Msc. Geophysics.

		1	4P/204/5	Question	Booklet No
	(To be fill	ed up by the co	ındidate by blu	ie/black ball-po	int pen)
Roll No.					
Roll No. (Write the digits	in words)		***************		
	MR Answer She				
	***************				gnature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

| उपर्युक्त निर्देश हिन्दी में अन्तिम आजरण-पृष्ठ पर दिये गए हैं|

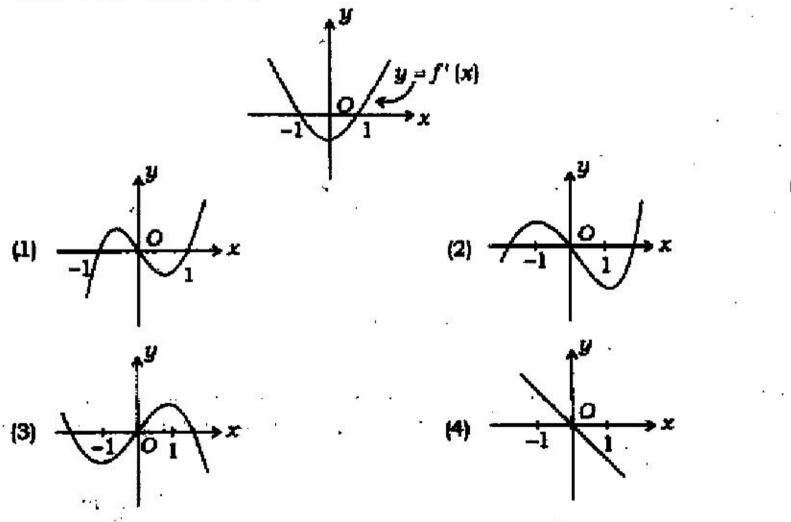
(No. of Printed Pages: 30+2

No. of Questions/प्रश्नों की संख्या : 150

ime/सम्ब : 2% Hours/पण्टे

Full Marks/quits : 450

lote :


(1) Attempt as many questions as you can. Each question carries 3 marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

अधिकाधिक प्रस्तों को हल करने का प्रवल करें। प्रत्येक प्रश्न ३ अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काट्टा काएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।

(2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

यदि एकाधिक बैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर हैं।

1. The graph of the derivative of f is shown in the figure below. Which of the following could be the graph of f?

(177)

The area between the curves y = x and $y = \sin x$ for $0 \ge x \ge \frac{\pi}{4}$ is

(1)
$$\frac{\pi^2}{32} + \frac{1}{\sqrt{2}} - 1$$

(2)
$$\frac{x^2}{32}$$

(1)
$$\frac{\pi^2}{32} + \frac{1}{\sqrt{2}} - 1$$
 (2) $\frac{\pi^2}{32}$ (3) $\frac{\pi^2}{32} - \frac{1}{\sqrt{2}} - 1$ (4) 1

- 3. The center of curvature of the parabola $y^2 = 4px$ corresponding to any point on the curve is

(1)
$$\left(3x-2p, \frac{y^3}{4p^2}\right)$$
 (2) $\left(3x+2p, -\frac{y^3}{4p^2}\right)$

(2)
$$\left(3x+2p_1-\frac{y^3}{4p^2}\right)$$

(3)
$$\left(-3x-2p, \frac{y^3}{4p^2}\right)$$
.

$$(4) \left(3x+2p,\frac{y^3}{4p^2}\right)$$

4. The point (x, y) on the curve of $y = \sqrt{x}$ nearest to the point (4, 0) is

(1)
$$x = \frac{7}{2}, y = \sqrt{\frac{7}{2}}$$

(2)
$$x = \sqrt{\frac{7}{2}}, y = \frac{7}{2}$$

(3)
$$x = \frac{7}{4}, y = \sqrt{\frac{7}{4}}$$

(4)
$$x = \sqrt{\frac{6}{2}}, y = \frac{6}{2}$$

- 5. Consider the polynomial $y = ax^2 + bx^3 + c$, n > 4. The nth derivative of this polynomial $\frac{d^n y}{dx^n}$ is
 - (1) n1
- (2) n

- 6. If the length of a rectangle decreases at the rate of 3 cm/sec and its width increases at the rate of 2 cm/sec, the rate of change of the area of the rectangle when its length is 10 cm and its width is 4 cm is
 - (1) 14 cm²/sec (2) 6 cm²/sec (3) 9 cm²/sec (4) 8 cm²/sec

(177)

(4) not defined

f.	If 3x ² +2xy	$+y^2=2$, then the valu	e of $\frac{dy}{dx}$ at $x = 1$ is	**
	(1) 2	(2) 0	(3) -2	(4) not define
8.	The function	$y = x + \frac{2}{x} \text{ has a relation}$	ve maximum at the	value of x equal to
	(1) 2	(2) -2	(3) √2	(4) –√2

- The asymptotes of the graph of the parametric equations $x = \frac{1}{t}$, $y = \frac{t}{t+1}$ are
- (3) x = -1, y = 0 (4) x = -1 only
- 0. The curvature of the cubical parabola $y = x^3$ at (1, 1) is (2) 0.3
- 1. What is the average (mean) value of $3t^3 t^2$ over the interval $-1 \le t \le 2$? (1) 분
- 12. Consider the integral $I_n = \int x^n e^x dx$. Which of the following is true?
 - (1) $I_{n+1} = x^{n+1} e^x (n+1)I_{n-1}$ (2) $I_n = x^n e^x + nI_{n+1}$ (3) $I_{n+1} = x^{n+1} e^x - (n+1)I_n$ (4) $I_n = x^n e^x + nI_{n-1}$
- $f(x) = x^3 + \alpha x + \beta \text{ is } 4?$
 - (2) $\alpha = -48$ and $\beta = arbitrary$ (1) $\alpha = 48$ and $\beta = \text{arbitrary}$ (4) $\alpha = \text{arbitrary and } \beta = -48$ (3) $\alpha = \text{arbitrary and } \beta = 48$

