Mre computer science

14P/208/4

Question Booklet No.	
----------------------	--

					•
	(To i	pe filled up	by the can	didate by blue/	black ball-point pen)
Roll No.					
Roll No. (Write the digital	s in words)			
Serial No. of O	MR Answe	er Sheet			•
Day and Date					. (Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृत्र पर दिये गए हैं।

[No. of Printed Pages: 28+2

No. of Questions/प्रश्नों की संख्या : 150

Time/समय : 2 Hours/धप्टे

Full Marks/पूर्णोक: 450

Note:

- (1) Attempt as many questions as you can. Each question carries 3 marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
 - अधिकाधिक प्रश्नों को इल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए इक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
 - बदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- 1. What is the bit storage capacity of a ROM with a 512' 4-organization?
 - (1) 2049
- (2) 2048
- (3) 2047
- (4) 2046

- 2. Associative memory is sometimes called as
 - (1) virtual memory

(2) cache memory

(3) main memory

(4) content addressable memory

(P.T.O.)

(173)

1

3.	DMA interface unit eliminates the need to use CPU registers to transfer data from
	(1) MAR to MBR (2) MBR to MAR
	(3) I/O units to memory (4) memory to I/O units
4.	Suppose that a bus has 16 data lines and requires 4 cycles of 250 nacc each to transfer data. The bandwidth of this bus would be 2 megabytes/sec. If the cycle time of the bus was reduced to 125 nacc and the number of cycles required for transfer stayed the same, what would be bandwidth of the bus?
	(1) 1 megabyte/sec (2) 4 megabytes/sec
	(3) 8 megabytes/sec (4) 2 megabytes/sec
₹.	In 'C', when a function is recursively called, all automatic variables
	(1) are initialized during each execution of the function
	(2) are retained from the last execution
	(3) are maintained in a stack
	(4) are retained from the first execution
6.	In 'C' programming, if an array is used as a function argument, the array is passed
	(1) by value
ŧ	(2) by reference
	(3) None of these as array cannot be used as a function argument
	(4) call by name
7.	If $x = 5$, $y = 2$, then $y \wedge x$ equals ——— (where \wedge is a bitwise XOR operator).
	(1) 00000111 (2) 10000010 (3) 10100000 (4) 11001000
L 73 }	`2

8.	For JK flipflop $J=0$, $K=1$, the output after clock pulse will be	
	(1) I (2) no change	
	(3) 0 (4) high impedance	
. 9.	In object-oriented programming, advantages of inheritance include	
	(1) providing a useful conceptual framework	
M	(2) avoiding rewriting of code .	
Lij	(3) facilitating class libraries	55 <u>-</u>
*	(4) All of these	
10.	Consider the following statements: int $x = 22$, $y = 15$; x = (x > y) ? (x + y) : (x - y);	
<i>t</i> i	What will be the value of x after executing these statements?	
	(1) 22 (2) 37	
·	(3) 7 (4) Error. Cannot be executed	
11.	If 73 (in base-x number system) is equal to 54 (in base-y number system), the possible values of x and y are	
	(1) 8, 16 (2) 10, 12 (3) 9, 13 (4) 8, 11	
12.	The for loop for $(i = 0; i < 1; ++i)$ printf ("%d", i & 1);	
	(1) 0101010101 (2) 01111111111 (3) 0000000000 (4) 1111111111	
(173)	3 (P.T.O.)

	10.0	4						1	-sta	4-
13.	Α	haraing	m	the	context	OI	programming	mulgrages	Leicia	w

- (1) multiple variables having the same value
- (2) multiple variables having the same memory location
- (3) multiple variables having the same identifies
- (4) multiple uses of the same variable

14. Consider the following statements:

$$int x = 6, y = 8, z, w;$$

$$y = x + +;$$

The value of x, y, z by calculating the above expressions are

(1)
$$y=8, z=8, x=6$$

(2)
$$y = 6$$
, $x = 8$, $z = 8$

(3)
$$y = 9$$
, $z = 7$, $x = 8$

(4)
$$y = 7$$
, $x = 8$, $z = 7$

15. The use of macro in the place of functions

- (1) reduces execution time
- (2) reduces code size
- (3) increases execution time
- (4) increasca code size

