M.SC. Computer Science

Set No. 1

Question Booklet No.

00681

16P/208/22

	(To be fille	d up by the	candidate	by blue/b	lack ball- _l	point pen)	
Roll No.							1.
Roll No. (W	rite the dig	its in wor	ds)		Coc	KN.	(486)
Serial No. of	OMR Ans	wer Sheet			·····		
Day and Dat		•••••	(2	-16	.)	(Signatu	re of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a Note that the answer once fined in the corresponding row blank (such question wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover ar! the blank page at the end of this

- 13. You are not permitted to leave the Examination That are 18st.

 14. If a candidate attempts to use any form of unfair means, he/s shall be liable to such punishment as

[उपर्युक्त निर्देशन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK रफ़ कार्य

No. of Questions: 150

प्रश्नों की संख्या: 150

Time: 2 Hours

Full Marks: 450

समय : 2 घण्टे

पूर्णाङ्क : 450

Note: (1) Attempt as many questions as you can. Each question carries 3
(Three) marks. One mark will be deducted for each incorrect
answer. Zero mark will be awarded for each unattempted question.

अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 (तीन) अंकों का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जायेगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one. यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- 01. A half adder is also known as :
 - (1) NOR circuit

(2) XNOR circuit

(3) NAND circuit

(4) XOR circuit

- 02. Booth's algorithm is used for the arithmetic operation of :
 - (1) addition

(2) subtraction

(3) multiplication

(4) division

- 03. The most relevant addressing mode to write position independent code is:
 - (1) direct mode

(2) auto mode

(3) relative mode

(4) indexed mode

3

P.T.O.

04.		smallest integer that ca complement form is :	n be repre	sented by an 8-bit number in
	(1)	-256	(2)	-128
	(3)	-127	(4)	0
05.	Wha	at combination of the in	outs a JK fl	ip-flop toggles ?
	(1)	J=0, K=0	(2)	J=0, K=1
	(3)	J=1, K=0	(4)	J=1, K=1
06.		ch are the essential proction?	ime implica	ants of the following Boolean
	F (a.	(b, c) = a'c + ac' + b'c		
		a'c and ac'	(2)	a'c and b'c
	- C	a'c only	(4)	ac' and bc'
07.	If a	student needs to choose by ways can he do that ?	8 from par	each containing 10 questions. rt P and 4 from Part Q, in how 6020
	(3)	1200	(4)	9450
08.	How 'CO!	w many 3-letter words ca RPORATION', if repetition	n be forme	
	(1)	990	(2)	336
	(3)	720	(4)	504
09.		ubnet has been assigned he maximum number of 14 62	a subnet m hosts that (2) (4)	ask of 255.255.255.192. What can belong to this subnet? 30 126
			. 4	

	(1)	Stack			(2)	Α	ddress Space	
	(3)	File Descrip	tor Tab	le	(4)	N	Message	
11.	tec roo	H key) betwee hnique. They t. Party A chores. Their D-	n thems agree of coses 2 H key is	selves usi in 7 as th and par	ing the matrix B	he I odu ch	setup a comm Diffle-Hellman ulus and 3 as ooses 5 as th	key exchange the primitive eir respective
	(+)	0	(2) 4		(3)	5	(4	4) 6
12.	red	nsider the foundancy check X4+X2+1 is:	k (CRC)	g messa for this m	age nessa	M= age 1	1010001101 using the divis	. The cyclic or polynomial
	(1).	01110			(2)	0	1011	
	(3)	10101			(4)	10	0110	
13.	Whi (1) (2) (3) (4)	Bridge is a l Bridge reduc	ayer 2 o es colli ed to co	device sion dom nnect two	ain o or 1	mor	SE regarding a	
14.	A ch	annel has a h	it rate	of 4 khas	and	on		
	4. A channel has a bit rate of 4 kbps and one-way propagation delay of 20 ms. The channel uses stop and wait protocol. The transmission time of acknowledgement frame is negligible. To get a channel efficiency of at least 50%, the minimum frame size should be:							
	(1)	80 bytes			(2)		bits	na be:
	(3)	160 bytes			(4)		0 bits	
				5				5

10. Which one of the following is NOT shared by the threads of the same

process?