(P.T.O.) 3 .77)

14.	The mean value the $y = \sqrt{x}$ between $\{0, 0\}$	corem guarantees the 0) and (4, 2). What ar	e existence of a speci re the coordinates of	ial point on the graphs this point?
	(1) (2, 1)	(2) (1, 1)	(3) (2, √2)	(4) None of the above
15.	The value of the in	itegral $\int_0^1 \sqrt{x^2 - 2x + 1}$	dr is	
	(1) -1	$\{2\}$ $-\frac{1}{2}$	(3) $\frac{1}{2}$	(4) 1
16.	If $U=x^y$, then	8 y 7	*10 m	•
		$\frac{\left(\frac{\partial U}{\partial x} + \frac{\partial U}{\partial x}\right)}{U}$	au ax)	
	ia		•	•
		$(2) \frac{y}{x} + \log(y)$		
17.	The slope of the lin	ne passing through t	he points $\left(1, -\frac{1}{2}\right)$ an	d (-1, 1) is
	(1) $\frac{3}{4}$		(3) - 4	$(4) -\frac{3}{4}$
18.	The coordinates of (~1, 2), (4, 2), (-1, -	the fourth corner of 3) is	a rectangle, when th	ree of whose corners a
	(1) (1, 4)	(2) (4, 1)	(3) (4, -3)	(4) (-1, 3)
19.	The vertex of the p	parabola 2y - x² - 4x	+6 =0 is	
	(I) (2, 5)	(2) (-2, -5)	(3) (5, 2)	(4) (-5, -2)
20.	The plane P throug	gh A(2, -3, -4) with 1	normal vector $n = 4\hat{i}$	$-\hat{j}+3\hat{k}$ is
	(1) $4x+y+3z=1$		(2) $4x-3y+z=-1$	
/ 1	(3) $4x - y + 3z = -1$		(4) $4x - y + 3z = 1$	• *
(137)		4		•.
		۵		

The angle between the two planes 3x + 4y - 5z = 1 and 4x + 5y - 6z = 1 is

$$(1) \quad \sin^{-1}\left(\frac{60}{\sqrt{50}}\right)$$

$$(2) -\cos^{-1}\left(\frac{60}{\sqrt{50}}\right)$$

(3)
$$\cos^{-1}\left(\frac{62}{\sqrt{50}\sqrt{77}}\right)$$

$$(4) - \sin^{-1}\left(\frac{60}{\sqrt{50}\sqrt{77}}\right)$$

72. $M = \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix}$ is the discriminant of the conic section. Then the conic section is a

(1) parabola

(2) hyperbola

(3) ellipse

(4) rectangular hyperbola

13. The equation of the line with a slope 5 and passing through the point (-3, 3) is

(1)
$$y+3=5(x-3)$$

(2)
$$y = \frac{5}{3}(x-3)$$

(3)
$$y = \frac{5}{3}(x+3)$$

(2)
$$y = \frac{5}{3}(x-3)$$

(4) $y-3 = 5(x+3)$

Consider two circles $x^2 + y^2 + 2ax + 2by = 0$ and $x^2 + y^2 + 2cx + 2dx = 0$ touch each other. 24. Then the following condition is true

(1)
$$ad - bc = 0$$

$$(2) \quad ac - bd = 0$$

(3)
$$ad - bc \neq 0$$

The equation of the hyperbola with foci (0,0) and (0,4) and asymptotes $y=\pm\frac{1}{2}x$ is 25.

(1)
$$x^2 - \frac{(y-2)^2}{4} = 1$$

(2)
$$x^2 + \frac{(y-2)^2}{4} = -1$$

(3)
$$y^2 - \frac{(x-2)^2}{4} = 1$$

(4)
$$y^2 + \frac{(x-2)^2}{4} = 1$$

5

14P/204/5

26.	Which one of the following statements	is correct?	The graph of y	= x2	+9 is symmet
53	about	80			

- I The x-axis
- II The y-axis
- III The origin
- (1) I only
- (2) Il only
- (3) I and II only
- (4) I, II and III

$$(1) \quad r = \frac{2p}{1 - \cos \theta}$$

$$(2) \quad r = \frac{-2p}{1-\sin\theta}$$

$$(3) \quad r = \frac{2p}{1 + \cos \theta}$$

$$(4) \quad r = \frac{2p}{-1 + \sin \theta}$$

28. The intervals of numbers satisfying the inequality
$$|x+1|>2$$
 are

(1) x > -1 and x < 3

(2) x < 1 and x > -3

(3) x > 3 and x < -1

(4) x>1 and x<-3

29. Solution of the inequality with absolute value
$$|x^2+x-2| < x+3$$
 is

(1) $(-\sqrt{5}, \sqrt{5})$

(2) $(-\sqrt{5}, -1) \cup (-1, \sqrt{5})$

(3) $(-\infty, -1) \cup (-1, +\infty)$

(4) (-4√5)

30. The eigenvalues of the matrix
$$\sigma = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
 are

- (1) $i_i i$
- (2) i, i
- (3) 1, -1
- (4) 1, 1

(177)

б

31. The inverse of the matrix

$$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

is

(1)
$$\frac{1}{5}$$
 $\begin{pmatrix} 3 & 2 & -2 \\ 3 & 2 & 2 \\ -2 & 3 & 2 \end{pmatrix}$

$$(3) \quad \frac{1}{5} \begin{pmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{pmatrix}$$

$$(4) \quad \frac{1}{5} \begin{pmatrix} -3 & 2 & -2 \\ 2 & -3 & 2 \\ -2 & 2 & -3 \end{pmatrix}$$