16. If n has the value 3, then the statement a[++n]=n++

(1) assigns 4 to a [5]

(2) assigns 4 to 4[3]

(3) assigns 4 to a[4]

(4) produces unpredictable results

17. Consider for loop in a 'C' program. If the condition is missing

- (1) it is assumed to be present and taken to be false
- (2) it is assumed to be present and taken to be true
- (3) it result in a syntax error
- (4) execution will be terminated abruptly

(173)

18.	Which of the following file organization is most efficient for a file with a high degree of file activity?
40	(1) Sequential (2) ISAM (3) VSAM (4) B-tree index
19.	Analysis which determines the meaning of a statement once its grammatical structure becomes known is termed as
	(1) semantic analysis (2) syntax analysis
	(3) regular analysis (4) general analysis
20.	A partial ordered relation is transitive, reflexive and
	(1) antisymmetric (2) bisymmetric
	(3) antireflexive (4) asymmetric
21.	If B is a Boolean algebra, then which of the following is true?
•	(1) B is a finite but not complemented lattice
	(2) B is a finite, complemented and distributive lattice
	(3) B is a finite, distributive but not complemented lattice
	(4) B is not distributive lattice
22.	Graphics for Word Processor is
	(1) peripheral (2) clip art (3) highlight (4) execute
23.	Why are headers and footers used in document?
	(1) To enhance the overall appearance of the document
	(2) To mark the starting and ending of a page
	(3) To make large document more readable
	(4) To allow page headers and footers to appear on document when it is printed
173)	5 (P.T.O.)

24.	Which data	atructure allows	deleting	data elementa :	from front	and inserting at rear?
-----	------------	------------------	----------	-----------------	------------	------------------------

- (1) Stacks
- (2) Queues
- (3) Deques
- (4) Binary search tree

(1) $D_n = n \log_2 n$

 $(2) D_n = n \log_2 n + 1$

 $(3) D_n = \log_2 n$

(4) $D_n = \log_2 n + 1$

26. When representing any algebraic expression E which uses only binary operations in a 2-tree,

- (1) the variable in E will appear as external nodes and operations in internal nodes
- (2) the operations in E will appear as external nodes and variables in internal nodes
- (3) the variables and operations in E will appear only in internal nodes
- (4) the variables and operations in E will appear only in external nodes.

27. A binary tree can easily be converted into 2-tree

- (1) by replacing each empty sub tree by a new internal node
- (2) by inserting an internal nodes for non-empty node
- (3) by inserting an external nodes for non-empty node
- (4) by replacing each empty sub tree by a new external node

28. When converting binary tree into extended binary tree, all the original nodes in binary tree are

- (1) internal nodes on extended tree
- (2) external nodes on extended tree
- (3) vanished on extended tree
- (4) internal nodes

(173)

0

29.	. The post order traversal of a binary tree is DEBFC	A. Find out the pre order traversal
	(1) ABFCDE (2) ADBFEC (3) ABI	08-0
30.	. Which of the following sorting algorithm is of di	vide-and-conquer type?
	(1) Bubble sort (2) Inse	ertion sort
•	(3) Quick sort (4) All	of the above
31.	. An algorithm that calls itself directly or indirectly	y is known as
	(1) sub algorithm (2) recu	irsion
	(3) polish notation (4) trav	ersal algorithm
32.	In a binary tree, certain null entries are replaced nodes higher in the tree for efficiency. These spe	
	(1) leaf (2) branch (3) path	(4) thread
33.	. The in order traversal of tree will yield a sorted	listing of elements of tree in
	(1) binary trees (2) bina	ary search trees
	(3) heaps (4) three	aded tree
34.	. In a heap tree	
2	(1) values in a node is greater than every value in sub tree	left sub tree and smaller than right
	(2) values in a node is greater than every value	in children of it
	(3) both of above condition applies	
	(4) values in a node is less than every value in	children of it
(173)	7	(P.T.O.)

