

Booklet No.:

BT - 16

Bio Technology

Duration of Test : 2 Hours		Max. Marks: 120
	Hall Ticket No.	
Name of the Candidate :		
Date of Examination:	OMR A	nswer Sheet No. :
Signature of the Candidate		Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only.
- Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

BT-16-A

BIOTECHNOLOGY (BT)

- 1. If the system of equations AX = 0 has a unique solution if the square matrix A is
 - (A) singular

(B) non-singular

unit matrix (C)

- (D) such that the det(A) is 1.
- The product of the eigen values of the square matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ is equal to 2.
 - (A) -36 (B) -18
- (C) 36
- (D) 18
- The function $f(x, y) = xy + a^3(\frac{1}{x} + \frac{1}{y})$ is minimum at the point 3.
 - (A) (0,a) (B) (a,a) (C) (a,0)

- (D) (0,0)

- If x = u(1-v) and y = uv then $\frac{\partial(x, y)}{\partial(u, v)} =$
 - (A) 1
- (B) u+v (C) u
- (D) 1-u
- 5. Three persons A, B and C supply 40%, 30% and 30% of the total output. Out of them 2% from A, 1% from B and 2% from C are defective. If an item is selected at random, then the probability of defective is
 - (A) 0.08
- (B) 0.008
- (C) 0.01
- (D) 0.017
- 6. For a Poisson distribution 2P(X=0) = P(X=1), then the probability density is

- (A) $\frac{2^x e^{-2}}{x!}$ (B) $\frac{3^x e^{-3}}{x!}$ (C) e^{-2x} (D) $\frac{5^x e^{-5x}}{x!}$
- The degree of the differential equation $(\frac{d^2y}{dx^2})^3 + x(\frac{dy}{dx})^5 x^2 y = 0$ is 7.
 - (A) 0
- (B) 2
 - (C) 3

Set - A

2

BT

The solution of the equation $xe^{-x^2} dx + \sin y dy = 0$ is 8.

(A)
$$e^{-x} + \sin x = C$$

(B)
$$\frac{e^{-x^2}}{2} + \cos y = C$$

(C)
$$xe^{-x} + \sin x = C$$

(D)
$$\int e^{-x^2} dx + \sin y = C$$

9. The condition for convergence of Newton-Raphson method to find a real root of f(x) = 0 is

(A)
$$||f'(x)|| \le 1$$

(B)
$$||f(x)f'(x)|| \le |f'(x)||$$

(D)
$$|f'(x)| > 0$$

If $y' = x + y^2$ and y(0) = 1 then y(1.1) by Euler's method is 10.

$$(B) = 0.1$$

Endogenous antigens are presented on to the cell surface along with 11.

The rate-limiting enzyme in glycolysis is 12.

> Phosphoglumutase (A)

Phospho hexose isomerase (B)

Hexokinase (C)

(D) Phospho glycerate mutase

The number of nucleotide pairs in the genome of E.coli is 13.

(D) 1,639,221

Which of the following organelle is present only in animal cells and not in plant cells? 14.

15. Antibody dependent cell mediated immunity occurs by binding of cell surface receptors

3

(A) Complement (B) TCR

(C) Fc region

(D) MHC-II

Which of the following is not a genetic transformation technique? 16.

Electroporation (A)

Biolistic gene gun (B)

Laser microbeams

PAGE (D)