32. The values of λ and μ for which of the following equations admit a unique solution are

$$x+y-z=6$$

$$x + 2y + 3z = 10$$

$$x + 2y + \lambda z = \mu$$

(1)
$$\lambda = 3$$
, μ is constant

(2)
$$\lambda \neq 3$$
, μ is arbitrary

(4)
$$\lambda ≠ 3, \mu$$
 is rational

33. The fraction $\frac{(5x+7)}{(x^2+2x-3)}$ is equal to

(1)
$$\frac{2}{(x+3)} + \frac{3}{(x-1)}$$

(2)
$$\frac{2}{(x-3)} + \frac{3}{(x+1)}$$

(3)
$$\frac{3}{(x+3)} - \frac{2}{(x-1)}$$

$$(4) \quad \frac{3}{(x-3)} + \frac{2}{(x+1)}$$

(177)

7

34.	For any numbers of	a b and non-zero c,	if c is positive and	a < b, then
	(1) $ac < bc$ and $\frac{a}{c} <$	<u>b</u>	(2) $ab < ac$ and $\frac{a}{b}$	< \frac{a}{c}
	(3) $ac > bc$ and $\frac{a}{c} <$	<u>b</u>	(4) $ac < bc$ and $\frac{a}{c}$	$>\frac{b}{c}$
35.	For what values of	μ the determinant	of the matrix	:•
		$A = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$	-μ 0 5 1 μ ² 5	
	is 26?	200 13		3 • 3
	(1) (6, 2)	(2) (-6, -2)	(3) (~6, 2)	(4) (6, -2)
36.	The matrix M have the trace and determ	three eigenvalues \(\lambda\) tinant are 1 and 8 re	λ_3 and λ_3 . One of espectively. What are	the eigenvalues is -2 and other two eigenvalues?
	(1) (-1, 4)	(2) (1, 4)	(3) (1, -4)	(4) (-l, -4)
37.	The function $f(x)$: where m is a real p	$= a_n x^n + a_{n-1} x^{n-1} + a_n$ positive integer, have	h-2 x ⁿ⁻² + ··· + a ₀ h	as n roots, then $(f(x))^m$,
2	(1) n roots		(3) nm roots	(4) m roots
38.	If the position vector then $\nabla \times \overrightarrow{w} \times \overrightarrow{r}$ is	orr=xî+yĵ+zka	$\operatorname{nd} \stackrel{\rightarrow}{w} = w_1 \hat{i} + w_2 \hat{j} + i$	$w_3\hat{k}$ is a constant vector,
H	(1) w^2	(2) 2w	(3) 0	(4) *
39.	If a force $\vec{F} = 2x^2y\hat{i}$ curve $y = 4x^2$, then	+ <i>xy</i> ∫displaces a par the work done is	rticle in the xy plane	from (0, 0) to (1, 4) along a
*	(1) 5	(2) 6	(3) 8	(4) 10
177)		8		
				¥

40.	Three vectors	z, b and c are lines	arly independent if an	nd only if	
	(1) $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = 0$	O .	$(2) \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$	=0	
	(3) $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) \neq$	0 .	$(4) \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$	≠ 0	100
41.	The moment at the point $2\hat{i} - \hat{j}$		- k of a force represe	ented by 3 î+ k acti	ng through
	(1) $-3\hat{i}+11\hat{j}+$	9ĥ	(2) $2\hat{i} + 5\hat{j} + 2$	ĥ	
10)	(3) $11\hat{j} + 9\hat{k}$		(4) $3\hat{i} + 11\hat{j}$		ě
42.	The value of \overrightarrow{V} (1) n	$\times r^n \xrightarrow{r}$, where $r = x$ (2) 1	$\hat{i} + y \hat{j} + z \hat{k}$ and n is (3) 0	an integer, is (4) ∞	
43.	V · (3x²i + 5xy²)	(+ xyz²k) at the po	int (1, 2, 3) is		
	(1) 36	(2) 37	(3) 38	(4) 35	26
44.			the unit aphere defin	$ed by x^2 + y^2 + z^2$	= 1 and \overrightarrow{F} is
82	the vector field	$1 \vec{F} = 2xi + y^2j + z^2k$, is equal to		
	$(1) \frac{8\pi}{3}$	$(2) \frac{\pi}{2}$	$(3) \frac{4\pi}{3}$	$(4) \frac{8\pi}{2}$	¥I
45.	For the followi	ng value of m, the	vectors $5\hat{i}+6\hat{j}+7\hat{k}$,	7î+mĵ+9k and 3	î +20 ĵ +5 k
	(1) 8	(2) -8	(3) 6	(4) -6	120
(177)			.9		(P.T.O.

14P/204/5

46. If $\frac{dy}{dx} = e^y$ and y = 0 when x = 1, then

(1)
$$y = \log x$$

(2)
$$y = \log(2-x)$$

(3)
$$y = -\log(2-x)$$

$$(4) \quad y = -\log x$$

47. The integral $\int_C [(x^2 + xy) dx + (x^2 + y^2) dy]$, where C is the square formed by the lines $y = \pm 1, x = \pm 1$ is equal to

48. The general solution of $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = e^x$ is

(1)
$$y = C_1 e^x + C_2 e^{-2x} + \frac{x}{3} e^{-x}$$

(1)
$$y = C_1 e^x + C_2 e^{-2x} + \frac{x}{3} e^{-x}$$
 (2) $y = C_1 e^{-x} + C_2 e^{-2x} + \frac{x}{3} e^x$

(3)
$$y = C_1 e^x + C_2 e^{2x} + \frac{x}{3} e^{-x}$$
 (4) $y = C_1 e^{-x} + C_2 e^{2x} + \frac{x}{3} e^x$

(4)
$$y = C_1 e^{-x} + C_2 e^{2x} + \frac{x}{3} e^{x}$$

where C_1 and C_2 are arbitrary constants.