14P/208/4

			# 2
35.	In a graph if $e = u, v $, then u and v as	re cal	led ·
	(1) endpoints of e	(2)	adjacent nodes
	(3) neighbours	(4)	All of the above
36.	A connected graph T without any cycle	ca is	called
	(1) a tree graph	(2)	free tree
	(3) a tree	(4)	All of the above
37.	In a graph if e=(u, v) means		1982
	(1) u is adjacent to v but v is not adj	acent	to u
	(2) e begins at u and ends at v		¥
23	(3) u is processor and v is successor		•
	(4) Both (2) and (3)		
	jā.		
38.	If every node u in G is adjacent to eve	ery ot	her node v in G, A graph is said to be
	(1) isolated	(2)	complete
	(3) finite	(4)	atrongly connected
		ě	
39.	Stack is useful for implementing	22	
	(1) radix sort	. (2)	breadth first search
	(3) recursion	(4)	depth first search
	•		No.
(173)		8	

40.	A B C is a set of attributes. The	unctional de	pendency is as follows
	$AB \rightarrow B$		
	AC → C	*	
	C → B		
	(1) is in 1NF	(2) is i	n 2NF
	(3) is in 3NF	(4) iș i	n BCNF
41.	In mapping of ERD to DFD		
	(1) entities in ERD should corresp	ond to an ex	isting entity/store in DFD
	(2) entity in DFD is converted to	attributes of	an entity in ERD
(5)	(3) relations in ERD has 1 to 1 co	rrespondence	e to processes in DFD
	(4) relationships in ERD has 1 to	l correspond	lence to flows in DFD
42.	A dominant entity is the entity		51 St
	(1) on the N side in a 1 : N relati	onship	
	(2) on the 1 side in a 1 : N relation	onship	14 14
	(3) on either side in a 1: 1 relati	onship	
	(4) nothing to do with 1: 1 or 1	N relations	nip qir
43.	Three tier architecture contains —	— layers.	
	(1) presentation	(2) app	olication
	(3) database	(4) All	of the above
44.	Tables derived from the ERD	0250	
	(1) are totally unnormalised	(2) are	always in 1NF
1/2	(3) can be further denormalised	(4) me	y have multi-valued attributes
173)	S 851	9	(P.T.O.)
ECONONI TOLONI			

701	values. Which one of the following is	true?
	(1) A is a candidate key	(2) A is not a candidate key
<u>20</u>	(3) A is a primary key	(4) Both (1) and (3)
46.	The concept of locking can be used to	solve the problem of
	(1) lost update	(2) uncommitted dependency
	(3) inconsistent data	(4) All of the above
47.	A data model is a collection of concep	tual tools for describing
	(1) data and data relationships	200 mm
	(2) data semantics and consistency consist	onatrainta
	(3) data, data relationship, data sema	untics and consistency constraints
	(4) Both (1) and (2)	
48.	The result of the UNION operation bet	ween R1 and R2 is a relation that includes
	(1) all the tuples of R1	
3	(2) all the tuples of R2	
	(3) all the tuples of R1 and R2	
×	(4) all the tuples of R1 and R2 which	have common columna
49.	Redundancy is dangerous as it is a po	otential threat to data —
	(1) integrity	(2) consistency
	(3) sufficiency	(4) Both (1) and (2)
(173)	10	

50.	What are the potential problems veconcurrently?	when a DBMS executes multiple transa	ctions
	(1) The lost update problem	(2) The dirty read problem	:±.
	(3) The unrepeatable read problem	(4) All of the above	
51.	In Boolean expression $A+BC$ equals	8	
	(1) $(A+B)(A+C)$	(2) $\{A'+B\}(A'+C)$	
	(3) $(A+B)(A'+C)$	(4) (A+B)C	
52.	All of the following are examples of	real security and privacy risks, except	13
	(1) hackers (2) span	- (3) viruses (4) identity theft	
53.	Technology no longer protected by cop	pyright, available to everyone, is considered t	o be
	(1) proprietary	(2) open	
	(3) experimental	(4) in the public domain	
54.	A goal of data mining includes which	ch of the following?	
	(1) To explain some observed event	or condition	
	(2) To confirm that data exists		
	(3) To analyze data for expected rela	lationahipa	
	(4) To create a new data warehouse	c ·	
55.	Data independence means		
	(1) data is defined separately and no	not included in programs	
	(2) programs are not dependent on	the physical attributes of data	
	(3) programs are not dependent on	the logical attributes of data	
	(4) Both (2) and (3)		
(173)		11 <i>[</i>]	P.T.O.)