- 15. In a depth-first traversal of a graph G with n vertices k edges are marked as tree edges. The number of connected components in G is:
 - (1) k

(2) k+1

(3) n-k-1

(4) n-k

- 16. Which of the following statements is TRUE about CSMA/CD?
 - (1) IEEE 802.11 wireless LAN runs CSMA/CD protocol
 - (2) Ethernet is not based on CSMA/CD protocol
 - (3) CSMA/CD is not suitable for a high propagation delay network like satellite network
 - (4) There is no contention in a CSMA/CD network
- 17. The minimum number of page frames that must be allocated to a running process in a virtual memory environment is determined by :
 - (1) the instruction set architecture
 - (2) page size
 - (3) physical memory size
 - (4) number of processes in memory
- 18. A Priority-Queue is implemented as a Max-Heap. Initially, it has 5 elements. The level-order traversal of the heap is given below: 10, 8, 5, 3, 2. Two new elements 1 and 7 are inserted in the heap in that order. The level-order traversal of the heap after the insertion of the elements is:
 - (1) 10, 8, 7, 5, 3, 2, 1
- (2) 10, 8, 7, 2, 3, 1, 5
- (3) 10, 8, 7, 1, 2, 3, 5
- (4) 10, 8, 7, 3, 2, 1, 5

19	. Su	ippose t	he round t	rip prop	pagation	n delay	for a	10Mb	ps Ether	ne
	3140110004		bit jamming	g signal	is 46.4 1	ms. Th	e minim	um fr	ame size	is :
	(1)				(2)	416	i			
	(3)	464			(4)	512				
20	bin	ine given ary sea de from	ng numbers n order: 10 rch tree (the root)?), 1, 3, 5 ne heigh	5, 15, 1	2, 16.	What is	the h	eight of t	the
	(1)	2	(2)	3 '	(3)	4		(4)	6	
21.	ше	lunction	um number n F= (X'+Y')	of 2-inj (Z+W) i	put NAM s :	ND gate	es requir	ed to	impleme	nt
	(1)	3	(2)	4	(3)	5		(4)	6	
22.	(1)	ash table ore the t 0.45	e has space able is 10%	for 100 r full, is	records. : (2)	Then to	he proba	ability	of collision	on
	(3)	0.3			(4)	0.34				
23.	(1)	134	pulses are n 10101100	needed) to 001	to char 00111 (2)	nge the (rightm 133	conten	ts of	a 8-bit u <i>LSB) ?</i>	ιp
	(3)	124			(4)	123				
24.	(1)	0 Km lo le cable : 572 772	ng cable ruis 2/3 the s	ns at th	ie T1 da light. H (2) (4)	ita rte. ow ma 672 872	The pro	poga it in t	tion spee he cable	d ?
				7						
									P.T.O.	

25.	The average search time of hashing, with linear probing will be less if									
	the	load factor:								
	(1)	is far less than one	(2)	equals one						
	(3)	is far greater than one,	(4)	is far greater than hundred						
26.	Bou	Bounded minimalization is a technique for :								
	(1) proving whether a primitive recursive function is turning computable or not									
	(2)	proving whether a primitive re	ecurs	sive function is a total function						
	(3)	generating primitive recursiv	e fur	actions						
	(4)	generating partial recursive	funct	ions						
27.	exe	cuting in a pure demand page	ging	system with 100 records per is recorded as follows. What is						
		0, 0 200, 0430, 04 99, 0510, 05	30, 0	0560, 0120, 0220, 0240, 0260,						
			(2)	8						
	(1)	13								
	(3)	7	(4)	10						
			-60	names of 1024 words mapped						

28. Consider a logical address space of 8 pages of 1024 words mapped into memory of 32 frames. How many bits are there in the logical address?