The linear harmonic oscillator, $\frac{d^2x}{dt^2} + x = 0$, with the initial conditions x(0) = 4, $\dot{x}(0) = 3$ admits the solution

50. If $\frac{dy}{dx} = y \tan x$, then y is equal to

(1)
$$\frac{1}{2} \tan^2 x + c$$

where c is a constant.

(177)

10

51. If
$$f'(x) = -f(x)$$
 and $f(1) = 1$, then $f(x) = 7$

- (1) $\frac{1}{2}e^{(-2x+2)}$ (2) $e^{-(x+1)}$

52. The inverse Laplace transform of the function
$$\log \left(1 + \frac{w^2}{s^2}\right)$$
 is

(1) $\frac{2}{t}(1-\cos wt)$

 $(2) \quad \frac{2}{(1-\cos wt)}$

(3) $\frac{2}{(1-\sin wt)}$

(4) 1-sin wt

53.
$$C = x \frac{dy}{dx} - y^3 + x$$
 is the invariant (constant) curve for

- (1) $x \frac{d^2y}{dx^2} = 3y^2 \frac{dy}{dx} 1 \frac{dy}{dx}$ (2) $x \frac{d^2y}{dx^2} = 1 3y^2 \frac{dy}{dx} + \frac{dy}{dx}$
- (3) $\frac{d^2y}{dx^2} = 3y^2 \frac{dy}{dx} = 1 \frac{dy}{dx}$
- (4) $x \frac{d^2y}{dx^2} = 3y^2 \frac{dy}{dx} 1 x \frac{dy}{dx}$

54. The curve $y = e^x + e^{-x}$ satisfies the differential equation

- (1) $\frac{dy}{dx} = y$ (2) $\frac{dy}{dx} = -y$ (3) $\frac{d^2y}{dx^2} = y$ (4) $\frac{d^2y}{dx^2} = -y$

85. For the differential equation
$$y\frac{dy}{dx} + 2\cos(y)$$
 $y = 1$, which of the following is true?

- (1) The differential equation is first-order linear and homogenous
- (2) The differential equation is first-order linear and non-homogenous
- (3) The differential equation is first-order nonlinear and homogenous
- (4) The differential equation is first-order nonlinear and non-homogenous

- If $\tan a = \frac{1}{3}$ and $\tan b = \frac{1}{2}$, then a + b is

 - (1) $\frac{3\pi}{2}$ (2) $\frac{3\pi}{4}$
- (3) $\frac{\pi}{2}$

- arc $\sin r = \theta$, then θ is
 - (1) $-i \ln (\sqrt{1-r^2}+ir)$

(2) $i \ln (\sqrt{1-r^2} + ir)$

(3) $-i \ln (\sqrt{1-r^2}-ir)$

- (4) $i \ln (\sqrt{1-r^2} ir)$
- Which of the following defines a function f for which f(-x) = -f(x)?
 - $(1) \quad f(x) = x^2$

(3) $f(x) = \cos x$

- $(4) f(x) = e^x$
- If $\log(a+ib)=(c+id)$, then 59.
 - (1) $c = \log(\sqrt{a^2 + b^2}), d = \tan^{-1}(\frac{b}{a})$ (2) $c = \log(a^2 + b^2), d = \tan^{-1}(\frac{a}{b})$
 - (3) $c = \log(\sqrt{a^2 + b^2}), d = \frac{1}{2}\tan^{-2}\left(\frac{b}{a}\right)$ (4) $c = \log(a^2 + b^2), d = \tan^{-1}\left(\frac{b}{a}\right)$
- The real value of the function $\frac{F(z_1)}{F(z_2)}$ for $F(z)=z+|z|^2$ z, $z_1=3e^{i\frac{z}{2}}$ and $z_2=2e^{iz}$ is
 - (1) 3
- (2) 0

- 61. Let the functions f and g have 6 and 3 roots, respectively. If all the roots of g are also roots of f, then how many roots does the function $f \times g$ has?
 - (1) 3
- (2) 6
- (3) 9
- (4) 18

62.	One of the values	of $(i)^{\frac{1}{3}}$ is			
	(1) - i		(3) –1	(4) 1	
63,	For a right angled	triangle if one of		$\left(\frac{\pi}{2}\right)$, the other angle is	
	(1) x-a	$(2) \alpha - \frac{\pi}{2}$	$(3) \frac{\pi}{2} - \frac{\alpha}{2}$	$(4) \frac{\pi}{2} - \alpha$	
64.	Consider the matrices value of ρ is (1) 2	$\operatorname{rix} A(\theta) = \begin{pmatrix} \sin (\theta) \\ \cos (\theta) \end{pmatrix}$ (2) 1	$-\cos(\theta)$ and $\rho = A $ $\sin(\theta)$	$(\theta) A(\phi) $. For $\phi = \theta - \frac{\pi}{2}$ the (4)	j¢
68.	The points of inter	reection of feain	eri	(8) between $\frac{-\pi}{2}$ to $\frac{\pi}{2}$ are	•
66.		The distance betw		30° with a velocity 150 m/ projectile when projectile hit (4) 1050 m	
67.	The displacement	of particle execut	ing simple hermonic	motion obeys the equation conds. The magnitude of the	
•	(1) $v = 1.08 \text{ m/s}$	(2) $v = 0.08 \text{ m/}$	s (3) v=3.08 m/	s (4) $v = 2.08 \text{ m/s}$	
(177)	. •	5)	13	(P.T.C).)