56.	When data changes in multiple lists and	d all lists are not updated, this causes
	(1) data redundancy	(2) information overload
	(3) duplicate data	(4) data inconsistency
57.	The purpose of the primary key in a da	tabase is to
1	(1) unlock the database	
*	(2) provide a map of the data	
	(3) uniquely identify a record	
22	(4) establish constraints on database o	perations
		575 1001.000 201.000 1000 1000 1000 1000 100
58.	The most frequently used instructions of from	f a computer program are likely to be fetched
	(1) the hard disk	(2) cache memory
	(3) RAM	(4) registers
59.	Verification of a login name and passwe	ord is known as
	(1) configuration	(2) accessibility
	(3) authentication	(4) logging in
60.	RSA is	
	(1) symmetric cryptosystem	(2) asymmetric cryptosystem
	(3) block cypher	(4) digital signature
61.	The altering of data so that it is not us	sable unless the changes are undone is
	(1) biometries (2) compression	(3) encryption (4) ergonomics
(173)	10	
, -	12	

12

U.S.	wel	tracer ra er								
	(1)	set of capacitors used to register in	put	instructions in a digital computer						
8	(2)	set of paper tapes and cards put in	ı a f	ile						
558	(3) temporary storage unit within the CPU having dedicated or general purpose use									
	(4)	part of the auxiliary memory								
63.	Wh	ich one of the following is not a bro	adbe	and communication medium?						
	(1)	Microwave	(2)	Fibre optic cable						
	(3)	Twisted pair	(4)	Coaxial cable						
64.	ln '	which type of switching all the datagra	ma c	of a message follow the same channel?						
	(1)	Circuit-switching	(2)	Datagram packet switching						
×	(3)	Virtual circuit packet switching	(4)	Message switching						
65.	Wł	en you purchase a product over a i	mobi	le phone, the transaction is called						
	(1)	web commerce	(2)	e-commerce						
Ħ	(3)	m-commerce	(4)	mobile purchases						
66.	A	Pixel is								
	(1)	a computer program that draws pi	ctur							
	(2)	a picture stored in secondary men	iory	\$3						
	(3)	the smallest resolvable part of a p	ictur	'e .						
	(4)	All of the above		•						
			2	P.T.O.						
173)		- 1	J	Ę2 . 1 . O.,						

14P/208/4

07.	the memory location address are limi	the memory location address are limited to					
	(1) 00000 to 9ffff(16)	(2) 00001 to 9ffff(16)					
	(3) 00010 to 9ffff(16)	(4) 10000 to 9ffff(16)					
68.	The contents of information are store	d in					
	(1) memory data register	(2) memory address register					
	(3) memory access register	(4) memory arithmetic register					
69.	A proxy server is used for which of the	ne following?					
	(1) To provide security against unaut	horized users					
	(2) To process client requests for well	pages					
*	(3) To process client requests for data	abase access					
	(4) To provide TCP/IP						
7 0.	Which of the following are characteris	tics of testable software?					
	(1) Observability	(2) Simplicity					
	(3) Stability	(4) All of the above					
71.	A characteristic of a file server is which	ch of the following?					
	(1) Manages file operations and is she	ared on a network					
	(2) Manages file operations and is lim	ated to one PC					
	(3) Acts as fat client and is shared or	a network					
	(4) Acts as fat client and is limited to	one PC					

72,	Queue can be used to implement		
(3.5)	(1) radix sort	(2)	quick sort
	(3) recursion	(4)	depth first search
73.	The member of edges in a regular gra	ph.of	degree d and n vertices is
	(1) maximum of n, d	(2)	n+d
	(3) nd	(4)	nd/2
74.	Heap allocation is required for language	gea	•
•	(1) that supports recursion	(2)	that supports dynamic data structure
	(3) that use dynamic scope rules	(4)	All of the above
75.	The maximum number of comparison (assume each item is a 4 digit decima		ded to sort 7 items using radix sort is
	(1) 280 (2) 40	· (3)	47 (4) 38
76.	A graph with n vertices will definitely number of edges are	have	a parallel edge or self loop of the total
	(1) more than n	(2)	more than $n+1$
	(3) more than $(n+1)/2$	(4)	more than $n(n-1)/2$
77.	If h is any hashing function and is use $n \le m$, the expected number of collision		hash n keys into a table of size m , where volving a particular key x is
	(1) less than 1	(2)	less than n
	(3) less than m	(4)	less than $n/2$
(173)	. 1	5	, (P.T.O.)