Set - A

BT

17.	Inter	leukins are a set of pro	teins secreted	l by in	nmune cells wh	nich are classed under	
	(A)	Antigens (B)	Antibodies	(C)	Complement	(D) Cytokines	
18.	Stabi	lity of DNA is achieve	ed by DNA ba	ases be	eing held togetl	her by	
	(A)	Van der Waals forces	}				
	(B)	Hydrogen bonds					
	(C)	Covalent bonds					
	(D)	Disulphide bonds					
19.		term originally applied e a population of ident		and the second	type, isolated	and allowed to reprodu	ce to
	(A)	Clone (B)	Population	(C)	Colony	(D) Family	
20.		rating and propagati wing set of enzymes?		binant	DNA molect	ule requires which of	the
	(A)	Polymerases and tra	ınsferases				
	(B)	Restriction endonucle	eases and DN	A liga	ses		
	(C)	Transcriptase and Ex	onuclease				
	(D)	Kinases and Phospha	tases				
21.	The	nucleotide analogue us	sed in DNA se	equenc	cing by chain te	ermination method is	
	(A)	1', 3'-dideoxy nucleo	side triphosph	ate			
	(B)	2', 3'-dideoxy nucleo	side triphosph	ate			
	(C)	2', 4'-dideoxy nucleo	side triphosph	ate			
	(D)	2', 5'-dideoxy nucleo	side triphosph	ate			
22.	Hum	an genome sequencing	g project invo	lved tl	he construction	of genomic library in	
	(A)	Bacterial artificial ch	romosome	(B)	pBR322		
	(C)	bacteriophage		(D)	pcDNA3.1		
23.	EcoF	RI recognition sequenc	e is				
	(A)	GGATCC		(B)	$G\:A\:T\:A\:T\:C$		
	(C)	GGCC		(D)	GAATTC		
24.	Adju	vants are used to					
	(A)	prolong the persisten-	ce of antigen	(B)	cross link the	antigen	
	(C)	increase the size of a	ntigen	(D)	avoid inflamn	nation	
Set - [A			4			BT

17.

25.	An F	RNA primer is s	synthe	sized during t	he repl	lication proces	ss in ba	cteria by	,	
	(A)	RNaseH			(B)	primase				
	(C)	DNA polyme	rase-I		(D)	DNA polym	erase-I	I		
26.	Whi	ch one of the fo	llowi	ng modificatio	ons is common to both protein and DNA?					
	(A)	Phosphorylati	on		(B)	Nitrosylation	n			
	(C)	Methylation			(D)	Ubiquitination	on			
27.	Bovi	ine growth horr	none	produced artif	icially	using recomb	inant D	NA tech	nnology is	
	(A)	rBST	(B)	cDNA	(C)	pGEM	(D)	pBR		
28.		idrug Resistar	nce P	rotein (MDR)) belo	ngs to which	n of tl	ne follo	wing class	s of
	(A)	V-Type ATPa	ases		(B)	P-type ATPa	ases			
	(C)	ABC transpor	ters		(D)	Ionic channe	els			
29.		982 the first neered by Gene							as genetic	cally
	(A)	Rh-Insulin	(B)	Humulin	(C)	Basalog	(D)	Insuge	n	
30.	Repe	eating units of g	glucur	onic acid α(1,	4) glud	cosamine are	found i	n		
	(A)	Chondroitin s	ulpha	te	(B)	Hyaluronic a	acid			
	(C)	Heparin			(D)	Keratin				
31.	Gap	junctions between	een ar	nimal cell type	s are a	lso called				
	(A)	Nexus	(B)	Ephapse	(C)	Plasmodesm	ata	(D)	Connexon	ıs
32.	A re	trovirus is a typ	e of v	rirus that conta	ains					
	(A)	DNA	(B)	RNA	(C)	Protein	(D)	rDNA		
33.	Gold	len Rice-2 was	create	ed by introduc	ing phy	ytoene synthas	se from	Ü		
	(A)	Daffodils	(B)	Maize	(C)	Carrot	(D)	Amara	nthus	
34.		ombinant huma immatory prope				0.00				anti-
	(A)	Cow	(B)	Goat	(C)	Buffalo	(D)	Donke	y	
Set -	A				5					вт

35.	The	term <i>biotechno</i>	ology v	was coined in	1917 by	y a Hungarian :	invent	or named	
	(A)	Karl Ereky			(B)	Phoebus Leve	ene		
	(C)	Harry H. Lau	ghlin		(D)	Jonas Salk			
36.	Elec	troporation is a	techr	nique used with	h				
	(A)	Calli	(B)	Ovules	(C)	Pollen	(D)	Cell suspensions	
37.		ermally denatu ite column the					100	ussed through a hyd	lroxyl
	(A)	ssDNA			(B)	ds DNA			
	(C)	Single copy I	DNA		(D)	Free nucleotic	des		
38.		ne present day shed to	dye t	erminator sys	tems o	f DNA sequer	ncing	the fluorescent dye	es are
	(A)	The primers	(B)	ddNTPs	(C)	dNTPs	(D)	The templates	
39.	372	e scale produc	ction o	of monoclonal	antibo	odies is the res	sult of	f mass culture tech	nique
	(A)	Hybridoma C	ells		(B)	Animal and P	lant C	Cell Hybrids	
	(C)	Recombinant	E. co	li	(D)	Animal and E	Bacteri	ial Cell Hybrids	
40.	The	least conserved	l histo	one is					
	(A)	H4	(B)	H2a	(C)	НЗ	(D)	H1	
41.	The	packaging ratio	obta	ined in the sec	ond lev	el of nucleoso	me or	ganization is	
	(A)	7	(B)	3	(C)	40	(D)	100	
42.	The	enzyme that is	locate	ed in the nucle	olus :				
	(A)	RNA Pol I	(B)	RNA Pol II	(C)	RNA Pol III	(D)	DNA polymerase	
43.	The	subunit of <i>E. c</i>	oli RN	NA polymerase	e that is	involved in pr	romote	er recognition is	
	(A)	Alpha subuni	t (B)	Sigma subur	nit (C)	Beta subunit	(D)	Delta subunit	
44.	The	only RNA hav	ing a j	oolyA tail is					
	(A)	Hn RNA	(B)	rRNA	(C)	mRNA	(D)	tRNA	
Set -	A				6				BT
A13 (V.S.)					- 80				1950 1952