68.	One spring has fore are joined in serie			10.700c 20000			meta	nt 50	0 Nm ⁻¹ . I	f they
	(1) 700 N/m	(2)	300 N/	m (3) 1	43 N/m	(4)	100	N/m	
69.	A particle moves in line is 8t –3t ² . Wha	a str t is th	aight lin ie total d	e so that its latence cov	die erec	tance at time : i by the particl	f fron	n a fi: ween	ted point	of the t = 2 ?
	(1) 1	(2)	43	(3) \$	•	(4)	2		
70.	The degrees of fre	edom	of the	particle con	nstr	ained to move	onl	y on	surface (of the
	(1) 2	(2)	3	(3) 0		(4)	1.		
71.	A body whose three called as	e pri	ncipe) m	oments of	iner	rtia are all equ	ıal, t	hat i	a I ₁ = I ₂ =	I_3 , is
	(1) asymmetrical	top		(2) =	ymmetrical to	P			
	(3) apherical top			{4) N	ione of the ab	ove			
72.	What is the neces	nary o	condition	for a forc	e \overrightarrow{F}	to be conserv	ative	7		
	$(1) \overrightarrow{\nabla} \cdot \overrightarrow{F} = 0$	(2)	$\vec{\nabla} \times \vec{F} = 0$	о (з) V	. F ≠0	(4)	∀ × <i>F</i>	≠ 0	e P
73.	When a rigid body body the following	roteți is a	es sbout constant	an exic an	d ti	e external tor	que i	a seri	o, then fo	r that
	(1) Angular velocit	ty		(2) M	loment of iner	tia		**	
	(3) Linear momen	tum	•	(4) A	ngular momer	itum			
(177)		23		. 14			•	8		
	¥.	•			41					

74.	If a body has mass m, velocity	at centre of mass	v_c , mom	ent of i	nertia I,, ar	ad rotational
	velocity o, then total kinetic		183	100		

(1) $\frac{1}{2} m v_c^2$

75. The angular momentum of a rotational body, with angular velocity w and moment of inertia I, is given by

- (1) $\frac{1}{2}I\omega$
- (3) $\frac{1}{2}I\omega^2$ (4) $I\omega^2$

76. In metals the skin depth for electromagnetic waves

- (1) increases with increase in frequency
- (2) decreases with increase in frequency
- (3) does not depend on frequency
- (4) increases or decreases with frequency depending on the conductivity of metal

77. A plane polarized electromagnetic wave with E vector parallel to the plane of incidence is incident from air to glass. It is found that $\theta_i + \theta_t = 90^\circ$, where θ_i is the angle of incidence and 0, is the angle of transmittance then

- (1) there will not be any reflected wave
- (2) the reflected wave will be in a direction perpendicular to transmitted wave
- (3) the reflected wave will be in a direction perpendicular to incident wave
- (4) the reflected wave will be perpendicular to the refracted wave

(177)

		48
78.	8. The average value of the Poyating vector for electromagnetic wave in free space is given by	a plane polarized sinusoidal
	(1) $\frac{1}{2} \epsilon_0 E^2$ (2) $\frac{1}{2} \mu_0 B_0^2$ (3) $\frac{1}{2} \frac{\mu_0 B^2}{C}$	$- (4) \frac{1}{2} C \varepsilon_0 E_0^2$
	E_0 and B_0 are the peak values of the amplitudes	of electric and magnetic field.
79.	9. The dielectric constant of any dielectric materials f	or electromagnetic waves
	(1) increases with frequency	
	(2) is independent of frequency	
	(3) decreases with frequency	
	(4) decreases with frequency in radio frequency range optical range	ge but increases with frequency in
80.	O. How many 2 input NAND gates will be required to regates?	calize the operation of 3 input OR
	(1) 3 (2) 4 (3) 5	(4) 6
81.	1. The simplified Boolean expression in POS $Y = AB\overline{C} + A\overline{B}C + \overline{A}BC + ABC$ is given by	for the Boolean expression
	(1) $Y = AB + BC + AC$ (2) $Y = (A - AC)$	$+B)\cdot (B+C)\cdot (C+A)$
	(3) $Y = (\overline{A} + B) \cdot (\overline{B} + C) \cdot (\overline{C} + A)$ (4) $Y = \overline{A}B$	B+BC+CA
82 .	and the same	
	NAME OF THE PROPERTY OF THE PR	addera

16

(3) 3 full adder and 1 half adder

(177)

(4) 1 full adder and 3 half adder

- 83. Which one of the following is not the basic logic gate?
 - (1) AND
- (2) OR
- (3) NOT
- (4) XOR
- 84. The wavelength of an electromagnetic wave of frequency 10 GH₃ travelling in a medium with $\mu = 4\pi \times 10^{-7}$ H/m and $\epsilon = \frac{1}{36\pi} \times 10^{-9}$ F/m will be
 - . (1) Scm
- (2) 3 metre
- (3) 30 cm
- (4) 30 metre
- 85. A material has $\sigma = 10^{-2}$ s/m and $\epsilon = 2\epsilon_0$ at what frequency will the conduction current be equal to the displacement current?
 - (1) 6.3×10⁶ Hz

(2) 9·1×10⁷ Hz

(3) 3·1×10⁸ Hz

- (4) 5.3×109 Hz
- 86. Which one of the following is not a Maxwell's equation of electromagnetic?
 - (1) $\oint_{\mathbf{z}} \overrightarrow{D} \cdot \overrightarrow{ds} = q$