78.	The s	minimum numb	er of edges in a	conne	cted cycle graph	on n vertices is	
	(1) 7	ı –1	(2) n	(3)	n+1	(4) n/2	
79.		binary tree, the children is	number of termin	nal or le	eaf nodes is 10.	The number of nodes w	ith
	(1) 9	•	(2) 11 .	(3)	15	(4) 20	
80.	A cir	cular list can t	e used to repres	sent			
	(1) &	a stack		(2)	a queue		
	(3) E	B-tree		(4)	Both (1) and	(2)	
81.	The	smallest elemer	nt of an Array's i	index is	called its	•	
	(1) 1	ower bound	(2) upper bound	d (3)	range .	(4) extraction	
82.	Whic	h amongst the f	ollowing cannot b	e a bal	ance factor of an	y node of an AVL tree?	
	(1)	1	(2) 0	(3)	2	(4) -1	
83.	Whice than	th of the following by singly links	ng operations is ad list?	perfore	ned more efficie	ntly by doubly linked	lis
	(1)	Deleting a node	whose location	is giver	ľ		
	(2) 5	Searching of an	unsorted list for	r a give	n item		
	(3)	nserting a new	node after node	whose	location is give	n.	
	(4) 7	Fraversing the 1	ist to process ea	ch nod	e l	· ·	
84.	Sear	ch tables used	by compilers for	efficier	it searching gen	erally use	
	(1) 1	nash tables		(2)	linear lists of	records	
	(3) 1	oinary scarch to	bles	(4)	binary search	trees	
. (173)			EZ.	16	•		

\$ 5.	Which of the following sort method is stable?	
×	(1) Straight insertion sort (2) Binary insertion sort	
•	(3) Shell sort (4) Heap sort	
86.	One can determine whether a binary tree is a binary search tree by traversing it in	
	(1) preorder (2) inorder	
	(3) postorder (4) any of the three orders	
87.	The search technique for searching a stored file that requires increased amount of space is	æ
ld.	(1) indexed sequential search (2) interpolation search	
	(3) sequential search (4) tree search	
88. •	Which of the following is essential for converting an infix expression to the post fix form efficiently?	a
	(1) An operator stack	
	(2) An operand stack	
	(3) An operand stack and an operator stack	
*	(4) A parse tree	
89.	In ——— the difference between the height of the left sub tree and height of the right tree, for each node, is almost one.	t
ŷ.	(1) binary search tree (2) AVL tree	
×	(3) complete tree (4) threaded binary tree	100
90.	Number of possible binary trees with 3 nodes is	
	(1) 12 (2) 13 (3) 14 (4) 15	
(173)	17 (P.T.O.)

91.	A complete full binary tree with 10 les	rves
	(1) cannot have more than 19 nodes	(2) has exactly 19 nodes
	(3) has exactly 17 nodes	(4) cannot have more than 17 nodes
92.	In a linked list	
	(1) each link contains a pointer to the	e next link
	(2) an array of pointers point to the l	inks
	(3) each link contains data or pointer	to data
	(4) Both (1) and (3)	
93.	An adjacency matrix representation of	graph cannot contain information of
	(1) nodes	(2) edges
	(3) direction of edge	(4) parallel edges
94,	Part of program where the shared memindivisibly, is called	ory is accessed and which should be executed
	(1) semaphores	(2) directory
	(3) critical section	(4) mutual exclusion
95.	What is the initial value of the semaph enter their critical section?	ore to allow only one of the many processes to
	(1) 0 (2) 1	(3) 2 (4) 3
96.	The principle of locality of reference ju	stifics the use of
	(1) virtual memory	(2) interrupts
	(3) secondary memory	(4) cache memory
(173)		8 ·