45.	In la	c operon IPTG	is						
	(A)	Repressor	(B)	Corepressor	(C)	Inducer	(D)	Aporepressor	
46.	Alu i	family of seque	nces b	elongs to					
	(A)	LINES	(B)	MITES	(C)	SINES	(D)	LTRs	
47.	In th	e Sanger metho	od of I	DNA sequencir	ng the	radioactive lab	eling	is done to	
	(A)	3'-end of the	prime	r	(B)	5'-end of the	prime	r	
	(C)	Internal labeli	ng of	the primer	(D)	The templates	3		
48.	The	enzyme that co	ntains	Molybdenum	in its	active site is			
	(A)	Ascorbate oxi	dase		(B)	Nitrate reduct	ase		
	(C)	Glutamate del	nydro	genase	(D)	Nitrogenase			
49.	Retro	oelements trans	pose 1	through the fol	lowing	g intermediate	:		
	(A)	RNA	(B)	Protein	(C)	DNA	(D)	Retroviruses	
50.	The	smallest unit of	DNA	capable of co	ding f	or the synthesis	s of a p	polypeptide is	
	(A)	Operon	(B)	Amplicon	(C)	Cistron	(D)	Replicon	
51.	The	plasmid present	t in A	grobacterium r	hizoge	enes is			
	(A)		(B)	Ri	(C)	pBR322	(D)	pUC	
52.	Glvc	osylation of ne	wly s	vnthesized prot	eins la	argely takes pla	ace in		
	(A)	Nucleus			(B)	Endoplasmic		lum	
	(C)	Golgi bodies			(D)	Cytosol			
53.	The	anticodon in tR	NΔtl	nat corresponds	to the	e codon UCA i	n mRi	NA is	
00.		UGA	(B)	TGA	(C)	GCU	(D)	AGU	
	(A)	UUA	(D)	IUA	(0)	300	(D)	AUU	
54.	The	action of Dam	methy	lase in GATC	seque	nce results in			
	(A)	mGATC	(B)	$G^{m}ATC$	(C)	$GAT^{m}C$	(D)	G^mAT^mC	
Set -	A				7				BT

55.	The	inactive form o	f G pr	rotein gets activ	vated 1	by binding to			
	(A)	GTP	(B)	GDP	(C)	ATP	(D)	cAMP	
56.	Mos	t common caus	e for I	PTGS involves	meth	ylation of			
	(A)	CG islands			(B)	Coding seque	nces		
	(C)	Promoter sequ	iences	3	(D)	Terminator			
	Œ	0 20 00 D		T		60		Ng. S	
57.		mutation that o		570		670			
	(A)	Transition	(B)	Transversion	(C)	Deletion	(D)	Frame-shift	
58.	The	sulfur containin	ig ami	ino acid that is	NOT	found in prote	ins :		
		Methionine	(B)			***	(D)	Cystine	
				•		→		0-0-0-	
59.	The	first evidence o	f ds R	NA leading to	gene	silencing was f	rom tl	he work on	
	(A)	C. elegans	(B)	Petunia	(C)	A rabidops is	(D)	Mouse	
60.	200 2004/00/14/20	ype II restriction	,	ymes, Restriction		9561 2000 0 0 0 0 0 0			
	(A)	Simultaneous			(B)	Mutually excl	usive		
	(C)	Separate react	ions		(D)	Stepwise			
61.	The	site of binding	of RN	A polymerase	on DN	NA can be char	acteria	zed by the method of	f
0.24	(A)	Fingerprinting		porjinoraso	(B)	Foot printing		zed by the method of	
	(C)	Differential st) -	(D)	FISH			
				•					
62.	The	co-enzyme that	form	s a Schiff base	linkag	ge with lysine p	resen	t in the active site of	a
	trans	saminase during	g trans	samination read	ctions	is			
	(A)	TPP			(B)	Pyridoxal pho	sphat	e	
	(C)	Biotin			(D)	NAD			
63	Llvin		ation	n ana madiatad	by				
63.	250428	ersensitivity rea IgG	(B)	IgD	(C)	IgE	(D)	IgM	
	(13)	150	(11)	1517	(0)	151	(1)	15111	
64.	J cha	nin is present in							
	(A)	AND THE CONTRACT OF THE CONTRA		IgG and IgD	(C)	IgA and IgG	(D)	IgM and IgD	
_	900								
Set -	A				8				BT

