C
31	Α	91	В
32	C	92	Α
33	Α	93	В
34	В	94	Α
35	В	95	В
36	C	96	C
37	Α	97	Α
38	В	98	Α
39	Α	99	D
40	Α	100	В
41	В	101	Α
42	Α	102	D

43	С	103	С
44	С	104	Α
45	Α	105	Α
46	Α	106	Α
47	С	107	Α
48	В	108	Α
49	Α	109	С
50	Α	110	А
51	C	111	Α
52	C	112	Α
53	Α	113	Α
54	C	114	А
55	В	115	В
56	В	116	D
57	С	117	C
58	В	118	Α
59	В	119	D
60	В	120	А