- (2) \$\vec{\pi}{\pi} \cd \vec{\pi} = \mu_0 \text{!}
- (3) $\oint \vec{H} \cdot \vec{dl} = \int_{a} \left(\vec{J} + \frac{\partial \vec{D}}{\partial t} \right) \cdot \vec{ds}$
- $\{4\} \quad \S E \quad \overrightarrow{dI} = -\frac{\partial}{\partial t} \int_{a} \overrightarrow{B} \cdot \overrightarrow{ds}$
- 87. For plane electromagnetic waves in vacuum which of the following statements is not true?
 - (1) These are transverse in natures
 - (2) Electric and magnetic field waves are in phase
 - (3) There is a phase difference of 90° between electric and magnetic fields
 - (4) $\overrightarrow{E} \times \overrightarrow{H}$ points in the direction of propagation of electromagnetic wave

88.	The de Broglie wavelend $h = 6.63 \times 10^{-34}$ J-sec,	ength of an electron $m_e = 9.1 \times 10^{-31} \text{ k}$	g)	moving with velocity 10 m/sec is (given
2.5	(1) 3-6×10 ⁻¹¹ m	*	(2)	1·44×10 ⁻¹⁰ m 7·3×10 ⁻¹¹ m
	(3) 11·0×10 ⁻¹¹ m		(4)	7·3×10 ⁻¹¹ m
89.	If we pour some drops then the rings will	of water between	the p	plate and lens in Newton's ring experiment
	(1) increase in diame	ter	(2)	decrease in diameter
	(3) become elliptical		(4)) become invisible
90.	Two polarizing sheets intensity I _{max} . Throug transmitted light become	n what angle mus	uch t e ith	that the transmitted light has maximum her sheet be turned so that the intensity o
	(1) ±30° (2	2) ± 60°	(3)) ± 45° (4) ±90°
91.	A circularly polarised through	light can be disti	nguis	ished from umpolarized light by passing i
	(1) Nicol prism		(2)	} polarizing sheet
	(3) half-wave plate	ii .	(4)	quarter-wave plate
92.	If mirror M_2 in Michel are counted. The way	son interferometer elength of light is	is m	noved through 0.233 mm, then 792 fringer
	(1) 715 nm (2	2) 656 nm	(3)) 588 nm (4) 536 nm
1 <i>77</i> 7)		18	Î	

93.	If $C_{r.m.s}$, \overline{C} and C_m denote the r.m.s. speed, average speed and most probable speed of
	molecules in a gas obeying Maxwellian distribution of molecular speeds, then

(1)
$$C_m > \overline{C} > C_{r,m,q}$$

(2)
$$\overline{C} > C_{r,m,q} > C_m$$

(3)
$$C_{r,m,q} > \overline{C} > C_{rq}$$

(4)
$$C_{r,m,n} > C_m > \overline{C}$$

94. Which one of the following is not the correct Maxwell's thermodynamic equations?

$$\{1\} \left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V} .$$

(2)
$$\left(\frac{\partial S}{\partial P}\right)_T = \left(\frac{\partial V}{\partial T}\right)_P$$

$$\{3\} \quad \left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$

$$(4) \ \left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$$

95. In placing a thin sheet of mica of thickness 12×10^{-5} cm in the path of the one of the interfering beams in Young's double alit experiment the central fringe shifts equal to a fringe width. If the wavelength of light is $\lambda = 600$ nm, then the refractive index of mica is

(1)
$$\mu = 1.30$$

(2)
$$\mu = 1.48$$

(3)
$$\mu = 1.56$$

(4)
$$\mu = 1.50$$

96. In Fraunhofer diffraction of a single slit the width of the outral maxima is

(1)
$$\frac{2f\lambda}{a}$$

(2)
$$\frac{f\lambda}{2\alpha}$$

(3)
$$\frac{a}{2f\lambda}$$

$$(4) \ \frac{2a}{f\lambda}$$

97. If in defining the specific heat temperature is represented in °F instead of °C, then the value of specific heat

(1) decreases

(2) increases

(3) remain unchanged

(4) fluctuates

(177)

19

98.	The state of the s
	volume respectively. The ratio of adiabatic and isothermal moduli of elasticity will be

(1)
$$\frac{C_p - C_v}{C_p}$$
 (2) $\frac{C_p - C_v}{C_v}$ (3) $\frac{C_v}{C_v}$

$$(2) \quad \frac{C_p - C_n}{C_n}$$

(3)
$$\frac{C_v}{C_p}$$

$$(4) \frac{C_p}{C_n}$$

A Carnot engine has an efficiency of 40% and a heat sink temperature of 27 °C. What should be the temperature of heat sink so that the efficiency becomes 50%?

(2) 250 °K (3) 325 °K

(4) 350 K

Total time of light of a projectile laundied with velocity u at angle 0 with the horizontal 100. is

(1)
$$\frac{u\sin\theta}{g}$$

(1)
$$\frac{u \sin \theta}{g}$$
 (2) $\frac{2u \cos \theta}{g}$ (3) $\frac{2u \sin \theta}{g}$ (4) $\frac{u \cos \theta}{g}$

$$(3) \quad \frac{2u\sin\theta}{a}$$

$$(4) \quad \frac{u\cos\theta}{g}$$

A bullet of mass m travelling with velocity v gets embedded into a sand bag of mass M suspended by an instretchable string. The loss of kinetic energy in the process would be

(1)
$$\frac{1}{2} \frac{m^2 v^2}{(M+m)}$$

(2)
$$\frac{1}{2} \frac{M^2 v^2}{(M+m)^2}$$

(1)
$$\frac{1}{2} \frac{m^2 v^2}{(M+m)}$$
 (2) $\frac{1}{2} \frac{M^2 v^2}{(M+m)}$ (3) $\frac{1}{2} \frac{(M+m)^2 v^2}{m}$ (4) $\frac{1}{2} \frac{mM}{(m+M)} v^2$

$$(4) \quad \frac{1}{2} \frac{mM}{(m+M)} v^2$$

102. The largest and the smallest distance of the earth from the sun in its orbit are η and r_2 respectively. Its distance from the sun at the perpendicular to the major axis of the orbit passing through the sun would be