65.	Who among the following elucidated shared the nobel prize in 1972?	the ba	asic structure of the antibody molecule and
	(A) Thomas and Murray(C) Richet and Border	(B) (D)	Porter and Edelman Lansteiner and Theiler
66.	Dihybrid test cross ratio is		
	(A) 9:3:3:1 (B) 1:1:1:1	(C)	1:6:6:1 (D) 1:1
67.	Signal Transduction is usually initial transmembrane receptors in which way	STATE OF THE PARTY.	y modification of cytoplasmic portion of
	(A) Lysine phosphorylation	(B)	Tyrosine phosphorylation
	(C) Alanine phosphorylation	(D)	Isoleucine phosphorylation
68.	Antibody class switching is mediated by	у	
	(A) GM-CSF (B) RANTES	(C)	Interleukins (D) G-CSF
69.	The F ₂ ratio in additive factors in gene i	interac	tion is
	(A) 12:3:1 (B) 9:6:1		
	(II) 12.3.1 (D) 7.0.1	(0)	15.1 (D) 15.5
70.	The One-Gene-One-Enzyme hypothesis	s was c	leveloped based on genetic studies in
	(A) E. coli (B) Neurospora	(C)	Drosophila (D) Pisum
71.	Somatic hypermutation of heavy and lig	ght cha	in variable region genes results in
	(A) Antigen diversity	(B)	Complement diversity
	(C) Antibody diversity	(D)	Macrophage diversity
72.	One group of effector cells that have did of the target are	irect cy	totoxic activity against foreign cells by lysis
	(A) Natural killer cells	(B)	Antibodies
	(C) Cytokines	(D)	Complement proteins
73.	Respiratory cycle that results in CO ₂ rel	lease is	
	(A) Glycolysis	(B)	
	(C) TCA cycle	(D)	Electron Transport Chain
Set -	A	9	ВТ

74.	ATP	synthase comp	olex is	present in w	hich pat	thway?			
	(A)	Glycolysis			(B)	HMP shunt			
	(C)	TCA cycle			(D)	Electron Tra	ansport	Chain	
75.	Forn	nation of C-C,	C-S, (C-O and C-N	bonds is	s catalyzed by	y		
	(A)	Hydrolases	(B)	Oxidases	(C)	Ligases	(D)	Isomerases	
76.	Activ	vation energy is	n a bio	ochemical rea	action ca	an be lowered	d most e	fficiently by	
	(A)	Enzyme catal	ysis		(B)	higher temp	erature		
	(C)	Increasing sul	bstrate	e	(D)	Optimum p	H		
77.	K _m i	s equal to							
	(A)	Highest subst	rate c	onc.	(B)	Lowest sub	strate co	onc.	
	(C)	Zero substrate	e conc		(D)	Substrate co	one, at h	alf of V_{max} .	
78.		ose transport as		intestinal ep	oithelial	cells occurs	through	which of the	following
	(A)	Uniporters			(B)	Symporters			
	(C)	Ion gated cha	nnels		(D)	Antiporters			
79.	DNA	replication tal	kes pl	ace only at w	hich spe	ecific phase o	of the ce	ll cycle ?	
	(A)	M	(B)	G_{I}	(C)	S	(D)	G_2	
80.	Whic	ch of the follow	ving s	ignaling mol	ecules ca	an be classed	as a sec	condary messer	iger?
	(A)	Neurotransmi	tter		(B)	Hormone			
	(C)	Cyclic-AMP			(D)	Growth fact	tor		
81.		n any substrate the reaction is			the enz	yme and any	/ produc	ct can leave the	e reaction
	(A)	Ordered seque	ential		(B)	Random sec	quential		
	(C)	Double displa	iceme	nt	(D)	Steady state)		
82.	Conf	formation of a l	nemog	globin molec	ule is an	example of a	a		
	(A)	Primary struc	ture		(B)	Secondary s	structure	e	
	(C)	Tertiary struc	ture		(D)	Quarternary	structu	re	
Set -	A				10				ВТ