(1) 9 bits

(2) 13 bits

(3) 11 bits

(4) 15 bits

29.	Cor	Consider the join of a relation R with a relation S. If R has m tuples								
	and	and has n tuples, then the maximum and minimum sizes of the join								
	res	respectively are:								
	(1)	m+n and 0	(2)	mn and 0						
	(3)	m+n and m-n	(4)	mn and m+n						
		*								
30.	Wh	at is the minimum number	of tv	wo-input NAND gates used to						
	per	form the function of two inpu	t OR	gate ?						
	(1)	one	(2)	two						
	(3)	three .	(4)	four						
			8 (8)	×						
31.	Whi	ich of the following is a netwo	rk to	pology ?						
	(1)	LAN	(2)	WAN						
	(3)	MAN	(4)	BUS						
			` '							
32.	Wha	at is embedded system?								
	(1)	The programme which arrive	s by	being wrapped in box.						
	(2)	The programme which is the								
	(3)	The computer which is the p								
	(4)	The computer and software s								
		•	J	and contact the machine						
33.	A pe	rson who used his or her expen	rtise	to gain access to other people's						
	comp	puters to get information illeg	ally o	or do damage is .						
	(1)	Hacker	(2)							
	(3)	instant messenger		spammer						
	(-)	motant messenger	(4)	programmer						

34.	. ASCII is a coding system that provides:						
	(1)	256 different charac	cters (2)	512 different characters			
	(3)	1024 different chara	acters (4)	128 different characters			
35.	The	D-flip-flop captures	the value of t	he input D when there is a :			
	(1)	Positive edge	(2)	Rising edge			
	(3)	Negative edge	(4)	Non-rising edge			
36.	A+B	.C= (A+B) (A+C) is ar	example of	•			
	(1)	Involution	(2)	Commutative			
	(3)	Distributive	(4)	Absorption			
37.	987	65 in decimal is	in hexad	ecimal:			
	(1)	1C81D	(2)	C181D			
	(3)	181CD	(4)	CD181			
38.		scheduling policy the	at has long w	aiting times for small processes			
	is:	SJF	. (2)	Round Robin			
	(3)	FCFS	(4)				
39.	The	part of UNIX that con	tains all mode	ules necessary for the processes, nanagement is :			
	(1)	Kernel	(2)	Shell			
	(3)	Files	(4)	Processes			
40.			he CPU wait	s for a device to be ready for an			
		operation is: Buffering	(2)	Spooling			
	(1)		. (4				
	(3)	Polling		Control of the contro			

· ·								
41. The type of high-level language	that uses predicate logic is:							
(1) Unstructured	(2) Procedure oriented							
(3) Logic oriented	(4) Object oriented							
42. The most important schema for application programmers is:								
(1) Physical schema	(2) Logical Schema							
(3) Conceptual Schema	(4) External Schema							
43. Data compression is the respons	sibility of :							
(1) Session .	(2) Application							
(3) Presentation	(4) Transport							
44. The factor that considers varying	g load conditions is :							
(1) Minimum number of hops	(2) Queuing delays							
(3) Transmission delay	(4) Propagation delay							
45. The form of computing utilized by	y an email service is							
(1) Distributed	(2) Grid							
(3) P2P	(4) Cloud							
46. Bluetooth devices transmit very w	reak signals of about.							
(1) 1 milliwatt	(2) 2 milliwatts							
(3) 3 milliwatts	(4) 4 milliwatts							