	(1) hold and wait (2) multiprogramming	
	(3) race around condition (4) buffer overflow	
98.	Memory utilization factor shall be computed as follows	
	(1) memory in use/allocated memory	
	(2) memory in use/total memory connected	
	(3) memory allocated/free existing memory	
¥	(4) memory committed/total memory available	
99.	In which of the storage placement strategies a program is placed in the smalle available hole in the main memory?	et.
	(1) Best fit (2) First fit (3) Worst fit (4) Buddy	
100.	A critical section is a program segment	6
• 3	(1) which should run in a certain specified amount of time	
18	· (2) which avoids deadlocks	
	(3) where shared resources are accessed	
	(4) which must be enclosed by a pair of semaphore operations, P and V	
101.	An operating system contains 3 user processes each requiring 2 units of resource The minimum number of units of R such that no deadlocks will ever arise is	R.
•	(1) 4 (2) 3 (3) 5 (4) 6	
173)	19 (Р.Т.с) .)
22		

97. Four necessary conditions for deadlock to exist are mutual exclusion, no-preemption, circular wait and

14P/208/4

102.	Page fault frequency in an operating system is reduced when	the
	(1) processes tend to the I/O-bound	9.

- (2) size of pages is reduced
- (3) processes tend to be CPU-bound
- (4) locality of reference is applicable to the process

103. Concurrent processes are processes that

- (1) do not overlap in time
- (2) overlap in time
- (3) are executed by a processor at the same time
- (4) not executed by processor

104. Fragmentation is

- (1) dividing the secondary memory into equal sized fragments
- (2) dividing the main memory into equal sized fragments
- (3) fragments of memory words used in a page
- (4) fragments of memory words unused in a page

105. In a paged memory systems, if the page size is increased, then the internal fragmentation generally

(1) becomes less

(2) becomes more

(3) remains constant

(4) discard

(173)

106.		Cound Robin CPU scheduling, as the und time	time	quantum is increased, the average turn
	(1)	increases	(2)	decreases
	(3)	remains constant	(4)	varies irregularly
107.		ich of the following scheduling politem?	cy is	well suited for a time-shared operating
	(1)	Shortest job first	(2)	Round Robin
	(3)	First-come-first-serve	(4)	Elevator
108.	Thr	ashing		***
	(1)	reduces page I/O		en e
	(2)	decreases the degree of multiprogr	ammi	ng
	(3)	implies excessive page I/O		
	(4)	improves the system performance		
109.	A s	cheduler which selects processes fr	om B	econdary storage device is called
	(1)	short-term scheduler	(2)	long-term scheduler
*	(3)	medium term scheduler	(4)	process scheduler
110.	Wh	ich of the following is not a standa	ird sy	nchronous communication protocol?
	(1)	PAS (2) DDCMP	(3)	HDLC (4) SDLC
111.	The to	interactive transmission of data wi	thin e	time sharing system may be best suited
	(1)	aimplex lines	(2)	half-duplex lines
	(3)	full duplex lines	(4)	biflex lines
(173)		2	1	(P.T.O.)

112.	Which of the following is an example of a bounded medium?							
	(1) Coaxial cable (2	l) Wave guide						
	(3) Fiber optic cable	All of the above						
113.	. What is the main difference between synchr	onous and asynchronous transmission?						
	(1) The bandwidth required is different							
	(2) The pulse height is different							
	(3) The clocking is derived from the data	in synchronous transmission						
	(4) The clocking is mixed with data in as	TO						
114.	One important characteristic of LAN is							
	(1) parallel transmission	•						
	(2) low cost access for low bandwidth cha	annels						
22	(3) unlimited expansion	*						
	(4) application independent interfaces							
115.	Which of the following is possible in a tok	en passing bus network?						
	(1) Unlimited number of stations (2	Unlimited distance						
	(3) In-service expansion (4	Multiple time-division-channels .						
116.	The X.25 standard specifies a							
	(1) technique for dial access (2)	data bit rate						
	(3) DTE/DCE interface (4)	technique for start-stop data						
(1 73)	22	e.						