(1)
$$\frac{2r_1r_2}{(r_1+r_2)}$$
 (2) $\frac{(r_1+r_2)}{2r_1r_2}$ (3) $\frac{r_1+r_2}{2}$

(2)
$$\frac{(r_1+r_2)}{2r_1r_2}$$

(3)
$$\frac{r_1+r_2}{2}$$

(4)
$$\frac{r_1-r_2}{2}$$

103. If the noise level in Varanasi is 80 dB and that in Chandigarh is 40 dB, then the intensity of noise in Varanasi exceeds that in Chandigarh by a factor of

	(1)	intensity	(2)	frequency	(3)	velocity	(4)	wavelength
105.	The	magnification of the distance of	the the	image by a conca object from the	ve n mir	nirror of focal leng ror would be	gth .	f is m. If the image is
	(1)	(m-1)f	(2)	(m+1)f	(3)	$\frac{m+1}{m}f$	(4)	$\left(\frac{m-1}{m}\right)f$
106.		he half-life of a livity reduce in 9			çe is	з 3 days, then b	y w	hat factor would its
	(1)	1/3	(2)	2 3	(3)	1	(4)	7 8
107.	A a	yatem of three ic	ienti	ical condensers v	will :	etore maximum	čnei	rgy of
	(1)	two are connect	ed i	n series and thin	rd iz	n parallel to ther	Di.	¥5
	(2)	two are connect	ed i	n paralicl and th	uird	in series with th	e c	ombination
	(3)	all three connec	ted	in series				19 4 3 12
	(4)	all three connec	ted	in parallel				
108.	Αп	nasa spectrograpi	h ia	used for the det	erm	ination of		
	(1)	specific charge	of a	n ion	(2)	atomic mass		** **
	(3)	spectral lines of	iso	topes	(4)	atomic charge		(i) (ii)
109.	240300 V 1460	series of spectra aviolet and parti		"10일(), 기면			n th	at lies partly in the
25	(1)	Balmer series		w	(2)	Lyman series		
	(3)	Brackett series			(4)	Paschen series		
177)				21			9	(P.T.O.)

104. When an intense beam of laser light goes from air into water there is no change in ita

110.	Neglecting the relativistic effect	the wavelength	associated	with	electron	of kinetic
	energy E is proportional to	A Approximation of the state of	No.			14410110

(1) \sqrt{E}

 $(2) \quad \frac{1}{\sqrt{\overline{E}}}$

(3) E^2 (4) $\frac{1}{E^2}$

111. The unit for measurement of man's exposure to nuclear radiation is

(1) Curie

(2) Becquerel

(3) Rutherford

. (4) Fermi

A metallic wire of length L hanging from the roof is stretched by an small amount ! when a body of mass m is attached to its free end. The mechanical energy stored in the wire is

 $(2) \quad \frac{mgl^2}{l} \qquad (3) \quad \frac{mgl}{2}$

 $(4) \quad \frac{mgl^2}{2L}$

Two uniform circular discs A and B of equal masses and thicknesses are made of 113. materials of densities ρ_A and ρ_B respectively. If their moment of inertia about an axis passing through the center and normal to the circular faces are I_A and I_B respectively,

 $(1) \quad \frac{I_A}{I_B} = \frac{\rho_A}{\rho_B} \qquad (2) \quad \frac{I_A}{I_B} = \frac{\rho_B}{\rho_A} \qquad (3) \quad \frac{I_A}{I_B} = \left(\frac{\rho_A}{\rho_B}\right)^2 \qquad (4) \quad \frac{I_A}{I_B} = \left(\frac{\rho_B}{\rho_A}\right)^2$

114. The main use of a voltage series negative feedback amplifier is as a

- (1) power amplifier
- (2) current amplifier
- (3) impedance matching device
- (4) low input impedance voltage amplifier

(177)

22

115.	In RC coupled translator amplifier the upper cut off in frequency response is obtained due to						
	(1) coupling capacitance (2) blocking capacitance						
	(3) by pass capacitance (4) junction capacitance						
116.	The width of the depletion region layer of a P-N junction diode						
	(1) decreases with increasing doping concentration						
٠	(2) increases with increasing doping concentration						
	(3) is independent of doping concentration						
	(4) decrease with increasing reverse bias						
117.	Avalanche break down in Zener diode is a phenomena primarily caused by ionization of immobile ions						
	(1) due to high electric field						
	(2) due to collision with high velocity minorly charge carriers						
	(3) due to collision with high velocity majority charge carriers						
•	(4) due to tunnelling of charge carriers						
118.	A circuit having an inductance of $\frac{1}{2}$ Henry and resistance of 100 ohms is connected to						
	AC power supply at 50 Hz frequency. The reactance and impedance of the circuit is						
	(1) 100 Ω, 100 Ω (2) 141·1 Ω, 100 Ω						
	(3) 100 Ω, 141·1 Ω (4) 141·1 Ω, 141·1 Ω						
	00 O O O						
177)	23 (P.T.O.)						