47.	The technique that allows hackers to illegally and remotely access a							
	user	's phone is :						
	(1)	Bluejacking	(2)	Bluebugging				
	(3)	Car whisperer	(4)	Messenger				
48.	Of th	ne following, a 5GL is :						
	(1)	Prolog	(2)	Java				
	(3)	OPSS	(4)	Pascal				
49.	Whi	ch operator has lowest preced	ence	?				
	(1)	Sizeof	(2)	Unary				
	(3)	Assignment	(4)	Comma				
50.	Whi	ch among the following is a LI	FO d	ata structure ?				
		Stacks	(2)	Linked lists				
	(3)	Trees	(4)	Graphs				
51.			, 3,	5, 7, 9); then what is the value				
	of si (1)	izeof (arr[3]) ? 1 (2) 2	(3)	3 (4) 8				
	(1) (3)	ch open addressing technique Linear probing Double hashing	(2) (4)	Rehashing				
53.	+=07	transport layer protocols us asfer, DNS and email, respecti TCP, UDP, UDP and TCP UDP, TCP, UDP and TCP	sed (2) (2) (4)	TOP AND TOP and HIDP				

				16P/208/22
54.	the	ich one of t time comp odes ?	the following is the tighter plexity of inserting an obj	st upper bound that represents ect into a binary search tree of
	(1)	O (1)	(2)	O (log n)
	(3)	O (n)	(4)	O(n lon n)
55.	The	preorder t	traversal sequence of a b	inary search tree is 30, 20, 10,

- 15, 25, 23, 39, 35, 42. Which one of the following is the postorder traversal sequence of the same tree?
 - 10, 20, 15, 23, 25, 35, 42, 39, 30
 - 15, 10, 25, 23, 20, 42, 35, 39, 30
 - 15, 20, 10, 23, 25, 42, 35, 39, 30 (3)
 - 15, 10, 23, 25, 20, 35, 42, 39, 30
- 56. Parity check is method of:
 - Transmission control (2)Error control (3)Encryption (4) Decryption
- 57. The amount of ROM needed to implement a 4 bit multiplier is :
 - (1) 64 bits 128 bits (2)(3) 1 Kbits 2 Kbits (4)
- 58. Given the basic ER and relational models, which of the following in INCORRECT?
 - (1) An attribute of an entity can have more than one value
 - An attribute of an entity can be composite
 - In a row of a relational table, an attribute can have more than one value
 - (4) In a row of a relational table, an attribute can have exactly one value or a NULL value

59.	Star	dard FTP uses	s res	erved port(s	s) :				
	(1)	20			(2)	25			
	(3)	20 & 21			(4)	25 & 23			
60.	Whi	ch of the follow	ving	is TRUE ?					
	(1)	Every relation	is 3	NF is also	in BC	NF			
	(2)	A relation R is in 3NF if every non-prime attribute or R is fully functionally dependent on every key of R							
	(3)	Every relation	n in I	BCNF is als	o in 3	3NF			
	(4)	No relation ca	an b	e in both B	CNF	and 3NF			
61.	The	addressing m	ode 1	used in an	instru	action of the fo	orm F	ADD X Y, is	
	(1)	Absolute			(2)	Indirect			
	(3)	Index			(4)	Direct			
62.	In a	memory- map	oped	I/O system	n, wh	ich of the follo	wing	will not be	
	ther				(0)	ADD	(4)	OUT	
	(1)	LDA	(2)	IN	(3)	ADD	(4)	001	
63.	Wri	te Through tec	chnic	que is used	in w	hich memory	for u	pdating the	
	(1)	Virtual mem	ory		(2)	Main memor	гу		
	(3)	Auxiliary me		y	(4)	Cache memo	ory		
			,	that boo	۰ O i	n the MSB for	man	tissa is said	
64.		oating point n	umb	er that has	aUI	II the man			
	to l	nave:			(2)	Underflow			
	(1)	Overflow	1-		, ,	1			
	(3)	Important n	umb	EI	(4)	Olidonia			