117.	Hov	w many OSI laye	ers are covered in	the X.	25 standard?			ā
	(1)	Three "	(2) Four	(3)	Two	(4)	Seven	
118,	Lay	er one of the O	SI model is		15			
	(1)	physical layer	Fire D	(2)	link layer			
	(3)	transport layer		(4)	network layer			
119.	In t	OSI network arc	hitecture, the rot	iting is	performed by			
	(1)	data link layer		(2)	network layer		¥	
	(3)	transport layer		(4)	session layer		2.0	
120.	The	basic ethernet	design does not	provide		v.		•
	(1)	access control				•		
	(2)	addressing						
	(3)	automatic retre	nsmission of a n	nessage	F E		Ψ.	
	(4)	multiple time-d	ivision-channels	25	(B. 40)			
121.	The	topology with l	nighest reliability	is.	•	(1. 5 .4)		
	(1)	bus topology		(2)	star topology	a		
w H	(3)	ring topology		(4)	mėsiį topology			
122.	Sta	rt and stop bits	are used in seri	al comm	nunication for			
	(1)	error detection		(2)	error correction	ı		
*	(3)	synchronization	1	(4)	slowing down t	he o	communicati	ion
(173)		10		23				(P.T.O.)

123,	End-to-end connectivity is provided from host-to-host in									
	(1) the network layer	(2) the transport layer								
	(3) the acasion layer	(4) application layer								
*	¥.	€ ±								
124.	BSC is a									
	(1) character oriented protocol	(2) half-duplex protocol								
	(3) full-duplex protocol	(4) Both (1) and (2)								
	•									
125.	Which of the following are non-polling systems?									
8	(1) TDMA	(2) Stop and Wait								
	(3) Xon-/Xoff	(4) Both (1) and (3)								
		•8								
126.	The number of elements in the power set of the set { {}, 1, {2, 3}.} is									
	(1) 2 (2) 4	(3) 8 (4) 3								
127.	Let $f(x+y) = f(x) f(y)$, for all x, y, i	f(5) = 2 and $f'(0) = 3$, then $f'(5)$ is equal to								
10 5 1	(i) 1 (2) 5	(3) 6 (4) -1								
		•								
128.	An object that groups together a set of is known as	f operations that have no relations to each other								
	(1) entity abstraction	(2) action abstraction								
	(3) virtual machine abstraction	(4) coincidențal abstraction								
(173)	· · · · ·	24								

		15							
129.	In the set of integers, a relation R is defin	ned as a Rb, if and only if b = lat. This relation is							
	(1) reflexive	(2) irreflexive							
	(3) symmetric	(4) anti-symmetric							
130.	For a function to be invertible, it has to be								
	(1) one-one	(2) onto .							
	(3) both one-one and onto	(4) one to many							
131.	Trapezoidal rule gives the exact solution	n when the curve is							
	(1) concave towards the base line	(2) convex towards the base line							
	(3) a straight line	(4) parabola							
132.	A group has 11 elements. The number	of proper sub-group it can have is							
	(1) 0 (2) 11	(3) 5 (4) 4							
133.	What is the total number of equivalent re	elations that can be defined on the set { 1, 2, 3}?							
**	(1) 8 (2) 64	(3) 5 (4) 3							
134.	Two isomorphic graphs must have								
	(1) the same number of vertices	(2) the same number of edges							
	(3) an equal number of vertices	(4) All of the above							
135.	A graph consisting of only isolated n ve	ertices is							
	(1) 1-chromatic	(2) 2-chromatic							
	(3) 3-chromatic	(4) n-chromatic							
173)	25	(P.T.O.)							