83.	Hum	an genome con	itains	about how man	y base	e pairs ?			
	(A)	2 billion bp	(B)	3 billion bp	(C)	4 billion bp	(D)	5 billion bp	
84.	Enter	ring a set of IU	PAC	codes into BLA	AST, h	elps to			
	(A)	find out wheth	ner a c	ertain protein l	nas an	y role in huma	n dise	ase.	
	(B)	search for the			ated o	on the same c	hro m c	osome as a gene	e whose
	(C)	find which see	ction o	of a piece of DI	NA is	transcribed int	o mRI	NA.	
	(D)	determine the	identi	ity of a protein					
85.	The s	species of bacte	eria th	at possesses 25	0 gene	es for lipid bio	synthe	esis is	
	(A)	M. genitalium			(B)	M. tuberculos	sis		
	(C)	E. coli			(D)	H. influenzae			
86.				AND REPORTSHIPSING SPRINGS AND	potted	thousands of	tiny	drops of DNA	used to
		n gene express		e					
		Southern Blot			(B)	Cloning Libra			
	(C)	DNA microar	rays		(D)	Nothern Blot			
87.	Whic	ch of the follow	h of the following is a tool for motif identification?						
	(A)	COPIA	10.007		(B)	pattern hunter	r		
	(C)	PROSPECT			(D)	BLAST			
88.	Whic	ch of the follow	ing to	ools are used fo	r asses	ssing homolog	y and	similarity ?	
	(A)	PROSPECT	(B)	EMBOSS	(C)	RASMOL	(D)	BLAST	
			.4.		udaci subscitos∎ 9794				
89.			manesana	ent can be don			(D)	ppoopear	
	(A)	BLAST	(B)	CLUSTAL W	(C)	RASMOL	(D)	PROSPECT	
90.	NCB	I Human Geno	me pa	ige gives inforr	nation	ıon			
	(A)	Determine wh	at ger	nes are around t	the ge	ne of interest o	n its c	hromosome.	
	(B)	Identify a DN	A seq	uence and see i	if it ca	me from a hun	nan.		
	(C)	Look up pape	rs abo	ut diseases cau	sed by	y abnormalities	s in a c	ertain protein.	
	(D)	Look at colors	ful, ro	tating, 3-D pict	ures c	of the tertiary s	tructui	re of a protein.	
г. Г	A				44				3D /2D
Set -	A				11				BT

91.	Whi	ch of the follow	ing b	acteria can gro	w in a	cidic medium '	?		
	(A)	Vibrio cholero	ае		(B)	Lactobacilli			
	(C)	Shigella			(D)	Salmonella			
92.	Whi	ch of the follow	ino is	s a nucleotide s	eauen	ce data base ?			
<i>)</i> <u></u>	(A)	EMBL	(B)				(D)	TREMBL	
	(^ ^/	~~	(2)	×	(~)		(~)		
93.		phytin-quinone b is called	type	of system con	ntainii	ng roughly equ	ıal an	nounts of chloroph	ylls a
	(A)	Photosystem l	[(B)	Photosystem l	II		
	(C)	Z scheme			(D)	Calvin cycle			
94.	A re	combinant DN	A mol	ecule is also ca	alled a				
		Chimera	(B)		(C)	Vector	(D)	Phage	
	()		(-)		V-2		(/		
95.	Whi	ch of the follow	ing re	estriction enzyr	nes pr	oduces 'sticky'	ends	?	
	(A)	EcoRI	(B)	SmaI	(C)	PvuII	(D)	HaeIII	
96.	Befo	re freeze drying	g, a de	ense cell susper	nsion	is placed in sma	all via	ds and frozen at	
	(A)	−60°C to −78°	°C		(B)	−20°C to −38°	°C		
	(C)	−30°C to −48°	°C		(D)	−40°C to −58°	°C		
97.	Δ11 c	of the following	enzv	mes are involv	ed in l	DNA replicatio	n evc	rent	
71.	(A)	Helicase	Chry	mes are myorv	(B)	Primase	II, UKC	юрг	
	(C)	DNA polymer	rase		(D)	RNA polymer	rase		
	(0)	DIM Polymer	u		(2)	111,111 porj			
98.	The	solidifying age	nt nor	mally used for	media	preparation is			
	(A)	Silica gel	(B)	Gelatin	(C)	Acrylamide	(D)	Agar	
99.	Why	are heat-killed	hacte	oria he useful as	s a va	coine ?			
<i>))</i> .	(A)			thal infection.	s a vac	cine .			
	(B)	70 2000 2000 200		f proteins chang	ges the	eir shane			
	(C)	4000 4000 (100 1000) - 600 - 600		170		150 No. 101 17 101/1	provo	ke an immune resp	onse
	(D)					ains of bacteria.	ē.		
S.4 [(~)						57		in m
Set -	A				12				BT