			•
	The instructions which copy in either in the processor's intermemory are called:	nformati nal regis	on from one location to another ster set or in the external main
	 Data transfer instructions Input-output instructions 	(-)	Program control instructions Logical instructions
(3)	, and of the stack	struction action t of the	SP) ? n stack
(1	(2) < >	e HTML (3)	tags? [] (4) {}
(1) (2) (3) (4)	write and read code by sha hide and protect data from	ring me	thod no-
(1) (2) (3) (4)	A base class inherits some of A base class inherits all of the A derived class inherits some A derived class inherits all of A derived class inherits all of the A derived class all the A derived class inherits all of the A derived class inherits	e of the	properties of a base class.
Inter	at is the maximum time that a rnet without finding a destinate 255 seconds	datagr	am packet can exist on the
(3)	260 seconds	(2) 25 (4) 27	o seconds
	15		•

71.	In tuple relational calculus $P_1 \rightarrow P_2$ Is equivalent to :				
		$-P_1 \vee P_2$		$P_1 \vee P_2$	
	00 000	$P_1 \wedge P_2$	(4)	$P_1 \wedge \neg P_2$	
72.	The runn (1) (2)	minimum number of page fra ning process in a virtual memoral The instruction set architecture Page size	ry er	that must be allocated to a vironment is determined by:	
	(3)	Physical memory size			
	(4)	Number of processes in mem	ory	*	
73.	In d (1) (3)	atabases, Locking level is also Gramulority X lock	(2) (4)	ed as: S lock Dead lock	
74. In C, masking operation can be performed through:					
74.	(1) (3)	OR bitwise operator	(2) (4)	XOR bitwise operator	
	pro (1)	8 (2) 1	(3)	16 (1)	
70	6. In (1 (2 (3	SQL the statement select * from R natural join Select * from R cross join S	s.	S is equivalent to:	

- 77. Controlling redundancy in a database management system DOES NOT help to:
 - avoid duplication
 - (2) avoid unnecessary wastage of storage space
 - (3) avoid unauthorized access to data
 - (4) avoid inconsistency among data
- 78. A die is thrown. Let A be the event that the number obtained is greater than 3. Let B be the event that the number obtained is less than 5. Then P (A D B) is:
 - (1) 3/5

(2) 0

(3) 1

- (4) 5/2
- 79. The statement $p \rightarrow (q \rightarrow p)$ is equivalent to:
 - (1) $p \rightarrow (p \rightarrow q)$

(2) $p \rightarrow (p \square q)$

(3) $p \rightarrow (p \square q)$

- (4) $p \rightarrow (p \leftrightarrow q)$
- 80. Relational calculus is a :
 - (1) Procedural language
- (2) Non-Procedural language.
- (3) Data definition language
- (4) High level language.
- 81. DML is provided for:
 - (1) Description of logical structure of database.
 - (2) Addition of new structures in the database system.
 - (3) Manipulation & processing of database.
 - Definition of physical structure of database system. (4)
- 82. A relation R (X, Y, Z, W) with functional dependencies $XZ \rightarrow W$, $YZ \rightarrow W$, 1 NF only (1)

2 NF only

3 NF only (3)

(4) BCNF

83.	In which type of switching all the datagrams of a message follow the same channel:					
	(1)	Circuit-switching				
	(2)	Datagram packet switching				
	(3)	Virtual circuit packet switching	ng			
	(4)	Message switching				
				1 '- 1		
84.	Verif	ication of a login name and pa	assw			
	(1)	Configuration	(2)			
	(3)	Authentication	(4)			
85.	In th	ne URL http://www.prenhall.co		he portion lebelled http is the :		
	(1)	host	(2)	domain name		
	(3)	protocol	(4)	top-level domain		
	(1) (3)	Microwave Twisted pair	(2) (4)	Fibre optic cable Coaxial cable		
87.	87. The altering of data so that it is not usable unless the changes are					
	und	lone is:	(2)	Compression		
	(1)	Biometrics	(4)			
	(3)	Encryption				
88	. The	e purpose of the primary key i	n a d	latabase is to:		
	(1)	unlock the database				
	(2)	provide a map of the data				
	(3)	· lontify a record	4	amarations		
	(4	establish constraints on da	tabas	se operations.		
		1	8			