	A(G) of	the graph i	is								
	(1) $n-k$:	(2)	e-n-k	**	(3)	e-n+k	(4)	e+n-k	
137.	The dete matrix i		mat	rix has 72	0 term	e (in	the unsin	nplified	for:	m). The order	of the
	(1) 5		(2)	6	2	(3)	7	(4)	8	
138.	For wha	t value of	c, wi	ll the vect	or i+c	j be	orthogone	al to 2i-	. j7		
ă.	(1) 0		(2)	1		(3)	2	t	4)	3	
139.	Let $f(x)$ represent the largest integer less than or equal to x . Let $g(x)$ represent the smallest integer greater than or equal to x . Which of the following remark will be true for any x ?										
	(1) g(x	=f(x)+1			0.7	(2)	f(x) = g(x)	x)			
	(3) 'f(-	x) = -g(x)				(4)	All of the	above	14		
140.	Which of the following logical operations almost resembles an arithmetic multiplication operation?										
	(1) OR		(2)	AND	20	(3)	NOR	ı	(4)	XOR	
141.	If $a-b < n$ and $b-c < m$, then $a-c$ is										
	(1) < n	+m				(2)	< maximu	ım of m	, n		
	(3) < m	inimum of	m, n			(4)	< mm		73	a	
(173)				¥	26		•	¥		•	

136. If B is a circuit matrix of a graph with k components, the rank of the incident matrix

	occ	currence of at	least o	one of these t	proba hree is	ombes o	8, 0·5, 0·3	. The	probab	ility of
	(1)	0.3	(2)	0.93	(3)	0.12	(4)	0-07		
143.	Aı	polynomial p(p(1) = p(3):			ving	í				
	٠	p(2) = p(4)	10000 10000 100	***	•					
	The	e minimum de	gree of	such polyno	mial is					
	(1)	1	(2)	2 .	(3)	3	(4)	4		
144.	Wb	at is the relati	on R on	the set $A = \{a$, b, c } ii	f wheneyer	aR band	bRc, tl	hen aRe	2
v	(1)	Transitive	(2)	Equivalence	(3)	Reflexive	(4)	Sym	netric	
145.	According to principle of logic, an implication and its contrapositive must be									
	(1)	(1) both true or false				both true		25		
*	(3)	both false			(4)	both true	and false	ĺ		
146,	A r	nemory bus is	mainl	y used for co	mmuni	cation bet	ween			
	(1)	processor an	d mem	ory	(2)	processor	and I/O	device	9	
	(3)	I/O devices a	and me	mory	(4)	inpuț des	vice and or	atput :	device	
147.	The idea of cache memory is based									
	(1)	on the prope	rty of l	ocality of refe	rence		82		16	
	(2)	on the heuri	stic 90-	10 rule						
	(3)	on the fact t	hat refe	erences gener	ally ter	d to clust	ter			
	(4)	All of the ab	ove .							
173)			·	:	27				· ·	P.T.O.)

l) index register	• *	(2)	instruction regi	ster .				
2) manager addres				BC:				
of memory address	s register	(4)	memory data re	egiater ·				
If memory access takes 20 ns with cache and 110 ns without it, then the ratio (cache uses a 10 ns memory) is								
(1) 93%	(2) 90%	(3)	88%	(4) 87%				
10.000	100 2000	ator	age location in	memory and obtain i	ts			
(1) seek time		(2)	turnaround tin	ne				
(3) access time	£	(4)	transfer time					
				8.				
	if memory access to uses a 10 ns mem (1) 93% The average time contents is called (1) seek time	ases a 10 ns memory) is (1) 93% (2) 90% The average time required to reach a contents is called the (1) seek time	3) memory address register (4) If memory access takes 20 ns with cache and uses a 10 ns memory) is (1) 93% (2) 90% (3) The average time required to reach a stor contents is called the (1) seek time (2)	3) memory address register (4) memory data resistances a takes 20 ns with cache and 110 ns without ases a 10 ns memory) is (1) 93% (2) 90% (3) 88% The average time required to reach a storage location in contents is called the (1) seek time (2) turnsround times.	3) memory address register (4) memory data register If memory access takes 20 ns with cache and 110 ns without it, then the ratio (cach ases a 10 ns memory) is (1) 93% (2) 90% (3) 88% (4) 87% The average time required to reach a storage location in memory and obtain it contents is called the (1) seek time (2) turnaround time			

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अल्हम से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना *अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन* से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृतों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. औ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं॰ और ओ॰ एम॰ आर॰ पत्र सं॰ की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरोक्षक द्वारा प्रमाणित होना चाहिये अन्यक्षा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर । पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार ऐन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से आंधक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्वाही द्वारा ऑकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्वन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ०एम०आर० उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परोक्षा समाप्त होने से पहले परोक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