	(A)	smaller fragme	ents n	nove slower an	d furtl	ner on the gel re	elativ	e to larger fragme	ents.
	(B)	larger fragmer	nts mo	ove slower and	furthe	r on the gel rel	ative	to smaller fragme	ents.
	(C)	smaller fragme	ents n	nove faster, but	t not a	s far on the gel	relati	ve to larger fragn	nents.
	(D)	larger fragmer	nts mo	ve slower and	not as	far on the gel	relativ	ve to smaller frag	ments.
101.	The r	number of nitro	genoi	is bases that ar	e code	s for 9 amino a	cids	would be	
	(A)	27	(B)	9	(C)	3	(D)	18	
102.		th of the follow y to remove inc		할 것 같아요 두네가 하는데 가지 말했는데 맛있다가 되었다. 맛이 없는데 생각이			nucle	ase, an enzyme v	vith the
	(A)	DNA helicase			(B)	RNA polymer	ase		
	(C)	Peptidyl transf	ferase		(D)	DNA polymer	ase		
103.	The p	orinciple behind	d PCR	Cis					
	(A)	the cloning of	one's	entire DNA se	equenc	e to create gen	etical	ly similar organis	ms
	(B)	the combination	on of	two different o	rganis	m's DNA			
	(C)	the amplicatio	n of a	specific region	n of th	e DNA for furt	her st	udy	
	(D)	the extraction	of DN	NA from a cell					
104.	ATA	TATATAT is a	an exa	imple of					
	(A)	SNP	(B)	SSR	(C)	RAPD	(D)	None of these	
105.		gene that was action of ACC,				mato for dela	yed r	ripening by supp	ressing
	(A)	Polygalacturo	nase		(B)	Geraniol synth	nase		
	(C)	ACC deamina	se		(D)	ACC synthase	28		
106.	Yield	l coefficient rep	presen	ats					
	(A)	total biomass	or pro	duct produced					
	(B)	conversion eff	ficiend	cy of a substrat	e into	product			
	(C)	conversion rat	e of a	substrate into	bioma	ss or product			
	(D)	production tim	ne of l	piomass or pro	duct				
Set -	A				13				BT

100. When a mixture of DNA fragments undergo gel electrophoresis,

107.	The	lowest biomass yield in a culture of	Esche	erichia coli will be in				
	(A)	an aerated batch culture containing	g a ini	tial high concentration of glucose				
	(B)	an aerated batch reactor containing	g an in	nitial low concentration of glucose				
	(C)	an aerated fed-batch reactor having	g a lov	w glucose concentration				
	(D)	an aerated continuous reactor havi	ng a le	ow glucose concentration				
108.	The	lowest yield of ATP is in						
	(A)	fermentation	(B)	aerobic respiration				
	(C)	anaerobic respiration	(D)	All of the above				
109.	The	continuous cultures are not widely t	ised ir	n industry because				
	(A)	they are not suited for the product	ion of	secondary metabolites				
	(B)	contamination or mutation can have	ve a di	sastrous effect on the operation				
	(C)	the government will not approve continuous cultures	e the	licensing of pharmaceuticals produced in				
	(D)	all of the above						
110.		biomass yields are constant, then the biomass productivity of a culture grown in ntinuous reactor will						
	(A)	always decrease with dilution rate						
	(B)	increase with dilution rate until wa	ashout					
	(C)	remain constant irrespective of the	diluti	ion rate				
	(D)	decrease with dilution rate until w	ashou	t				
111.		yl CoA Carboxylase (ACC) is the e following biomolecules?	first e	nzyme of the biosynthetic pathway of which				
	(A)	Amino Acids	(B)	Monosaccarides				
	(C)	Fatty Acids	(D)	Purines				
112.		an recombinant glycoproteins whos		ied and characterized cells for expression of cosylation enzymes resemble of human cell				
	(A)	Chinese Hamster Ovary (CHO)	(B)	Human Fibroblast cells				
	(C)	XPV cells	(D)	Embryonic stem cells				
Sat [A]		1.4	TP TT				
Set -	<i>[</i>]		14	BT				

113.	Whi have	hile choosing a gene to be transferred for genetic modification, the target gene shouve								
	(A)	Promoter			(B)	Selectable m	narker			
	(C)	Exon			(D)	All of the ab	ove			
114.		To create a homozygous pattern necessary for stable inheritance, first generation offspring should be and need to be inbred.								
	(A)	Homozygous			(B)	Heterozygou	1S			
	(C)	Both (A) and (I	B)		(D)	None of the	above			
115.	Whi	ch of the following	ng G	enetically m	nodified o	crop is comm	ercially	cultivated in India?		
	(A)	Rice	(B)	Cotton	(C)	Soyabean	(D)	Maize		
116.	Тос	onfirm the prese	nce o	of the gene o	of interest	t, which of th	e follov	wing methods is used ?		
	(A)	Nothern Blottir		estend to proporegal.	(B)	Western Blo		Commission Commission of contractions and the contraction of the contr		
	(C)	Southern Blotti	ng		(D)	None of the	above			
117.	Rege	eneration of a mo	odifie	ed organism	in plants	requires whi	ch of tl	ne following technique		
	(A)	100 (100 (100 (100 (100 (100 (100 (100				Embryonic stem cells				
	(C)	Bacterial cultur	es		(D)	All of the ab				
118.	SV4	0 is a virus isolat	ted fi	rom						
	(A)	Hamster ((B)	Monkey	(C)	Goat	(D)	Bacteria		
119.		The purpose of the nanocomputer, which consists of DNA and DNA processing enzymes whose input, output and software are all in the form of DNA molecules, is to								
	(A)	Analyze DNA			(B)	Detect abnor	rmalitie	es in the human body		
	(C)	Formulate reme	edies		(D)	All of the ab	ove			
120.	Repr	oductive cloning	g in a	nimals is ac	hieved tł	nrough				
	(A)	Tissue culture			(B)	Micropropag	gation			
	(C)	Somatic nuclea	r tra	nsfer	(D)	None of the	above			
Set -	A				15			вт		
10000 F0000 P										

SPACE FOR ROUGH WORK

BIO TECHNOLOGY (BT) SET-A

Question No	Answer	Question No	Answer
1	В	61	В
2	Α	62	В
3	В	63	С
4	C	64	А
5	D	65	В
6	Α	66	В
7	В	67	В
8	В	68	C
9	C	69	В
10	Α	70	В
11	В	71	C
12	C	72	Α
13	В	73	C
14	C	74	D
15	C	75	C
16	D	76	Α
17	D	77	D
18	В	78	D
19	Α	79	C
20	В	80	C
21	В	81	В
22	А	82	D
23	D	83	В
24	Α	84	D
25	В	85	В
26	С	86	С
27	Α	87	Α
28	С	88	D
29	В	89	В
30	C	90	Α
31	Α	91	В
32	В	92	Α
33	В	93	В
34	В	94	Α
35	Α	95	Α
36	D	96	Α
37	В	97	D
38	В	98	D
39	Α	99	C
40	D	100	D
41	C	101	А

42	Α	102	D
43	В	103	С
44	C	104	В
45	С	105	А
46	C	106	В
47	В	107	Α
48	D	108	Α
49	Α	109	D
50	C	110	В
51	В	1 11	C
52	C	112	А
53	D	113	D
54	В	114	В
55	Α	115	В
56	В	116	C
57	Α	117	Α
58	В	118	В
59	Α	119	D
60	Α	120	С