 89. Given two sorted list of size m and n respectively. The number of comparisons needed in the worst case by the merge sort algorithm will be: (1) m x n (2) maximum of m, n (3) minimum of m, n (4) m+n-1 	
90. Part of program where the shared memory is accessed and which should be executed indivisibly, is called: (1) semaphores (2) directory (3) critical section (4) mutual exclusion	
91. Maximum possible height of an AVL tree with 7 nodes is: (1) 3 (2) 4 (3) 5 (4) 6 92. In which of the following page replacement polices, Balady's anomaly occurs?	
(1) FIFO (2) LRU (3) LFU (4) NRU 93. In which of the storage placement strategies a program is placed in the smallest available:	
hole in the main memory?. (1) best fit (2) first fit (3) worst fit (4) buddy	
 94. Page fault occurs when: (1) the page is corrupted by application software (2) the page is in main memory (3) the page is not in main memory (4) one tries to divided a number by 0 	

95. Let A, B, C be indep The probability of occ	endent events wit	th probabilities 0.8, 0.5, 0.3. t one of these three is :
(1) 0.3	(2)	0.93
(3) 0.12	. (4)	0.07
96. A network with band 15,000 frames per n 8,000 bits. What is the	ninute with each	can pass only an average of Frame carrying an average of his network?
(1) 2 Mbps	(2)	60 Mbps
(3) 120 Mbps	(4)	10 Mbps
97. If there are n integers	s to sort, each inte	ger has d digits and each digit n sort the number in :
(1) O (d n k)	(2)	O (d nk)
(3) O ((d+n)k)	(4)	O(d(n+k))
98. In Propositional Logi		Q we can infer:
(1) ~Q	(2)	Q
(3) P □ Q	(4)	~P□Q
99. Consider the follow	ing three SQL qu	eries (Assume the data in the
neonle table):		
(a) Select Name in	om people where	Height>180;
(b) Select Name in	om people where	(Age>21) or (Height>180);
(c) Select Name II	om people where	ove, return 10 rows and 7 rows
4.	+ machecilively lill	II WIICE
in the result's	er of rows returne	ed by the SQL query (c)?
one possible numb	2) 7 (3	(4) 21
(1) 3	1	

100. Ti	ne number of	1's pr	esent in th	he bin	ary repres	sentation of	
10)×256+5×16+5	5 is :					
) 5	(2)	6	(3)	7	(4) 8	
101. Th	101. The hexadecimal number equivalent to (1762.46), is:						
(1)	3F2.89		1	(2)	3F2.98	0 ₁₈ 13.	
(3)	2F3.89			(4)	2F3.98		
102.8-	bit 1's comple	ment f	orm of 77	OF:-			
(1)		0100	oriii or -77				
(3)				(2)	0100110		
		2011		(4)	1011001	10.1101	
103.Th	e number of d	lifferen	it trees wit	h 8 ne	odes is ·		
(1)	256	(2)	255	(3)	248	(4) 250	
104. Given a binary tree whose inorder and preorder traversal are given by Inorder: EICFBGDJHK							
Pre	order : BCEIF	`DGHJ	K				
The	post order tr	aversa	l of the ab	1.			
(1)	IEFCGJKHD)B	or the ab				
(3)	IEFCGKJHD	B			IEFCJGK IEFCGJK		
105 Dat	O trough			(-)	DI COJK	DBH	
(1)	a warehousing	g refer	s to :				
(2)	storing data backing up d	lata ==	at a separ	ate si	te		
(3)	is related to	data -	guiarly				
(4)	(4) uses tape as opposed to disk						

106	.(101	$(011)_2 = (53)_b$, t	hen b	is equal to):			
		4	(2)		(3)	10	(4)	16
107	.Mul (1) (3)	ti-valued dep 2 NF 4 NF	enden	ncy among a	(2) (4)		at w	hich level?
108	(1)	e postfix form (A-(B+C))*D ((A+B)-C)*D		string is AF	(2))*, the actual ((A-B)+C)*D (A+(B-C))*D	strin	g is:
	(1) (3)	example of a xvy xv (~x)				xv(~y) (x=>y)	:=y)	
110	.Cor	nsider the foll	owing	g C code:				
	{ ir	nt a=5, b=9;		2.52				
	flo	oatr;						
	r=	=b/a;}						

111. Function overloading is a concept in which:

(2) 1.0

what is the value of r?

(1) 1.8

a function is used to implement lots of tasks at the same time.

(3) 2.0

(4) 0.0

- a function is called too many number of times by another (1) (2)
- a function provides common interface to the user to carry out possibly different functions in each call.
- a function is computationally too expensive for the system to handle.

(1)	SELECT, FROM, TABLE	(2)	SELECT, FROM, WHERE
(3)			SELECT, TABLE, INSERT
	2		
113. Wh	ich one of the following senter	nces is	s true?
(1)	The body of a while loop is e	xecute	ed at least once.
(2)	The body of a do while lo	op is e	executed at least once.
(3)	The body of a do while lo	op is e	executed zero or more times
(4)	A for loop can never be used	in pla	ice of a while loop.
114. The	baud rate is:		
(1)	always equal to the bit transi	fer rat	e e
(2)	equal to twice the bandwidth	of an	ideal channel
(3)	not equal to the signaling rat	e	acar channel
(4)	equal to half of the bandwidth		ı ideal channel
the to (1) 116. The formula int i = While (1)	ollowing loop in 'C': =0; (i++<0) i; vill terminate	th FIF (3) 6	34, with three page frames, O will be equal to.
	23		
			P.T.O.

112. Which of the following set of keywords constitutes a mapping in SQL?

- 117. What is the function of a translating bridge?
 - (1) Connect similar remote LANs
 - (2) Connect similar local LANs[3]
 - (3) Connect different types of LANs
 - (4) Translate the network addresses into a layer 2 address
- 118. The memory allocation scheme subjected to "external" fragmentation is:
 - (1) Segmentation
 - (2) Swapping
 - (3) Demand paging
 - (4) Multiple contiguous fixed partition
- 119.Bluetooth technology uses the transmission media:
 - (1) Radio links

- (2) Microwave links
- (3) VSAT communication
- (4) Optical fiber links
- 120. Which of the following differentiates between overloaded functions and overridden functions?
 - Overloading is a dynamic of runtime binding and overridden is a static or compile time binding.
 - (2) Overloading is a static or compile time binding and overriding is dynamic or runtime binding.
 - (3) Redefining a function in a friend class is called overloading, while redefining a function in a derived class is called as overridden function.
 - (4) Redefining a function in a derived class is called function overloading, while redefining a function in a friend class is called function overriding.

121. A trigger is ?

- (1) A statement that enables to start any DBMS
- (2) A statement that is executed by the user when debugging an application program
- (3) A condition the system tests for the validity of the database user.
- A statement that is executed automatically by the system as a side effect to modification to the database.
- 122. A deadlock exists in the system if and only if the wait-for graph contains
 - (1) Cycle

(2)Direction

Bi-direction

(4)Rotation

123. What is purpose of abstract class?

- to provide help with database connectivity.
- to provide data data input to other classes.
- to provide security to other classes.
- to provide an appropriate base class from which other classes
- 124. The algorithm, which may suffer from cascading roll back, is:
 - 2 phase locking Protocol
 - Strictly two phase locking Protocol
 - Strictly two phase
 - (4) Time stamp ordering Protocol
- 125. Networking of libraries through electronic media is known as:

(2) Libinfnet

(3)Internet

HTML (4)

126. In c	yber crimes :		
(1) (3)	The computer is a tool Both (1) and (2)	(2) (4)	The computer is a target Neither (1) nor (2)
	32, Norton and Panda are : Search engines Antivirus software	(2) (4)	Operating Systems Internet browsers
(1) (3) (4)	at is a blog? Online music is a website, where you write a personal or corporate Goog	gle sea	arch
129.Its via (1) (3)	popup blocker	(2) (4)	firewall spam
(1) (2) (3)	Installation of equipments Storage and communication Use of technology for teachi	of in	nformation
1 31. H	ow many distinct binary search	trees	can be carried out of 4 distinct
(1	eys ?) 5 (2) 14		24 (4) 42
132.W	which of the following sorting a ase and best case complexity? Quick sort Heap sort	lgorit (2 (4	at 11 - amt

133. In an empty circular queue, the front and rear are:

(1) -1, -1

(2) 0, 0

(3) 0, 1

(4) 1, 1

134. If $\log 2 = 0.3010$ and $\log 3 = 0.4771$, then the value of $\log 5$ is :

(1) 0.7781

(2) 0.6990

(3) 0.3010

(4) 1.6990

135. Complete binary tree can be implemented by making use of: (1) array

- (2) dequeue
- (3) priority queue
- (4) stack

136. A digital signature is used to provide security makes use of

- (1) Digitally scanned signature
- (2) A unique ASCII code number of the sender
- (3) Private key encryption
- (4) Public key encryption

137. XML uses :

- (1) User-defined tags
- (2) pre-defined tags
- (3) extensible tags
- (4) pairing tags

138. Time complexity of an algorithm T(n), where n is the input size is

$$T(n) = T(n-1) + 1/n$$
, if $n>1$

= 1, otherwise

The order of this algorithm is

(1) $\log n$

(3) n^2

139. An Exception is another name for :

- (1) compile error
- (2) logic error
- (3) runtime error
- (4) syntax error

140. The methodology where code is broken into small, logical procedures is called:

- (1) event-driven programming
- (2) functional programming
- (3) granular programming
- (4) modular programming

141. A Session variable is created:

- (1) when the application is first placed on a web server
- (2) when the web server is first started.
- (3) when the first client requests a URL resource
- (4) every time a new client interacts with the web application
- 142. The address of a class B host is to be split into subnets with a 6-bit subnet number. What is the maximum number of subnets and the maximum number of hosts in each subnet?
 - (1) 62 subnets and 262142 hosts
 - (2) 64 subnets and 262142 hosts
 - (3) 62 subnets and 1022 hosts
 - (4) 64 subnets and 1024 hosts

143. A relation over the set $S = \{x, y, z\}$ is defined by: $\{(x,x), (x, y), (y, x), (x, z), (y, z), (y, y), (z, z)\}$ what properties hold for this relation?
II. Reflexive III. Antisymmetric IV. Irreflexive (1) I only (2) II only (3) I and II only (4) I and IV only 144. What is the relation R on the set A= {a, b, c} if whenever a R b and b R c, then a R c?
(1) transitive (2) equivalence (3) reflexive (4) symmetric
145. In the set of integers, a relation R is defined as aRb, if and only if b= (al. This relation is: (1) reflexive (2) irreflexive (3) symmetric (4) anti-symmetric
146.A group has 11 elements. The number of proper sub-group it can
(1) 0 (2) 11 (3) 5
147.A graph consisting of only isolated n vertices is: (1) 1-chromatic (2) 2-chromatic (3) 3-chromatic (4) n-chromatic
148. Which of the following is valid IP address? (1) 984.12.787.76 (2) 192.168.321.10 (4) 192.168.56.115

149. The time taken by Internet packets:

- (1) can be predetermined before transmission
- (2) depends upon the size of packet
- (3) is irrelevant for audio packets
- (4) is irrelevant for video packets

150. Disk I/O is measured in terms of:

(1) Blocks

(2) Bits

(3) Sectors

(4) Tracks

1,000

ROUGH WORK रफ़ कार्य

31

P.T.O.

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों
- ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ॰ एम॰ आर॰ पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये
- 9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ
- 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी **परीक्षा में अनु**चित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