14P/204/5

130.	X-rays of 10-0 p.m. are scattered from a wavelength present in the scattered X-rays scattered at 45°	target in all directions and the maximum ys it 14.9 p.m. Find the wavelength of the					
	(1) 10·7 p.m. (2) 12·425 p.m.	(3) 11·25 p.m. (4) 9·3 p.m.					
131.	The wave particle duality was demonstra	ated by the					
	(1) Stern-Gerlach experiment	(2) Davisson-Germer experiment					
	(3) Franck-Hertz.experiment	(4) Michelson-Morley experiment					
132.	Raman scattering is a quantum mechan	ical process involving					
	(1) one photon	(2) one photon and one electron					
	(3) two photons	(4) two photon and one electron					
133.	Planck's radiation formula reduces to						
	(1) Rayleigh-Jeans formula at low frequencies						
	(2) Rayleigh-Jeans formula high frequencies						
	(3) Wien's displacement formula at low temperature						
	erature						
1 34.	Two linearly polarised light waves of polarization perpendicular to each other	unequal amplitudes with their planes of on superposition give rise to					
	(1) circularly polarized light	(2) plane polarised light					
	(3) unpolarised light	(4) elliptically polarized light					
(177)	26						

135.	A CONTRACTOR OF THE CONTRACTOR	is heated and transf at 100 °C is 538 c		93773 Later Control of the Control o			latent
	(1) 14·45 cal/°K	N N	(2)	17·54 cal/°K			
	(3) 13·56 cal/°K	· ·	(4)	18 [.] 65 cal/°K			.a.
136.	If for any thermody the variable • is	namic system ∮∳ <i>ds</i>	e ≠ 0	for all cyclic irre	versi	ble processe	s, then
70 4	(1) internal energy	и	(2)	pressure p		343	
	(3) temperature T	W .	(4)	entropy S			
137.	If the frame around its	which wire is wound	in a	moving coil galva	nome	eter is metalli	ic, then
•	(1) sensitivity is in	creased	(2)	hysteresis is de	creas	ed .	
	(3) damping is inc	rcased	(4)	time period of	oecill	ation is decr	eased
138.	When white light so bright fringes on b	ource is used in You oth sides of the cen	ing's tral	double slit exper dark fringe will b	rimen oe	t the colour	of first
	(1) violet	(2) blue	(3)	green	(4)	red	
	1.4			*	23	Ti againman a	
139.	are heard. The beat	quency 512 Hz is vibr i frequency reduces i The original frequen	f the	tension in the st	ring	of sono mete i	per sec wire is
	(1) 500	(2) 518	(3)	506	(4)	524	
(177)		2'	7	¥1			(P.T.O.)
		50 0000		No.		*	

140. For a van der Waals' gas the Joule-Thomson coefficient is given by

 $(1) \quad \frac{1}{C_p} \left[b - \frac{2a}{RT} \right]$

 $(2) \quad \frac{1}{C_o} \left[\frac{2a}{RT} - b \right]$

 $(3) \quad \frac{1}{C_p} \left[\frac{2a}{RT} - b \right]$

 $(4) \ \frac{1}{C_{\nu}} \left[b - \frac{2a}{RT} \right]$

141. The Fourier series

$$F(x) = \frac{3}{2} + \frac{6}{\pi} \left[\sin \frac{\pi x}{5} + \frac{1}{3} \sin \frac{3\pi x}{5} + \frac{1}{5} \sin \frac{\sin 5\pi x}{5} + \dots \right]$$

represents a square wave of

- (1) amplitude 3 and time period 5
- (2) amplitude 3 and time period 10
- (3) amplitude 3 and time period 10
- (4) amplitude $\frac{3}{2}$ and time period 5

142. A reversible heat engine converts the heat, which it absorbs from source into useful work. When the temperature of the sink is reduced by 60 °C, its efficiency is doubled. Then the temperature of the source is

- (1) 240 K
- (2) 300 K
- (3) 480 K
- (4) 360 K

143. A diffraction grating is illuminated by a Laser light of wavelength 500 nm. If the second order spectral line is observed at 30°, then the number of lines per centimetre of grating is

- (1) 5000
- (2) 6000.
- (3) 4000
- (4) 3000

144. For a series L-C-R resonance circuit the power factor at resonance is

- (1) infinity
- (2) zero
- (3) half
- (4) unity

(177)

28

145.	A bridge rectifier is preferred over an ordinary full-wave rectifier because
	(1) its rectification efficiency is high
	(2) its ripple factor is small
	(3) its transformer does not require center tap secondary
	(4) its peak inverse voltage is low
146.	Indicate the false statement regarding the early effect in translator
	(1) base current decreases with increasing $ V_{CB} $
	(2) emitter current increase with increase $ V_{CB} $
	(3) α decreases with increasing $ V_{CB} $
	(4) β increases with increasing $ V_{CB} $
147.	What will be the maximum wave length of light that will cause the photoelectrons to be emitted from sodium target whose work function is 23 eV ($h = 4.14 \times 10^{-15}$ eV × sec)?
	(1) 270 nm (2) 675 nm (3) 810 nm (4) 540 nm
148.	Indicate the false statement about the conclusions drawn from Michelson-Morley experiment
	(1) hypothetical ether does not exist
	(2) all motions are relative to a universal from of reference
	(3) the speed of light is same for all observers
	(4) all motions are relative to a specified frame of reference
(177)	29 (P.T.O.)

149. Gibbs' free energy G is defined as

(1)
$$G = u + PV + TS$$

(2)
$$u - PV + TS$$

(3)
$$G = u + PV - TS$$

(4)
$$u-PV-TS$$

150. The radius of gyration of a thin uniform rod of mass M = 100 gm and length l = 1 metrabout an axis passing through its center of gravity and perpendicular of its length is

(1)
$$k = \frac{1}{2\sqrt{3}}$$
 metre

(2)
$$k = \frac{1}{3\sqrt{3}}$$
 metre

(3)
$$k = \frac{1}{4\sqrt{3}}$$
 metre

$$(4) \quad k = \frac{1}{6\sqrt{3}} \text{ metre}$$

**

अध्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न खूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त,* लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना *अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन* से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों की गाड़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं॰ और ओ॰ एम॰ आर॰ पत्र सं॰ की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिक। में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाक्षा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर भलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृतों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ०एम०आर० उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी :

