MANHATTAN PREP

INCLUDES 6 FREE PRACTICE EXAMS!

GRE

FRACTIONS, DECIMALS, \& PERCENTS

MASTER MANIPULATION OF DIGITS, DECIMALS, RATIOS, \& MORE

DEVELOP EFFECTIVE GRE PROBLEM SOLVING TECHNIQUES

REVIEW PRACTICE PROBLEMS WITH DETAILED EXPLANATIONS

ㅈㅡㅡ 흔 폭

99TH PERCENTILE INSTRUCTORS • CONTENT-BASED CURRICULUM

MANHATTAN PREP

Fractions, Decimals, \& Percents

GRE ${ }^{\circledR}$ Strategy Guide

This book provides an in-depth look at the array of GRE questions that test knowledge of Fractions, Decimals, and Percents. Learn to see the connections among these part-whole relationships and practice implementing strategic shortcuts.

Fractions, Decimals, \& Percents GRE Strategy Guide, Fourth Edition
10-digit International Standard Book Number: 1-937707-84-9
13-digit International Standard Book Number: 978-1-937707-84-2
eISBN: 978-1-941234-14-3

Copyright © 2014 MG Prep, Inc.
ALL RIGHTS RESERVED. No part of this work may be reproduced or used in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or web distribution-without the prior written permission of the publisher, MG Prep, Inc.

Note: GRE, Graduate Record Exam, Educational Testing Service, and ETS are all registered trademarks of the Educational Testing Service, which neither sponsors nor is affiliated in any way with this product.

Layout Design: Dan McNaney and Cathy Huang
Cover Design: Dan McNaney and Frank Callaghan
Cover Photography: Alli Ugosoli

INSTRUCTIONAL GUIDE SERIES

Algebra
(ISBN: 978-1-937707-83-5)
Fractions, Decimals, \& Percents
(ISBN: 978-1-937707-84-2)

Geometry
(ISBN: 978-1-937707-85-9)

Word Problems
(ISBN: 978-1-937707-90-3)
Quantitative
Comparisons \& Data Interpretation
(ISBN: 978-1-937707-87-3)
Reading Comprehension
\& Essays
(ISBN: 978-1-937707-88-0)

Number Properties
(ISBN: 978-1-937707-86-6)

Text Completion \&
Sentence Equivalence
(ISBN: 978-1-937707-89-7)

SUPPLEMENTAL MATERIALS

500 Essential Words:
GRE® Vocabulary Flash Cards
(ISBN: 978-1-935707-89-9)
500 GRE® Math Flash Cards
(ISBN: 978-1-937707-31-6)

500 Advanced Words:
GRE® Vocabulary Flash Cards

(ISBN: 978-1-935707-88-2)

5lb. Book of GRE® Practice Problems
(ISBN: 978-1-937707-29-3)

MANHATTAN PREP

June 3rd, 2014
Dear Student,
Thank you for picking up a copy of Fractions, Decimals, \& Percents. I hope this book provides just the guidance you need to get the most out of your GRE studies.

As with most accomplishments, there were many people involved in the creation of the book you are holding. First and foremost is Zeke Vanderhoek, the founder of Manhattan Prep. Zeke was a lone tutor in New York when he started the company in 2000. Now, 14 years later, the company has instructors and offices nationwide and contributes to the studies and successes of thousands of GRE, GMAT, LSAT, and SAT students each year.

Our Manhattan Prep Strategy Guides are based on the continuing experiences of our instructors and students. We are particularly indebted to our instructors Stacey Koprince, Dave Mahler, Liz Ghini Moliski, Emily Meredith Sledge, and Tommy Wallach for their hard work on this edition. Dan McNaney and Cathy Huang provided their design expertise to make the books as user-friendly as possible, and Liz Krisher made sure all the moving pieces came together at just the right time. Beyond providing additions and edits for this book, Chris Ryan and Noah Teitelbaum continue to be the driving force behind all of our curriculum efforts. Their leadership
is invaluable. Finally, thank you to all of the Manhattan Prep students who have provided input and feedback over the years. This book wouldn't be half of what it is without your voice.

At Manhattan Prep, we continually aspire to provide the best instructors and resources possible. We hope that you will find our commitment manifest in this book. If you have any questions or comments, please email me at dgonzalez@manhattanprep.com. I'll look forward to reading your comments, and I'll be sure to pass them along to our curriculum team.

Thanks again, and best of luck preparing for the GRE!
Sincerely,

Dan Gonzalez
President
Manhattan Prep
www.manhattanprep.com/gre 138 West 25th Street, 7th Floor, New York, NY 10001 Tel: 646-2546479 Fax: 646-514-7425

HOW TO ACCESS YOUR ONLINE RESOURCES

If you...
(®) are a registered Manhattan Prep GRE ${ }^{\circ}$ student
and have raceives this bosk as part of yeur ceurse materials, you have AUTOVATIC actess to ALL of out online resources: This includes all practice axams, oustipn banks, and onlise updates to this bock. To access these resources, fallow the instructions in the Wolcome Guide provided to pou at the start of pour program. Do NOT follow the instructions bylow.

(>) purchased this book from the Manhattan Prep online store or at one of our centers

1. Oo to www manhattangenp com/ern/stodenteteter.
2. Log in using the waername and password used when your account was set up
(>) purchased this book at a retail location
3. Creaty an accourt with Manhattan Prep at the website: wwswanhattanprep.com/ere/createsccount. 2. Oo to www manhattangeep com/gre/3cosss.
4. Follow the instructions on the screen.

Your online access begins on the day that ytu register your book at the above URL.
You only nees to register your product ONCE at the above URL. To use your online ressurces any time ATTER yee have complated the registration process. log in to the follosing URL: www.manhattanorep. com/gre/atudentopeter.

Plases note that onfine access is nontransferable. This means that only NEW and UNREGISTERED copiss of the book will grant you online access. Previously used books will liot grovide any geline resources.
(>) purchased an eBook version of this book

1. Creaty an account with Manhattan Prep at the websich wwumanhattangerp.com/gro/cresteacocount.
2. Emal a cosy of your purchase racriot to greemanhattanpma.com to activate pour rosourcos. Please bo surn to use the same amail adfress to craty an account that goo ussd to purchase the t6ock.

[^0]
TABLE of CONTENTS

1. Introduction

2. Fractions

Problem Set
3. Digits \& Decimals

Problem Set
4. Percents

Problem Set
5. FDP Connections

Problem Set
6. Drill Sets

Drill Set Answers
7. FDPs Practice Question Sets

Chapter 1 of
 Fractions, Decimals, \& Percents

Introduction

In This Chapter...

The Revised GRE
 Question Formats in Detail

Chapter 1

Introduction

We know that you're looking to succeed on the GRE so that you can go to graduate school and do the things you want to do in life.

We also know that you may not have done math since high school, and that you may never have learned words like "adumbrate" or "sangfroid." We know that it's going to take hard work on your part to get a top GRE score, and that's why we've put together the only set of books that will take you from the basics all the way up to the material you need to master for a near-perfect score, or whatever your goal score may be. You've taken the first step. Now it's time to get to work!

How to Use These Materials

Manhattan Prep's GRE materials are comprehensive. But keep in mind that, depending on your score goal, it may not be necessary to get absolutely everything. Grad schools only see your overall Quantitative, Verbal, and Writing scores-they don't see exactly which strengths and weaknesses went into creating those scores.

You may be enrolled in one of our courses, in which case you already have a syllabus telling you in what order you should approach the books. But if you bought this book online or at a bookstore, feel free to approach the books-and even the chapters within the books - in whatever order works best for you. For the most part, the books, and the chapters within them, are independent; you don't have to master one section before moving on to the next. So if you're having a hard time with something in particular, you can make a note to come back to it later and move on to another section. Similarly, it may not be necessary to solve every single practice problem for every section. As you go through the material, continually assess whether you understand and can apply the principles in each individual section and chapter. The best way to do this is to solve the Check Your Skills and Practice Sets throughout. If you're confident you have a concept or method down, feel free to move on. If you struggle with something, make note of it for further review. Stay active in your learning and stay oriented toward the test-it's easy to read something
and think you understand it, only to have trouble applying it in the 1-2 minutes you have to solve a problem.

Study Skills

As you're studying for the GRE, try to integrate your learning into your everyday life. For example, vocabulary is a big part of the GRE, as well as something you just can't "cram" for-you're going to want to do at least a little bit of vocab every day. So try to learn and internalize a little bit at a time, switching up topics often to help keep things interesting.

Keep in mind that, while many of your study materials are on paper (including Education Testing Service's [ETS's] most recent source of official GRE questions, The Official Guide to the GRE revised General Test, Second Edition), your exam will be administered on a computer. Because this is a computer-based test, you will not be able to underline portions of reading passages, write on diagrams of geometry figures, or otherwise physically mark up problems. So get used to this now. Solve the problems in these books on scratch paper. (Each of our books talks specifically about what to write down for different problem types.)

Again, as you study, stay focused on the test-day experience. As you progress, work on timed drills and sets of questions. Eventually, you should be taking full practice tests (available at www.manhattanprep.com/gre) under actual timed conditions.

The Revised GRE

As of August 1, 2011, the Quantitative and Verbal sections of the GRE underwent a number of changes. The actual body of knowledge being tested is more or less the same as it ever was, but the way that knowledge is tested changed. Here's a brief summary of the changes, followed by a more comprehensive assessment of the new exam.

The current test is a little longer than the old test, lengthened from about 3.5 hours to about 4 hours. When you sign up for the exam at www.ets.org/gre, you will be told to plan to be at the center for 5 hours, since there will be some paperwork to complete when you arrive, and occasionally test-takers are made to wait a bit before being allowed to begin.

Taking a four-hour exam can be quite exhausting, so it's important to practice not only out of these books, but also on full-length computer-based practice exams, such
as the six such exams you have gained access to by purchasing this book (see page 7 for details).

There are now two scored Math sections and two scored Verbal sections. A new score scale of 130-170 is used in place of the old 200-800 scale. More on this later.

The Verbal section of the GRE changed dramatically. The Antonyms and Analogies disappeared. The Text Completion and Reading Comprehension remain, expanded and remixed in a few new ways. Vocabulary is still important, but is tested only in the context of complete sentences.

The Quant section of the new GRE still contains the same multiple-choice problems, Quantitative Comparisons, and Data Interpretations (which are really a subset of multiple-choice problems). The revised test also contains two new problem formats, which we will introduce in this section.

On both Verbal and Quant, some of the new question types have more than one correct answer, or otherwise break out of the mold of traditional multiple-choice exams. You might say that computer-based exams are finally taking advantage of the features of computers.

One way that this is true is that the new exam includes a small, on-screen, fourfunction calculator with a square root button. Many test-takers will rejoice at the advent of this calculator. It is true that the GRE calculator will reduce emphasis on computation-but look out for problems, such as percents questions with tricky wording, that are likely to foil those who rely on the calculator too much. In short, the calculator may make your life a bit easier from time to time, but it's not a game changer. There are zero questions that can be solved entirely with a calculator. You will still need to know the principles contained in the six Quant books (of the eightbook Manhattan Prep GRE series).

Finally, don't worry about whether the new GRE is harder or easier than the old GRE. You are being judged against other test-takers, all of whom are in the same boat. So if the new formats are harder, they are harder for other test-takers as well.

Additionally, graduate schools to which you will be applying have been provided with conversion charts so that applicants with old and new GRE scores can be compared fairly (GRE scores are valid for five years).

Exam Structure

The revised test has six sections. You will get a 10 -minute break between the third and fourth sections and a 1-minute break between the others. The Analytical Writing section is always first. The other five sections can be seen in any order and will include:

- Two Verbal Reasoning sections (20 questions each in 30 minutes per section)
- Two Quantitative Reasoning sections (20 questions each in 35 minutes per section)
- Either an unscored section or a research section

An unscored section will look just like a third Verbal or Quantitative Reasoning section, and you will not be told which of them doesn't count. If you get a research section, it will be identified as such, and will be the last section you get.

Section \#	Section Type	\# Questions	Time	Scored?
1	Analytical Writing	2 essays	30 minutes each	Yes
2	Verbal \#1	Approx. 20	30 minutes	Yes
3	(order can vary)	Approx. 20	35 minutes	Yes
10-Minute Break				
4	Verbal \#2 Quantitative \#2 (order can vary)	Approx. 20	30 minutes	Yes
5		Approx. 20	35 minutes	Yes
?	Unscored Section (Verbal or Quant, order can vary)	Approx. 20	30 or 35 minutes	No
Last	Research Section	Varies	Varies	No

All the question formats will be looked at in detail later in the chapter.

Using the Calculator

The addition of a small, four-function calculator with a square root button means that re-memorizing times tables or square roots is less important than it used to be. However, the calculator is not a cure-all; in many problems, the difficulty is in figuring out what numbers to put into the calculator in the first place. In some cases, using a calculator will actually be less helpful than doing the problem some other way. Take a look at an example:

If x is the remainder when $(11)(7)$ is divided by 4 and y is the remainder when (14)(6) is divided by 13 , what is the value of $x+y$?

Solution: This problem is designed so that the calculator won't tell the whole story. Certainly, the calculator will tell you that $11 \times 7=77$. When you divide 77 by 4 , however, the calculator yields an answer of 19.25. The remainder is not 0.25 (a remainder is always a whole number).

You might just go back to your pencil and paper, and find the largest multiple of 4 that is less than 77 . Since 4 does go into 76 , you can conclude that 4 would leave a remainder of 1 when dividing into 77. (Notice that you don't even need to know how many times 4 goes into 76 , just that it goes in. One way to mentally "jump" to 76 is to say, 4 goes into 40 , so it goes into 80 ...that's a bit too big, so take away 4 to get 76.)

However, it is also possible to use the calculator to find a remainder. Divide 77 by 4 to get 19.25. Thus, 4 goes into 77 nineteen times, with a remainder left over. Now use your calculator to multiply 19 (JUST 19, not 19.25) by 4 . You will get 76 . The remainder is $77-76$, which is 1 . Therefore, $x=1$. You could also multiply the leftover 0.25 times 4 (the divisor) to find the remainder of 1 .

Use the same technique to find y. Multiply 14 by 6 to get 84 . Divide 84 by 13 to get 6.46. Ignore everything after the decimal, and just multiply 6 by 13 to get 78 . The remainder is therefore $84-78$, which is 6 . Therefore, $y=6$.

Since you are looking for $x+y$, and $1+6=7$, the answer is 7 .
You can see that blind faith in the calculator can be dangerous. Use it responsibly! And this leads us to...

Practice Using the Calculator!

On the revised GRE, the on-screen calculator will slow you down or lead to incorrect answers if you're not careful! If you plan to use it on test day (which you should), you'll want to practice first.

We have created an online practice calculator for you to use. To access this calculator, go to www.manhattanprep.com/gre and sign in to the student center using the instructions on the "How to Access Your Online Resources" page found at the front of this book.

In addition to the calculator, you will see instructions for how to use the calculator. Be sure to read these instructions and work through the associated exercises.

Throughout our math books, you will see the
 symbol. This symbol means
"Use the calculator here!" As much as possible, have the online practice calculator up and running during your review of our math books. You'll have the chance to use the on-screen calculator when you take our practice exams as well.

Navigating the Questions in a Section

Another change for test-takers on the revised GRE is the ability to move freely around the questions in a section-you can go forward and backward one-by-one and can even jump directly to any question from the "review list." The review list provides a snapshot of which questions you have answered, which ones you have tagged for "mark and review," and which are incomplete, either because you didn't indicate enough answers or because you indicated too many (that is, if a number of choices is specified by the question). You should double-check the review list for completion if you finish the section early. Using the review list feature will take some practice as well, which is why we've built it into our online practice exams.

The majority of test-takers will be pressed for time. Thus, for some, it won't be feasible to go back to multiple problems at the end of the section. Generally, if you can't get a question the first time, you won't be able to get it the second time around either. With this in mind, here's the order in which we recommend using the new review list feature.

1. Do the questions in the order in which they appear.
2. When you encounter a difficult question, do your best to eliminate answer choices you know are wrong.
3. If you're not sure of an answer, take an educated guess from the choices remaining. Do NOT skip it and hope to return to it later.
4. Using the "mark" button at the top of the screen, mark up to three questions per section that you think you might be able to solve with more time. Mark a question only after you have taken an educated guess.
5. Always click on the review list at the end of a section, to quickly make sure you have neither skipped nor incompletely answered any questions.
6. If you have time, identify any questions that you marked for review and return to them. If you do not have any time remaining, you will have already taken good guesses at the tough ones.

What you want to avoid is surfing-clicking forward and backward through the questions searching for the easy ones. This will eat up valuable time. Of course, you'll want to move through the tough ones quickly if you can't get them, but try to avoid skipping around.

Again, all of this will take practice. Use our practice exams to fine-tune your approach.

Scoring

You need to know two things about the scoring of the revised GRE Verbal Reasoning and Quantitative Reasoning sections: (1) how individual questions influence the score, and (2) the score scale itself.

For both the Verbal Reasoning and Quantitative Reasoning sections, you will receive a scaled score, based on both how many questions you answered correctly and the difficulties of the specific questions you actually saw.

The old GRE was question-adaptive, meaning that your answer to each question (right or wrong) determined, at least somewhat, the questions that followed (harder or easier). Because you had to commit to an answer to let the algorithm do its thing, you weren't allowed to skip questions or to go back to change answers. On the revised GRE, the adapting occurs from section to section rather than from question to question (e.g., if you do well on the first Verbal section, you will get a harder second Verbal section). The only change test-takers will notice is one that most will welcome: you can now move freely about the questions in a section, coming back to tough questions later, changing answers after "Aha!" moments, and generally managing your time more flexibly.

The scores for the revised GRE Quantitative Reasoning and Verbal Reasoning are reported on a 130-170 scale in 1-point increments, whereas the old score reporting was on a 200-800 scale in 10-point increments. You will receive one 130-170 score for Verbal and a separate 130-170 score for Quant. If you are already putting your

GRE math skills to work, you may notice that there are now 41 scores possible (170 - 130, then add 1 before you're done), whereas before there were 61 scores possible ([800-200]/10, then add 1 before you're done). In other words, a 10-point difference on the old score scale actually indicated a smaller performance differential than a 1 point difference on the new scale. However, the GRE folks argue that perception is reality: the difference between 520 and 530 on the old scale could simply seem greater than the difference between 151 and 152 on the new scale. If that's true, then this change will benefit test-takers, who won't be unfairly compared by schools for minor differences in performance. If not true, then the change is moot.

Question Formats in Detail

Essay Questions

The Analytical Writing section consists of two separately timed 30-minute tasks: Analyze an Issue and Analyze an Argument. As you can imagine, the 30 -minute time limit implies that you aren't aiming to write an essay that would garner a Pulitzer Prize nomination, but rather to complete the tasks adequately and according to the directions. Each essay is scored separately, but your reported essay score is the average of the two, rounded up to the next half-point increment on a $0-6$ scale.

Issue Task: This essay prompt will present a claim, generally one that is vague enough to be interpreted in various ways and discussed from numerous perspectives. Your job as a test-taker is to write a response discussing the extent to which you agree or disagree and support your position. Don't sit on the fence-pick a side!

For some examples of Issue Task prompts, visit the GRE website here:
www.ets.org/gre/revised_general/prepare/analytical writing/issue/pool
Argument Task: This essay prompt will be an argument comprised of both a claim (or claims) and evidence. Your job is to dispassionately discuss the argument's structural flaws and merits (well, mostly the flaws). Don't agree or disagree with the argument-simply evaluate its logic.

For some examples of Argument Task prompts, visit the GRE website here:
www.ets.org/gre/revised general/prepare/analytical writing/argument/pool

Verbal: Reading Comprehension Questions

Standard five-choice multiple-choice Reading Comprehension questions continue to appear on the revised exam. You are likely familiar with how these work. Let's take a look at two new Reading Comprehension formats that will appear on the revised test.

Select One or More Answer Choices and Select-in-Passage

For the question type "Select One or More Answer Choices," you are given three statements about a passage and asked to "indicate all that apply." Either one, two, or all three can be correct (there is no "none of the above" option). There is no partial credit; you must indicate all of the correct choices and none of the incorrect choices.

> Strategy Tip: On "Select One or More Answer Choices," don't let your brain be tricked into telling you, "Well, if two of them have been right so far, the other one must be wrong," or any other arbitrary idea about how many of the choices should be correct. Make sure to consider each choice independently! You cannot use "process of elimination" in the same way as you do on normal multiple-choice questions.

For the question type "Select-in-Passage," you are given an assignment such as "Select the sentence in the passage that explains why the experiment's results were discovered to be invalid." Clicking anywhere on the sentence in the passage will highlight it. (As with any GRE question, you will have to click "Confirm" to submit your answer, so don't worry about accidentally selecting the wrong sentence due to a slip of the mouse.)

> Strategy Tip: On "Select-in-Passage," if the passage is short, consider numbering each sentence (i.e., writing 1234 on your paper) and crossing off each choice as you determine that it isn't the answer. If the passage is long, you might write a number for each paragraph (I, II, III), and tick off each number as you determine that the correct sentence is not located in that paragraph.

Now give these new question types a try:

The sample questions below are based on this passage:

Physicist Robert Oppenheimer, director of the fateful Manhattan Project, said, "It is a profound and necessary truth that the deep things in science are not found because they are useful; they are found because it was possible to find them." In a later address at MIT, Oppenheimer presented the thesis that scientists could be held only very nominally responsible for the consequences of their research and discovery. Oppenheimer asserted
that ethics, philosophy, and politics have very little to do with the day-today work of the scientist, and that scientists could not rationally be expected to predict all the effects of their work. Yet, in a talk in 1945 to the Association of Los Alamos Scientists, Oppenheimer offered some reasons why the Manhattan Project scientists built the atomic bomb; the justifications included "fear that Nazi Germany would build it first" and "hope that it would shorten the war."

For question \#1, consider each of the three choices separately and indicate all that apply.

1. The passage implies that Robert Oppenheimer would most likely have agreed with which of the following views:

A Some scientists take military goals into account in their work
Deep things in science are not useful
C The everyday work of a scientist is only minimally involved with ethics
2. Select the sentence in which the writer implies that Oppenheimer has not been consistent in his view that scientists have little consideration for the effects of their work.
(Here, you would highlight the appropriate sentence with your mouse. Note that there are only four options.)

Solutions

1. (A) and (C): Oppenheimer says in the last sentence that one of the reasons the bomb was built was scientists' hope that it would shorten the war. Thus, Oppenheimer would likely agree with the view that Some scientists take military goals into account in their work. (B) is a trap answer using familiar language from the passage. Oppenheimer says that scientific discoveries' possible usefulness is not why scientists make discoveries; he does not say that the discoveries aren't useful. Oppenheimer specifically says that ethics has very little to do with the day-to-day work of the scientist, which is a good match for only minimally involved with ethics.

[^1]A. X
B. ~
C. X

The answer choice you weren't sure about, (B), is likely to be correct, since there must be at least one correct answer.
2. The correct sentence is: Yet, in a talk in $\mathbf{1 9 4 5}$ to the Association of Los Alamos Scientists, Oppenheimer offered some reasons why the Manhattan Project scientists built the atomic bomb; the justifications included "fear that Nazi Germany would build it first" and "hope that it would shorten the war." The word "yet" is a good clue that this sentence is about to express a view contrary to the views expressed in the rest of the passage.

Verbal: Text Completion Questions

Text Completions can consist of $1-5$ sentences with 1-3 blanks. When Text Completions have two or three blanks, you will select words or short phrases for those blanks independently. There is no partial credit; you must make every selection correctly.

Leaders are not always expected to (i) \qquad the same rules as are those they lead; leaders are often looked up to for a surety and presumption that would be viewed as (ii) \qquad in most others.

Blank (i) Blank (ii)

decree	hubris
proscribe	avarice
conform to	anachronism

Select your two choices by actually clicking and highlighting the words you want.

Solution

In the first blank, you need a word similar to "follow." In the second blank, you need a word similar to "arrogance." The correct answers are conform to and hubris.

> Strategy Tip: Do NOT look at the answer choices until you've decided for yourself, based on textual clues actually written in the sentence, what kind of word needs to go in each blank. Only then should you look at the choices and eliminate those that are not matches.

Now try an example with three blanks:
For Kant, the fact of having a right and having the (i) \qquad to enforce it via coercion cannot be separated, and he asserts that this marriage of rights and coercion is compatible with the freedom of everyone. This is not at all peculiar from the standpoint of modern political thought-what good is a right if its violation triggers no enforcement (be it punishment or (ii) \qquad)? The necessity of coercion is not at all in conflict with the freedom of everyone, because this coercion only comes into play when someone has (iii) \qquad someone else.

Blank (i)
Blank (ii)
Blank (iii)

technique	amortization	questioned the hypothesis of
license	reward	violated the rights of
prohibition	restitution	granted civil liberties to

Solution

In the first sentence, use the clue "he asserts that this marriage of rights and coercion is compatible with the freedom of everyone" to help fill in the first blank. Kant believes that "coercion" is "married to" rights and is compatible with freedom for all. So you want something in the first blank like "right" or "power." Kant believes that rights are meaningless without enforcement. Only the choice license can work (while a license can be physical, like a driver's license, license can also mean "right").

The second blank is part of the phrase "punishment or \qquad ," which you are told is the "enforcement" resulting from the violation of a right. So the blank should be something, other than punishment, that constitutes enforcement against someone who violates a right. (More simply, it should be something bad.) Only restitution works. Restitution is compensating the victim in some way (perhaps monetarily or by returning stolen goods).

In the final sentence, "coercion only comes into play when someone has \qquad someone else." Throughout the text, "coercion" means enforcement against someone who has violated the rights of someone else. The meaning is the same here. The answer is violated the rights of.

The complete and correct answer is this combination:

Blank (i)	Blank (ii)
license	vlank (iii)

In theory, there are $3 \times 3 \times 3$, or 27 possible ways to answer a three-blank Text Completion-and only one of those 27 ways is correct. In theory, these are bad odds. In practice, you will often have certainty about some of the blanks, so your guessing odds are almost never this bad. Just follow the basic process: come up with your own filler for each blank, and match to the answer choices. If you're confused by this example, don't worry! The Manhattan Prep Text Completion \& Sentence Equivalence GRE Strategy Guide covers all of this in detail.

Strategy Tip: Do not write your own story. The GRE cannot give you a blank without also giving you a clue, physically written down in the passage, telling you what kind of word or phrase must go in that blank. Find that clue. You should be able to give textual evidence for each answer choice you select.

Verbal: Sentence Equivalence Questions

For this question type, you are given one sentence with a single blank. There are six answer choices, and you are asked to pick two choices that fit the blank and are alike in meaning.

Of the Verbal question types, this one depends the most on vocabulary and also yields the most to strategy.

No partial credit is given on Sentence Equivalence; both correct answers must be selected and no incorrect answers may be selected. When you pick 2 of 6 choices, there are 15 possible combinations of choices, and only one is correct. However, this is not nearly as daunting as it sounds.

Think of it this way: if you have six choices, but the two correct ones must be similar in meaning, then you have, at most, three possible pairs of choices, maybe fewer, since not all choices are guaranteed to have a partner. If you can match up the pairs, you can seriously narrow down your options.

Here is a sample set of answer choices:

A	tractable
B	taciturn
C	arbitrary
D	tantamount
E	reticent

The question is deliberately omitted here in order to illustrate how much you can do with the choices alone, if you have studied vocabulary sufficiently.

Tractable and amenable are synonyms (tractable, amenable people will do whatever you want them to do). Taciturn and reticent are synonyms (both mean "not talkative").

Arbitrary (based on one's own will) and tantamount (equivalent) are not similar in meaning and therefore cannot be a pair. Therefore, the only possible correct answer pairs are (A) and (F), and (B) and (E). You have improved your chances from 1 in 15 to a $50 / 50$ shot without even reading the question!

Of course, in approaching a Sentence Equivalence, you do want to analyze the sentence in the same way you would a Text Completion-read for a textual clue that tells you what type of word must go in the blank. Then look for a matching pair.

Strategy Tip: If you're sure that a word in the choices does not have a partner, cross it out! For instance, if (A) and (F) are partners and (B) and (E) are partners, and you're sure neither (C) nor (D) pair with any other answer, cross out (C) and (D) completely. They cannot be the answer together, nor can either one be part of the answer.

The sentence for the answer choice above could read as follows:
Though the dinner guests were quite \qquad , the hostess did her best to keep the conversation active and engaging.

Thus, (B) and (E) are the best choices.
Try another example:
While athletes usually expect to achieve their greatest feats in their teens or twenties, opera singers don't reach the \qquad of their vocal powers until middle age.

A	harmony	
B	zenith	
C	acme	
D		terminus

Solution

Those with strong vocabularies might go straight to the choices to make pairs. Zenith and acme are synonyms, meaning "high point, peak." Terminus and cessation are synonyms meaning "end." Nadir is a low point and harmony is present here as a trap answer reminding you of opera singers. Cross off (A) and (E), since they do not have partners. Then, go back to the sentence, knowing that your only options are a pair meaning "peak" and a pair meaning "end."

The correct answer choices are (B) and (C).

Math: Quantitative Comparison

In addition to regular multiple-choice questions and Data Interpretation questions, Quantitative Comparisons have been on the exam for a long time.

Each question contains a "Quantity A" and a "Quantity B," and some also contain common information that applies to both quantities. The four answer choices are always worded exactly as shown in the following example:

$$
x \geq 0
$$

Quantity_A

x

Quantity B

x^{2}
(A) Quantity A is greater.
(B) Quantity B is greater.
(C) The two quantities are equal.
(D) The relationship cannot be determined from the information given.

Solution

If $x=0$, then the two quantities are equal. If $x=2$, then Quantity (B) is greater. Thus, you don't have enough information.

The answer is (D).
Next, take a look at the new math question formats.

Math: Select One or More Answer Choices

According to the Official Guide to the GRE revised General Test, the official directions for "Select One or More Answer Choices" read as follows:

Directions: Select one or more answer choices according to the specific question directions.

If the question does not specify how many answer choices to indicate, indicate all that apply.

The correct answer may be just one of the choices or as many as all of the choices, depending on the question.

No credit is given unless you indicate all of the correct choices and no others.

If the question specifies how many answer choices to indicate, indicate exactly that number of choices.

Note that there is no partial credit. If three of six choices are correct, and you indicate two of the three, no credit is given. If you are told to indicate two choices and you indicate three, no credit is given. It will also be important to read the directions carefully.

Here's a sample question:
If $a b=|a| \times|b|$ and $a b \neq 0$, which of the following must be true?
Indicate all such statements.

A	$a=b$
A	$a>0$ and $b>0$
B	$a b>0$

Note that only one, only two, or all three of the choices may be correct. (Also note the word "must" in the question stem!)

Solution

If $a b=|a| \times|b|$, then you know $a b$ is positive, since the right side of the equation must be positive. If $a b$ is positive, however, that doesn't necessarily mean that a and b are each positive; it simply means that they have the same sign.

Answer choice (A) is not correct because it is not true that a must equal b; for instance, a could be 2 and b could be 3 .

Answer choice (B) is not correct because it is not true that a and b must each be positive; for instance, a could be -3 and b could be -4 .

Now look at choice (C). Since $|a| \times|b|$ must be positive, $a b$ must be positive as well; that is, since two sides of an equation are, by definition, equal to one another, if one side of the equation is positive, the other side must be positive as well. Thus, answer (C) is correct.

> Strategy Tip: Make sure to fully process the statement in the question (simplify it or list the possible scenarios) before considering the answer choices. That is, don't just look at $a b=|a| \times|b|-r a t h e r$, it's your job to draw inferences about the statement before plowing ahead. This will save you time in the long run!

Note that "indicate all that apply" didn't really make the problem harder. This is just a typical Inference-based Quant problem (for more problems like this one, see the Manhattan Prep Number Properties guide as well as the Quantitative Comparisons \& Data Interpretation guide).

After all, not every real-life problem has exactly five possible solutions; why should problems on the GRE?

Math: Numeric Entry

This question type requires the test-taker to key a numeric answer into a box on the screen. You are not able to work backwards from answer choices, and in many cases, it will be difficult to make a guess. However, the principles being tested are the same as on the rest of the exam.

Here is a sample question:

$$
\text { If } x \Delta y=2 x y-(x-y) \text {, what is the value of } 3 \Delta 4 \text { ? }
$$

Solution

You are given a function involving two variables, x and y, and asked to substitute 3 for x and 4 for y :

$$
\begin{aligned}
& x \Delta y=2 x y-(x-y) \\
& 3 \Delta 4=2(3)(4)-(3-4) \\
& 3 \Delta 4=24-(-1) \\
& 3 \Delta 4=25
\end{aligned}
$$

The answer is $\mathbf{2 5}$.
Thus, you would type 25 into the box.
Okay. You've now got a good start on understanding the structure and question formats of the new GRE. Now it's time to begin fine-tuning your skills.

Chapter 2 of
 Fractions, Decimals, \& Percents

Fractions

In This Chapter...

Manipulating Fractions
Switching Between Improper Fractions and Mixed
Numbers
Division in Disguise
Fraction Operations: Know What to Expect
Comparing Fractions: Cross-Multiply
NEVER Split the Denominator!
Benchmark Values
PickingSmart Numbers: Multiples of the Denominators

When NOT to Use Smart Numbers

Chapter 2

Fractions

This chapter is devoted entirely to understanding what fractions are and how they work from the ground up. Begin by reviewing the two parts of a fraction: the numerator and the denominator.

In the picture above, each circle represents a whole unit. One full circle means the number 1, two full circles represent the number 2, etc. Fractions essentially divide units into parts. The units above have been divided into 4 equal parts, because the denominator of our fraction is 4 . In any fraction, the denominator tells you how many equal pieces a unit has been broken into.

The circle at the top has 3 of the pieces shaded in, and 1 piece unshaded. That's because the top of the fraction is 3 . For any fraction, the numerator tells you how many of the equal pieces you have.

Take a look at how changes to the numerator and denominator change a fraction. First, consider how changes affect the denominator. You've already seen what $3 / 4$ looks like; here is what $3 / 5$ looks like.

The numerator hasn't changed (it's still 3), so you still have 3 shaded pieces. But now the circle has been divided into 5 pieces instead of 4 . One effect is that each piece is now smaller. The fraction $1 / 5$ is smaller than $1 / 4$. Rule: as the denominator of a number gets bigger, the value of the fraction gets smaller. The fraction $3 / 5$ is smaller than $3 / 4$, because each fraction has 3 pieces, but when the circle (or number) is divided into 5 equal portions, each portion is smaller, so three $1 / 5$ portions are less than three $1 / 4$ portions.

As you split the circle into more and more pieces, each piece gets smaller and smaller:

Conversely, as the denominator gets smaller, each piece becomes bigger and bigger.

Now look at what happens as you change the numerator. The numerator tells you how many pieces you have, so if you make the numerator smaller, we get fewer pieces:

Conversely, if you make the numerator larger, you get more pieces. Look more closely at what happens as you get more pieces. In particular, you want to know what happens when the numerator becomes equal to or greater than the denominator. First, notice what happens when you have the same numerator and denominator. If you have $4 / 4$ pieces, this is what the circle looks like:

Remember, the circle represents one whole unit. So when all four parts are filled, you have one full unit, or 1 . So $4 / 4$ is equal to 1 . Rule: if the numerator and denominator of a fraction are the same, that fraction equals 1.

Below is what happens as the numerator becomes larger than the denominator. What does 5/4 look like?

Each circle is only capable of holding 4 pieces, so when you fill up one circle, you have to move on to a second circle and begin filling it up, too. So one way of looking at $5 / 4$ is that you have one complete circle, which you know is equivalent to 1 , and you have an additional $1 / 4$. So another way to write $5 / 4$ is 1 $+1 / 4$. This can be shortened to $1 \frac{1}{4}$ ("one and one-fourth").

In the last example, the numerator was only a little larger than the denominator. But that will not always be the case. The same logic applies to any situation. Look at the fraction 15/4. Once again, this means that each circle (i.e., each whole number) is divided into 4 pieces, and you have 15 pieces.

In this case, you have 3 circles completely filled. To fill 3 circles, you needed 12 pieces. (Note: 3 circles $\times 4$ pieces per circle $=12$ pieces.) In addition to the 3 full circles, you have 3 additional pieces. So you have: $\frac{15}{4}=3+\frac{3}{4}=3 \frac{3}{4}$.

Whenever you have both an integer and a fraction in the same number, you have a mixed number. Any fraction in which the numerator is larger than the denominator (e.g., 5/4) is known as an improper fraction. Improper fractions
and mixed numbers express the same thing. How to convert from improper fractions to mixed numbers and vice-versa will be discussed later in the chapter.

Take a moment to review what you've learned about fractions so far. Every fraction has two components: the numerator and the denominator.

The denominator tells you how many equal pieces each unit circle has. Assuming that the numerator stays the same, as the denominator gets bigger, each piece gets smaller, so the fraction gets smaller as well.

The numerator tells you how many equal pieces you have. Assuming that the denominator stays the same, as the numerator gets bigger, you have more pieces, so the fraction gets bigger.

When the numerator is smaller than the denominator, the fraction will be less than 1 . When the numerator equals the denominator, the fraction equals 1.
When the numerator is larger than the denominator, the fraction is greater than 1.

Check Your Skills

For each of the following sets of fractions, decide which fraction is larger:

1. $\frac{5}{7}$ vs. $\frac{3}{7}$
2. $\frac{3}{10}$ vs. $\frac{3}{13}$

Answers can be found on page 61 .

Manipulating Fractions

The next two sections will discuss how to add, subtract, multiply, and divide fractions. You should already be familiar with these four basic manipulations of arithmetic, but when fractions enter the picture, things can become more complicated.

Below, each manipulation is discussed in turn. Each discussion talks conceptually about what changes are being made with each manipulation, then goes through the actual mechanics of performing the manipulation.

Up first is how to add and subtract fractions.

Fraction Addition and Subtraction

The first thing to recall about addition and subtraction in general is that they affect how many things you have. If you have 3 things, and you add 6 more things, you have $3+6$ or 9 things. If you have 7 things and you subtract 2 of those things, you now have $7-2$ or 5 things. That same basic principle holds true with fractions as well. What this means is that addition and subtraction affect the numerator of a fraction, because the numerator tells you how many things, or pieces, you have.

For example, say you want to add the two fractions $1 / 5$ and $3 / 5$. What you are doing is adding 3 fifths to 1 fifth. (A "fifth" is the very specific pie slice, as seen below.)

If you were dealing with integers, and added 3 to 1 , you would get 4 . The idea is the same with fractions. Now, instead of adding 3 complete units to one complete unit, you're adding 3 fifths to 1 fifth: 1 fifth plus 3 fifths equals 4 fifths.

Notice that when you added the two fractions, the denominator stayed the same. Remember, the denominator tells you how many pieces each unit has been broken into. In other words, it determines the size of the slice. Adding 3 pieces to 1 piece did nothing to change the size of the pieces. Each unit is still broken into 5 pieces; hence there is no change to the denominator. The only effect of the addition was to end up with more pieces, which means that you ended up with a larger numerator.

Be able to conceptualize this process both ways: adding $1 / 5$ and $3 / 5$ to get $4 / 5$, and regarding $4 / 5$ as the sum of $1 / 5$ and $3 / 5$.

$$
\begin{aligned}
& \frac{1}{5}+\frac{3}{5}=\frac{1+3}{5}=\frac{4}{5} \\
& \frac{4}{5}=\frac{1+3}{5}=\frac{1}{5}+\frac{3}{5}
\end{aligned}
$$

Also, you should be able to handle an x (or any variable) in place of one of the numerators:

$$
\begin{aligned}
\frac{1}{5}+\frac{x}{5}=\frac{4}{5} \text { becomes } 1+x & =4 \\
x & =3
\end{aligned}
$$

You can apply the same thinking no matter what the denominator is. Say you want to add $3 / 6$ and $5 / 6$. This is how it looks:

Notice that once again, the only thing that changes during the operation is the numerator. Adding 5 sixths to 3 sixths gives you 8 sixths. The principle is still the same even though it results in an improper fraction.

Again, see the operation both ways:

$$
\frac{3}{6}+\frac{5}{6}=\frac{3+5}{6}=\frac{8}{6} \quad \frac{8}{6}=\frac{3+5}{6}=\frac{3}{6}+\frac{5}{6}
$$

Be ready for a variable as well:

$$
\begin{aligned}
\frac{3}{6}+\frac{x}{6}=\frac{8}{6} \text { becomes } 3+x & =8 \\
x & =5
\end{aligned}
$$

Now look at a slightly different problem. This time you want to add $1 / 4$ and $3 / 8$:

Do you see the problem here? You have one slice on the left and three slices on the right, but the denominators are different, so the sizes of the slices are different. It doesn't make sense in this case simply to add the numerators and get 4 of anything. Fraction addition only works if you can add slices that are all the same size. So now the question becomes, how can you make all the slices the same size?

What you need to do is find a new way to express both of the fractions so that the slices are the same size. For this particular addition problem, take advantage of the fact that one-fourth is twice as big as one-eighth. Look what happens if you take all the fourths in the first circle and divide them in two:

What happened to the fraction? The first thing to note is that the value of the fraction hasn't changed. Originally, you had 1 piece out of 4 . Once you divided every part into 2 , you ended up with 2 pieces out of 8 . So you ended up with twice as many pieces, but each piece was half as big. So you actually ended up with the same amount of "stuff" overall.

What did you change? You ended up with twice as many pieces, which means you multiplied the numerator by 2 , and broke the circle into twice as many pieces, which means you also multiplied the denominator by 2 . So you ended up with $\frac{1 \times 2}{4 \times 2}=\frac{2}{8}$. This concept will be reviewed later, but for now, simply make sure that you understand that $\frac{1}{4}=\frac{2}{8}$.

So without changing the value of $1 / 4$, you have now found a way to rename $1 / 4$ as $2 / 8$, so you can add it to $3 / 8$. Now the problem looks like this:

The key to this addition problem was to find what's called a common denominator. Finding a common denominator simply means renaming the fractions so they have the same denominator. Then, and only then, can you add the renamed fractions.

All the details of fraction multiplication shouldn't concern you just yet (don't worry-it's coming), but you need to take a closer look at what you did to the fraction $\frac{1}{4}$ in order to rename it. Essentially what you did was multiply this fraction by $\frac{2}{2}: \frac{1}{4}=\frac{1}{4} \times \frac{2}{2}=\frac{1 \times 2}{4 \times 2}=\frac{2}{8}$. As was discussed earlier, any fraction in which the numerator equals the denominator is 1 . So $2 / 2=1$. That means that all the process did was multiply $1 / 4$ by 1 . And anything times 1 equals itself. So
the appearance of $1 / 4$ was changed by multiplying the top and bottom by 2 , but its value was not.

Finding common denominators is a critical skill when dealing with fractions. Here's another example to consider (pay close attention to how the process works). This time, add $1 / 4$ and $1 / 3$:

Once again, you are adding two fractions with different-sized pieces. There's no way to complete the addition without finding a common denominator. But remember, the only way to find common denominators is by multiplying one or both of the fractions by some version of 1 (such as $2 / 2,3 / 3,4 / 4$, etc.). Because you can only multiply by 1 (the number that won't change the value of the fraction), the only way you can change the denominators is through multiplication. In the last example, the two denominators were 4 and 8 . You could make them equal because $4 \times 2=8$.

Because all you can do is multiply, what you really need when you look for a common denominator is a common multiple of both denominators. In the last example, 8 was a multiple of both 4 and 8 .

In this problem, find a number that is a multiple of both 4 and 3 . List a few multiples of $4: 4,8,12,16$. Also list a few multiples of $3: 3,6,9,12$, stop. The number 12 is on both lists, so 12 is a multiple of both 3 and 4 . Now change both fractions so that they have a denominator of 12 .

Begin by changing $1 / 4$. You have to ask the question, what times 4 equals 12 ? The answer is 3 . That means that you want to multiply $1 / 4$ by $3 / 3: \frac{1}{4} \times \frac{3}{3}=\frac{3}{12}$. So $1 / 4$ is the same as $3 / 12$. Once again, look at the circles to verify these fractions are the same:

Now you need to change $1 / 3$. What times 3 equals 12 ? The answer is $4 \times 3=$ 12 , so you need to multiply $1 / 3$ by $4 / 4: \frac{1}{3}=\frac{1}{3} \times \frac{4}{4}=\frac{4}{12}$. Now both of your fractions have a common denominator, so you're ready to add:

$$
\frac{1}{4}+\frac{1}{3}=\frac{1 \times 3}{4 \times 3}+\frac{1 \times 4}{3 \times 4}=\frac{3}{12}+\frac{4}{12}=\frac{7}{12}
$$

And now you know everything you need to add any two fractions together.
Here's a recap what you've done so far:

- When adding fractions, you have to add equal-sized pieces. That means you need the denominators to be the same for any fractions you want to add. If the denominators are the same, then you add the numerators and keep the denominator the same.

$$
\frac{2}{9}+\frac{5}{9}=\frac{7}{9}
$$

- If the two fractions have different denominators, you need to find a common multiple for the two denominators first.

$$
\frac{1}{4}+\frac{2}{5}=?
$$

Common multiple of 4 and $5=20$

- Once you know the common multiple, figure out what number for each fraction multiplies the denominator to reach the common multiple.

$$
\frac{1}{4} \times \frac{5}{5}=\frac{5}{20} \quad \frac{2}{5} \times \frac{4}{4}=\frac{8}{20}
$$

- Using the number you found in the last step, multiply each fraction that needs to be changed by the appropriate fractional version of 1 (such as 5/5).
- Now that the denominators are the same, you can add the fractions.

$$
\frac{5}{20}+\frac{8}{20}=\frac{13}{20}
$$

This section would not be complete without a discussion of subtraction. The good news is that subtraction works exactly the same way as addition! The only difference is that when you subtract, you end up with fewer pieces instead of more pieces, so you end up with a smaller numerator.

Consider the following problem. What is $5 / 7-1 / 3$?

Just like addition, subtraction of fractions requires a common denominator. So you need to figure out a common multiple of the two denominators: 7 and 3 . The number 21 is a common multiple, so use that.

Change $5 / 7$ so that its denominator is 21 . Since 3 times 7 equals 21 , you multiply $5 / 7$ by $3 / 3: \frac{5}{7}=\frac{5}{7} \times \frac{3}{3}=\frac{15}{21}$.

Now do the same for $1 / 3$. Since 7 times 3 equals 21 , you multiply $1 / 3$ by $7 / 7$: $\frac{1}{3}=\frac{1}{3} \times \frac{7}{7}=\frac{7}{21}$. The subtraction problem can be rewritten as $\frac{15}{21}-\frac{7}{21}$, which you can easily solve:

Finally, if you have a variable in the subtraction problem, nothing really changes. One way or another, you still have to find a common denominator.

Here's another problem:

$$
\text { Solve: } \frac{1}{4}+\frac{x}{5}=\frac{13}{20}
$$

First, subtract 1/4 from each side:

$$
\frac{x}{5}=\frac{13}{20}-\frac{1}{4}
$$

Perform the subtraction by finding the common denominator, which is 20 :

$$
\frac{13}{20}-\frac{1 \times 5}{4 \times 5}=\frac{13}{20}-\frac{5}{20}=\frac{8}{20}
$$

So you have $\frac{x}{5}=\frac{8}{20}$.
There are several options at this point. The one you should use right now is to convert to the common denominator again (which is still 20):

$$
\frac{x \times 4}{5 \times 4}=\frac{4 x}{20}=\frac{8}{20}
$$

Now set the numerators equal: $\quad 4 x=8$

$$
\text { Divide by 4: } \quad x=2
$$

If you spot the common denominator of all three fractions at the start, you can save work:

$$
\begin{aligned}
\frac{1}{4}+\frac{x}{5} & =\frac{13}{20} \\
\frac{1 \times 5}{4 \times 5}+\frac{x \times 4}{5 \times 4} & =\frac{13}{20} \\
\frac{5}{20}+\frac{4 x}{20} & =\frac{13}{20} \\
5+4 x & =13 \\
4 x & =8 \\
x & =2
\end{aligned}
$$

Convert to a common denominator of 20:

Clean up:

Set numerators equal:
Subtract 5:

Check Your Skills

Evaluate the following expressions:
3. $\frac{1}{2}+\frac{3}{4}=$
4. $\frac{2}{3}-\frac{3}{8}=$
5. Solve for $x \cdot \frac{x}{5}+\frac{2}{5}=\frac{13}{5}$
6. Solve for $x . \frac{x}{3}-\frac{4}{9}=\frac{8}{9}$

Answers can be found on page 61 .

Simplifying Fractions

Suppose you were presented with this question on the GRE:

$$
\frac{5}{9}+\frac{1}{9}=?
$$

(a) $\frac{4}{9}$
(b) $\frac{5}{9}$
(c) $\frac{2}{3}$

This question involves fraction addition, which you now know how to do. So begin by adding the two fractions: $\frac{5}{9}+\frac{1}{9}=\frac{5+1}{9}=\frac{6}{9}$. But $6 / 9$ isn't one of the answer choices. Did something go wrong? No, it didn't, but there is an important step missing.

The fraction $6 / 9$ doesn't appear as an answer choice because it isn't simplified (in other words, reduced). To understand what that means, recall a topic that should be familiar: prime factors. Break down the numerator and denominator into prime factors: $\frac{6}{9} \rightarrow \frac{2 \times 3}{3 \times 3}$.

Notice that both the numerator and the denominator have a 3 as one of their prime factors. Because neither multiplying nor dividing by 1 changes the value of a number, you can effectively cancel the $\frac{3}{3}$, leaving behind only $\frac{2}{3}$. That is, $\frac{6}{9}=\frac{2 \times 3}{3 \times 3}=\frac{2}{3} \times \frac{3}{3}=\frac{2}{3}$.

Look at another example of a fraction that can be reduced: $\frac{18}{60}$. Once again, begin by breaking down the numerator and denominator into their respective prime factors: $\frac{18}{60}=\frac{2 \times 3 \times 3}{2 \times 2 \times 3 \times 5}$. This time, the numerator and the denominator have two factors in common: a 2 and a 3 . Once again, split this fraction into two pieces:

$$
\frac{2 \times 3 \times 3}{2 \times 2 \times 3 \times 5}=\frac{3}{2 \times 5} \times \frac{2 \times 3}{2 \times 3}=\frac{3}{10} \times \frac{6}{6}
$$

The fraction $\frac{6}{6}$ is the same as 1 , so really you have $\frac{3}{10}$, which leaves you with $\frac{3}{10}$.

As you practice, you should be able to simplify fractions by recognizing the largest common factor in the numerator and denominator and canceling it out. For example, you should recognize that in the fraction $\frac{18}{60}$, both the numerator and the denominator are divisible by 6 . That means you could think of the fraction as $\frac{3 \times 6}{10 \times 6}$. You can then cancel out the common factors on top and bottom and simplify the fraction:

$$
\frac{18}{60}=\frac{3 \times 6}{10 \times 6}=\frac{3}{10} .
$$

Check Your Skills

Simplify the following fractions.
7. $\frac{25}{40}$
8. $\frac{16}{24}$

Answers can be found on page 61 .

Fraction Multiplication

Now that you know how to add and subtract fractions, you're ready to multiply and divide them. First up is multiplication. Consider what happens when you multiply a fraction by an integer.

Start by considering the question, what is $1 / 2 \times 6$? When you added and subtracted fractions, you were really adding and subtracting pieces of numbers. With multiplication, conceptually it is different: you start with an amount, and leave a fraction of it behind. For instance, in this example, what it's really asking is, what is $1 / 2$ of 6 ? There are a few ways to conceptualize what that means.

You want to find one-half of six. One way to do that is to split 6 into 2 equal parts and keep one of those parts.

Because the denominator of the fraction is 2, divide 6 into 2 equal parts of 3 . Then, because the denominator is 1 , keep one of those parts. So $1 / 2 \times 6=3$.

You can also think of this multiplication problem a slightly different way. Consider each unit circle of the 6 . What happens if you break each of those circles into 2 parts, and keep 1 part?

Divide every circle into 2 parts, and keep 1 out of every 2 parts. You end up with 6 halves, or $6 / 2$, written as a fraction. But $6 / 2$ is the same as 3 , so really, $1 / 2$ of 6 is 3 :

Either way you conceptualize this multiplication, you end up with the same answer. Try another example:

What is $2 / 3 \times 12$?
Once again, it's really asking, what is $2 / 3$ of 12 ? In the previous example, when you multiplied a number by $1 / 2$, you divided the number into 2 parts (as indicated by the denominator). Then you kept 1 of those parts (as indicated by the numerator).

By the same logic, if you want to get $2 / 3$ of 12 , you need to divide 12 into 3 equal parts, because the denominator is 3 . Then keep 2 of those parts, because the numerator is 2 . As with the first example, there are several ways of conceptualizing this. One way is to divide 12 into 3 equal parts, and keep 2 of those parts:

keep 2 parts

The number 12 is divided into 3 equal parts of 4 , and 2 of those parts are kept. Because 2 groups of 4 is 8 , then $2 / 3 \times 12=8$.

Another way to conceptualize $2 / 3 \times 12$ is to once again look at each unit of 12 . If you break each unit into 3 pieces (because the denominator of the fraction is 3) and keep 2 out of every 3 pieces (because the numerator is 2) you end up with this:

You ended up with 24 thirds, or $24 / 3$. But $24 / 3$ is the same as 8 , so $2 / 3$ of 12 is 8:

Once again, either way you think about this multiplication problem, you arrive at the same conclusion: $2 / 3 \times 12=8$.

Now that you've seen what happens when you multiply an integer by a fraction, it's time to multiply a fraction by a fraction. It's important to remember that the basic logic is the same. When you multiply any number by a fraction, the denominator of the fraction tells you how many parts to divide the number into, and the numerator tells you how many of those parts to keep. Now consider how that logic applies to fractions:

$$
\text { What is } \frac{1}{2} \times \frac{3}{4} ?
$$

This question is asking, what is $1 / 2$ of $3 / 4$? So once again, divide $3 / 4$ into 2 equal parts. This time, though, because you're splitting a fraction, you're going
to do things a little differently. Because $3 / 4$ is a fraction, the unit circle has already broken a number into 4 equal pieces. So, break each of those pieces into 2 smaller pieces:

Cut each pis in half.

Now that you've divided each piece into 2 smaller pieces, keep 1 from each pair of those smaller pieces:

Keep 1 out each of the: resulting pieces.

So what did you end up with? First of all, the result is going to remain a fraction. The original number was $3 / 4$. In other words, a number was broken into 4 parts, and you kept 3 of those parts. Now the number has been broken into 8 pieces, not 4 , so the denominator is now 8 . However, you still have 1×3 $=3$ of those parts, so the numerator is still 3 . So $1 / 2$ of $3 / 4$ is $3 / 8$.

Try one more. What is $5 / 6 \times 1 / 2$? Once again, start by dividing the fraction into 6 equal pieces:

Cut each pis into 6 small pieces.

Now keep 5 out of every 6 parts:

Keep 5 of th 6.

So what did you end up with? Now you have a number divided into 12 parts, so the denominator is 12 , and you keep $1 \times 5=5$ parts, so the numerator is 5 . Thus, $5 / 6$ of $1 / 2$ is $5 / 12$.

Multiplying fractions would get very cumbersome if you always resorted to slicing circles up into increasingly tiny pieces. So now consider, in a general way, the mechanics of multiplying a number by a fraction.

First, note the following crucial difference between two types of arithmetic operations on fractions:

Addition \& Subtraction:

Only the numerator changes (once you've found a common denominator).

Multiplication \& Division:

Both the numerator and the denominator typically change.
The way to generalize fraction multiplication is this: multiply the numerators together to get the new numerator, and multiply the denominators together to get the new denominator. Then, simplify (or reduce):

$$
\begin{aligned}
& \frac{1}{2} \times \frac{6}{1}=\frac{1 \times 6}{2 \times 1}=\frac{6}{2}=3 \\
& \frac{2}{3} \times \frac{12}{1}=\frac{2 \times 12}{3 \times 1}=\frac{24}{3}=8 \\
& \frac{1}{2} \times \frac{3}{4}=\frac{1 \times 3}{2 \times 4}=\frac{3}{8} \\
& \frac{5}{6} \times \frac{1}{2}=\frac{5 \times 1}{6 \times 2}=\frac{5}{12}
\end{aligned}
$$

In practice, when you multiply fractions, don't worry about the conceptual foundation once you understand the mechanics:

Finally, whenever you multiply fractions, always look to cancel common factors, in order to reduce your answer without doing unnecessary work:

$$
\frac{33}{7} \times \frac{14}{3}=?
$$

The long way to do this is:

$$
33 \times 14=\quad 133
$$

$$
\begin{aligned}
& \times 14 \\
& \hline
\end{aligned}
$$

$$
132
$$

$$
\begin{equation*}
330 \tag{462}
\end{equation*}
$$

$$
7 \times 3=21
$$

You wind up with $\frac{462}{21}$:

$$
\begin{array}{r}
22 \\
2 1 \longdiv { 4 6 2 }
\end{array}
$$

$$
\frac{-42}{42}
$$

$$
\frac{-42}{0}
$$

This work can be simplified greatly by canceling parts of each fraction before multiplying. Always look for common factors in the numerator and
denominator:

$$
\frac{33}{7} \times \frac{14}{3}=\frac{3 \times 11}{7} \times \frac{2 \times 7}{3}
$$

It's now clear that the numerator of the first fraction has a 3 as a factor, which can be canceled out with the 3 in the denominator of the second fraction. (This is because multiplication and division operate at the same level of priority in the PEMDAS operations!) Similarly, the 7 in the denominator of the first fraction can be canceled out by the 7 in the numerator of the second fraction. By crosscanceling these factors, you can save yourself a lot of work:

$$
\frac{z \times 11}{7} \times \frac{2 \times 7}{\not z}=\frac{11}{1} \times \frac{2}{1}=\frac{22}{1}=22
$$

Check Your Skills

Evaluate the following expressions. Simplify all fractions:
9. $\frac{3}{10} \times \frac{6}{7}=$
10. $\frac{5}{14} \times \frac{7}{20}=$

Answers can be found on page 61 .

Fraction Division

Next up is the last of the four basic arithmetic operations on fractions (addition, subtraction, multiplication, and division). This section will be a little different than the other three-it will be different because you're actually going to do fraction division by avoiding division altogether!

You can avoid division entirely because of the relationship between multiplication and division. Multiplication and division are opposite sides of the same coin. Any multiplication problem can be expressed as a division problem, and vice-versa. This is useful because, although the mechanics for multiplication are straightforward, the mechanics for division are more work
and therefore more difficult. Thus, you should express every fraction division problem as a fraction multiplication problem.

Now the question becomes: how do you rephrase a division problem so that it becomes a multiplication problem? The key is reciprocals.

Reciprocals are numbers that, when multiplied together, equal 1. For instance, $3 / 5$ and $5 / 3$ are reciprocals, because $\frac{3}{5} \times \frac{5}{3}=\frac{3 \times 5}{5 \times 3}=\frac{15}{15}=1$.

Another pair of reciprocals is 2 and $1 / 2$, because $2 \times \frac{1}{2}=\frac{2}{1} \times \frac{1}{2}=\frac{2 \times 1}{1 \times 2}=\frac{2}{2}=1$. (Once again, it is important to remember that every integer can be thought of as a fraction.)

The way to find the reciprocal of a number turns out to generally be very easytake the numerator and denominator of a number, and switch them around:

Fraction Reciprocal

Fraction Reciprocal

Reciprocals are important because dividing by a number is the exact same thing as multiplying by its reciprocal. Look at an example to clarify:

What is $6 \div 2$?
This problem shouldn't give you any trouble: 6 divided by 2 is 3 . But it should also seem familiar because it's the exact same problem you dealt with in the discussion on fraction multiplication: $6 \div 2$ is the exact same thing as $6 \times 1 / 2$.

$$
\begin{aligned}
& 6 \div 2=3 \\
& 6 \times 1 / 2=3
\end{aligned} \longleftrightarrow \text { Dividing by } 2 \text { is the same as multiplying by } 1 / 2
$$

To change from division to multiplication, you need to do two things. First, take the divisor (the number to the right of the division sign-in other words, what you are dividing $b y$) and replace it with its reciprocal. In this problem, 2 is the
divisor, and $1 / 2$ is the reciprocal of 2 . Then, switch the division sign to a multiplication sign. So $6 \div 2$ becomes $6 \times 1 / 2$. Then, proceed to do the multiplication:

$$
6 \div 2=6 \times \frac{1}{2}=\frac{6}{1} \times \frac{1}{2}=\frac{6 \times 1}{1 \times 2}=\frac{6}{2}=3
$$

This is obviously overkill for $6 \div 2$, but try another one. What is $5 / 6 \div 4 / 7$?
Once again, start by taking the divisor (4/7) and replacing it with its reciprocal (7/4). Then switch the division sign to a multiplication sign. So $5 / 6 \div 4 / 7$ is the same as $5 / 6 \times 7 / 4$. Now do fraction multiplication:

$$
\frac{5}{6} \div \frac{4}{7}=\frac{5}{6} \times \frac{7}{4}=\frac{5 \times 7}{6 \times 4}=\frac{35}{24}
$$

Note that the fraction bar (sometimes indicated with a slash) is another way to express division. After all, $6 \div 2=6 / 2=\frac{6}{2}=3$. In fact, the division sign, \div, looks like a little fraction. So if you see a "double-decker" fraction, don't worry. It's just one fraction divided by another fraction.

$$
\frac{\frac{5}{6}}{\frac{4}{7}}=\frac{5}{6} \div \frac{4}{7}=\frac{5}{6} \times \frac{7}{4}=\frac{35}{24}
$$

To recap:

- When you are confronted with a division problem involving fractions, it is always easier to perform multiplication than division. For that reason, every fraction division problem should be rewritten as a multiplication problem.
- To do so, replace the divisor with its reciprocal. To find the reciprocal Fraction Reciprocal of a number, you simply need to switch the numerator and denominator (ex. 2/9 $\rightarrow 9 / 2$).

Fraction Reciprocal

$$
\frac{2}{9} \rightarrow \frac{9}{2}
$$

- Remember that a number multiplied by its reciprocal equals 1 .

$$
\frac{9}{2} \times \frac{2}{9}=1
$$

- After that, switch the division symbol to a multiplication symbol, and perform fraction multiplication.

$$
\frac{3}{4} \div \frac{2}{9} \rightarrow \frac{3}{4} \times \frac{9}{2}=\frac{27}{8}
$$

Check Your Skills

Evaluate the following expressions. Simplify all fractions.
11. $\frac{1}{6} \div \frac{1}{11}=$
12. $\frac{8}{5} \div \frac{4}{15}=$

Answers can be found on page 62.

Fractions in Equations

When an x appears in a fraction multiplication or division problem, you'll use essentially the same concepts and techniques to solve:

$$
\frac{4}{3} x=\frac{15}{8}
$$

Divide both sides by :

$$
\begin{aligned}
& x=\frac{15}{8} \div \frac{4}{3} \\
& x=\frac{15}{8} \times \frac{3}{4}=\frac{45}{32}
\end{aligned}
$$

An important tool to add to your arsenal at this point is cross-multiplication. This tool comes from the principle of making common denominators.

$$
\frac{x}{7}=\frac{5}{8}
$$

The common denominator of 7 and 8 is $7 \times 8=56$. So you have to multiply the left fraction by $8 / 8$ and the right fraction by $7 / 7$:

$$
\frac{8 \times x}{8 \times 7}=\frac{5 \times 7}{8 \times 7} \rightarrow \frac{8 x}{56}=\frac{35}{56}
$$

Now you can set the numerators equal: $8 x=5 \times 7=35$

$$
x=35 / 8
$$

However, in this situation you can avoid having to determine the common denominator by cross-multiplying each numerator times the other denominator and setting the products equal to each other:

The very important technique of cross-multiplying will be further discussed later in this chapter.

Check Your Skills

Solve for x in the following equations:
13. $\frac{3}{4} x=\frac{3}{2}$
14. $\frac{x}{6}=\frac{5}{3}$

Answers can be found on page 62 .

Switching Between Improper Fractions and Mixed Numbers

Recall the earlier discussion of why $5 / 4$ equals $11 / 4$ and how to switch between improper fractions and mixed numbers.

To do this, the numerator needs to be discussed in more detail. The numerator is a description of how many parts you have. The fraction $5 / 4$ tells you that you have 5 parts. But you have some flexibility in how you arrange those 5 parts. For instance, you already expressed it as $4 / 4+1 / 4$, or $1+1 / 4$. Essentially, what you did was to split the numerator into two pieces: 4 and 1. If you wanted to express this as a fraction, you could say that $5 / 4$ becomes $\frac{4+1}{4}$. This hasn't changed anything, because $4+1$ equals 5 , so you still have the same number of parts.

Then, as noted above, you can split the fraction into two separate fractions. For instance $\frac{4+1}{4}$ becomes $\frac{4}{4}+\frac{1}{4}$. This is the same as saying that 5 fourths equals 4 fourths plus 1 fourth. So there are several different ways of representing the same fraction. $\frac{5}{4}=\frac{4+1}{4}=\frac{4}{4}+\frac{1}{4}$. Here is a visual representation:

As a general rule, you can always split the numerator of a fraction into different parts and thus split a fraction into multiple fractions. This is just reversing the process of adding fractions. When you add fractions, take two fractions with the same denominator and combine them into one fraction. Here do the exact opposite-turn one fraction into two separate fractions, each with the same denominator. And now that the fraction $5 / 4$ is split into two fractions, you can take advantage of the fact that fractions, at their essence, represent division. As was discussed earlier, $4 / 4=1$, and another way to think of $4 / 4$ is $4 \div 4$.

To switch from an improper fraction to a mixed number, figure out how many complete units there are. To do that, figure out the largest multiple of the denominator that is less than or equal to the numerator. For the fraction 5/4, 4 is the largest multiple of 4 that is less than 5 . So split the fraction into $4 / 4$ and $1 / 4$. Note that $4 / 4$ equals 1 , so the mixed number is $11 / 4$.

Try it again with the fraction $15 / 4$. This time, the largest multiple of 4 that is less than 15 is 12 . So you can split the fraction $15 / 4$ into $12 / 4+3 / 4$. In other words, $\frac{15}{4}=\frac{12+3}{4}=\frac{12}{4}+\frac{3}{4}$. And $12 / 4=3$, so the fraction $15 / 4$ becomes the mixed number $33 / 4$.

Try one with a different denominator. How do you turn the fraction 16/7 into a mixed number? This time you need the largest multiple of 7 that is less than or equal to 16 . The number 14 is the largest multiple of 7 that is less than 16 , so once again split the fraction $16 / 7$ into $14 / 7$ and $2 / 7$. In other words, $\frac{16}{7}=\frac{14+2}{7}=\frac{14}{7}+\frac{2}{7}$. Because 14 divided by 7 equals 2 , your mixed number is $2^{2} / 7$.

Check Your Skills

Change the following improper fractions to mixed numbers:
15. $\frac{11}{6}$
16. $\frac{100}{11}$

Answers can be found on page 62.

Changing Mixed Numbers to Improper Fractions

Now that you know how to change a number from an improper fraction to a mixed number (or proper fraction), you also need to be able to do the reverse. Suppose you have the mixed number $5 / 3$. How do you turn this number into a fraction?

Remember that you can think of any integer as a fraction. The number 1, for instance, can be thought of many different ways. It can be thought of as $1 / 1$. It can also be thought of as $2 / 2$. In other words, a unit circle can be split into 2 equal pieces, with 2 of those pieces forming a whole unit circle again. 1 can also be written as $3 / 3,4 / 4,5 / 5$, etc.

In fact, you can think of the process of turning mixed numbers into improper fractions as simple fraction addition. The fraction $52 / 3$ is the same thing as $5+$ $2 / 3$, so you can think of it as $\frac{5}{1}+\frac{2}{3}$. Now you know what to do-change $\frac{5}{1}$ so that it has a denominator of 3 . The way to do that is to multiply $\frac{5}{1}$ by $\frac{3}{3}$, which equals $\frac{5}{1} \times \frac{3}{3}=\frac{5 \times 3}{1 \times 3}=\frac{15}{3}$. So the mixed number is really
$\frac{15}{3}+\frac{2}{3}=\frac{15+2}{3}=\frac{17}{3}$.

Check Your Skills

Change the following mixed numbers to improper fractions.
17. $33 / 4$
$18.52 / 3$
Answers can be found on page 62.

Division in Disguise

Sometimes, dividing fractions can be written in a confusing way. Consider one of the previous examples:
can also be written as a "double-decker," or complex, fraction $\frac{\frac{1}{2}}{\frac{3}{4}}$
like this:
Do not be confused. You can rewrite this as the top fraction divided by the bottom fraction, and solve it normally (by using the reciprocal of the bottom fraction and then multiplying):

$$
\frac{\frac{1}{2}}{\frac{3}{4}}=\frac{1}{2} \div \frac{3}{4}=\frac{1}{2} \times \frac{4}{3}=\frac{4}{6}=\frac{2}{3}
$$

Here's a speed tip for problems like this: notice that, quite often, you can quickly simplify by multiplying both the top fraction and the bottom fraction by a common denominator:

$$
\frac{\frac{1}{2}}{\frac{3}{4}}=\frac{\frac{1}{2} \times 4}{\frac{3}{4} \times 4}=\frac{2}{3}
$$

Check Your Skills

Evaluate the following complex fractions by multiplying the top and bottom fractions by a common denominator:
19. $\frac{\frac{3}{5}}{\frac{2}{3}}=$?
20. $\frac{\frac{5}{7}}{\frac{1}{4}}=$?

Answers can be found on page 62 .

Fraction Operations: Know What to Expect

Adding and subtracting fractions leads to expected results: when you add two positive fractions, you get a larger number; when you subtract a positive fraction from something else, you get a smaller number.

However, multiplying by fractions between 0 and 1 yields unexpected results:

$$
9 \times \frac{1}{3}=3 \quad 3<9
$$

Multiplying a number by a fraction between 0 and 1 creates a product smaller than the original number. Note that this is also true when the original number is a fraction:

$$
\frac{1}{2} \times \frac{1}{4}=\frac{1}{8} \quad \frac{1}{8}<\frac{1}{2}
$$

Conversely, dividing by a fraction between 0 and 1 yields a quotient, or result, that is larger than the original number:

$$
\frac{6}{\frac{3}{4}}=6 \div \frac{3}{4}=6 \times \frac{4}{3}=\frac{24}{3}=8 \quad 8>6
$$

This is also true when the original number is a fraction:

$$
\frac{\frac{1}{4}}{\frac{5}{6}}=\frac{1}{4} \div \frac{5}{6}=\frac{1}{4} \times \frac{6}{5}=\frac{6}{20}=\frac{3}{10} \quad \frac{3}{10}>\frac{1}{4}
$$

Check Your Skills

21. $\frac{1}{2} \times \frac{1}{4}=$?
22. $\frac{1}{2} \div \frac{1}{4}=$?

Answers can be found on page 62.

Comparing Fractions: Cross-Multiply

Earlier you were introduced to the technique of cross-multiplying in the context of solving for a variable in an equation that involved fractions. Now look at another use of cross-multiplication:

$$
\text { Which fraction is greater, } \frac{7}{9} \text { or } \frac{4}{5} ?
$$

The traditional technique used to compare fractions involves finding a common denominator, multiplying, and comparing the two fractions. The common denominator of 9 and 5 is 45 .

Thus, $\frac{7}{9}=\frac{35}{45}$ and $\frac{4}{5}=\frac{36}{45}$. Since $35<36$, you can see that $\frac{4}{5}$ is slightly bigger than $\frac{7}{9}$.

However, there is a shortcut to comparing fractions called (you guessed it): cross-multiplication. This is a process that involves multiplying the numerator of one fraction with the denominator of the other fraction, and vice-versa. Here's how it works:

Set up the fractions next to each oth
Cross-multiply the fractions and pu1 each answer by the corresponding numerator (Not the denominator!).

Since 35 is less than 36 , the first fraction must be less than the secon one.

Check Your Skills

23. Which fraction is greater? $\frac{4}{13}$ or $\frac{1}{3}$
24. Which fraction is smaller? $\frac{5}{9}$ or $\frac{7}{13}$

Answers can be found on pages 62-63.

NEVER Split the Denominator!

One final rule-perhaps the most important-is one that you must always remember when working with fractions that have an expression (more than one term) in the numerator or denominator. Three examples are:
(a) $\frac{15+10}{5}$
(b) $\frac{5}{15+10}$
(c) $\frac{15+10}{5+2}$

In example (a), the numerator is expressed as a sum.
In example (b), the denominator is expressed as a sum.
In example (c), both the numerator and the denominator are expressed as sums.
When simplifying fractions that incorporate sums (or differences), remember this rule: You may split up the terms of the numerator, but you may never split the terms of the denominator.

Thus, the terms in example (a) may be split:

$$
\frac{15+10}{5}=\frac{15}{5}+\frac{10}{5}=3+2=5
$$

But the terms in example (b) may not be split:

$$
\frac{5}{15+10} \neq \frac{5}{15}+\frac{5}{10} \text { No! }
$$

Instead, simplify the denominator first:

$$
\frac{5}{15+10}=\frac{5}{25}=\frac{1}{5}
$$

The terms in example (c) may not be split either:

$$
\frac{15+10}{5+2} \neq \frac{15}{5}+\frac{10}{2} \text { No! }
$$

Instead, simplify both parts of the fraction:

$$
\frac{15+10}{5+2}=\frac{25}{7}=3 \frac{4}{7}
$$

Often, GRE problems will involve complex fractions with variables. On these problems, it is tempting to split the denominator. Do not fall for it!

It is tempting to perform the following simplification:

$$
\frac{5 x-2 y}{x-y}=\frac{5 x}{x}-\frac{2 y}{y}=5-2=3 \quad \text { No }!
$$

This is wrong because you cannot split terms in the denominator.
The reality is that $\frac{5 x-2 y}{x-y}$ cannot be simplified further.

On the other hand, the expression $\frac{6 x-15 y}{10}$ can be simplified by splitting the difference, because this difference appears in the numerator. Thus:

$$
\frac{6 x-15 y}{10}=\frac{6 x}{10}-\frac{15 y}{10}=\frac{3 x}{5}-\frac{3 y}{2}
$$

Check Your Skills

Simplify the following fractions:
25. $\frac{13+7}{5}$
26. $\frac{21+6}{7+6}$
27. $\frac{48 a+12 b}{a+b}$
28. $\frac{9 g-6 h}{6 g-4 h}$

Answers can be found on page 63.

Benchmark Values

You will use a variety of estimating strategies on the GRE. One important strategy for estimating with fractions is to use Benchmark Values. These are simple fractions with which you are already familiar:

$$
\frac{1}{10}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3} \text {, and } \frac{3}{4}
$$

You can use Benchmark Values to compare fractions:
Which is greater: $\frac{127}{255}$ or $\frac{162}{320}$?

If you recognize that 127 is less than half of 255 , and 162 is more than half of 320 , you will save yourself a lot of cumbersome computation.

You can also use Benchmark Values to estimate computations involving fractions:

$$
\text { Approximately what is } \frac{10}{22} \text { of } \frac{5}{18} \text { of } 2,000 ?
$$

If you recognize that these fractions are very close to the Benchmark Values $\frac{1}{2}$ and $\frac{1}{4}$, you can estimate:

$$
\frac{1}{2} \text { of } \frac{1}{4} \text { of } 2,000=\frac{1}{2} \times \frac{1}{4} \times 2,000=250 ; \text { therefore, } \frac{10}{22} \text { of } \frac{5}{18} \text { of } 2,000 \approx 250
$$

Notice that the rounding errors compensated for each other:

$$
\begin{aligned}
& \frac{10}{22} \approx \frac{10}{20}=\frac{1}{2} \text { You decreased the denominator, so you rounded up: } \\
& \frac{10}{22}<\frac{1}{2} \\
& \frac{5}{18} \approx \frac{5}{20}=\frac{1}{4} \text { You increased the denominator, so you rounded down: } \\
& \frac{5}{18}>\frac{1}{4}
\end{aligned}
$$

Note also that $\frac{10}{22} \times \frac{5}{18} \times 2,000=\frac{100,000}{396}=\frac{25,000}{99}=252.5 \overline{25}$, so your estimation was very close.

If instead you had rounded $\frac{5}{18}$ to $\frac{6}{18}=\frac{1}{3}$ instead, then you would have rounded both fractions up. This would lead to a slight but systematic overestimation:

$$
\frac{1}{2} \times \frac{1}{3} \times 2000 \approx 333
$$

Try to make your rounding errors partially cancel each other out by rounding some numbers up and others down.

Check Your Skills

29. Which is greater: $\frac{123}{250}$ or $\frac{171}{340}$
30. Approximate $\left(\frac{15}{58}\right)\left(\frac{9}{19}\right) 403$

Answers can be found on page 63.

Picking Smart Numbers: Multiples of the Denominators

Abstract

Sometimes, fraction problems on the GRE include unspecified numerical amounts; sometimes these unspecified amounts are described by variables, other times they are not. In these cases, you often can pick real numbers to stand in for the variables. To make the computation easier, choose Smart Numbers equal to common multiples of the denominators of the fractions in the problem.

For example, consider this problem:
The Crandalls's hot tub is halfway filled. Their swimming pool, which has a capacity four times that of the hot tub, is filled to four-fifths of its capacity. If the hot tub is drained into the swimming pool, to what fraction of its capacity will the swimming pool be filled?

The denominators in this problem are 2 (from $1 / 2$ of the hot tub) and 5 (from $4 / 5$ of the swimming pool). The Smart Number in this case is the least common denominator, which is 10 . Therefore, assign the hot tub, the smaller quantity, a capacity of 10 units. Since the swimming pool has a capacity 4 times that of the hot tub, the swimming pool has a capacity of 40 units. The hot tub is only halfway filled; therefore, it has 5 units of water in it. The swimming pool is four-fifths of the way filled, so it has 32 units of water in it.

Add the 5 units of water from the hot tub to the 32 units of water that are already in the swimming pool: $32+5=37$.

With 37 units of water and a total capacity of 40 , the pool will be filled to $\frac{37}{40}$ of its total capacity:

Check Your Skills

Choose Smart Numbers to solve the following problem:
31. Mili's first-generation uHear is filled to $1 / 2$ capacity with songs. Her second-generation uHear, which has 3 times the capacity of her firstgeneration uHear, is filled to $4 / 5$ capacity. Will Mili be able to transfer all of her music from her first-generation uHear to her second-generation uHear?

Answer can be found on page 63.

When NOT to Use Smart Numbers

In some problems, even though an amount might be unknown to you, it is actually specified in the problem in another way-specifically, because some other related quantity is given. In these cases, you cannot use Smart Numbers to assign real numbers to the variables. For example, consider this problem:

Mark's comic book collection contains $1 / 3$ Killer Fish comics and $3 / 8$ Shazaam Woman comics. The remainder of his collection consists of Boom comics. If Mark has 70 Boom comic books, how many comic books does he have in his entire collection?

Even though you do not know the number of comics in Mark's collection, you can see that the total is not completely unspecified. You know a piece of the total: 70 Boom comics. You can use this information to find the total. Do not use Smart Numbers here. Instead, solve problems like this one by figuring out how big the known piece is; then, use that knowledge to find the size of the whole. You will need to set up an equation and solve:

$$
\frac{1}{3} \text { Killer Fish }+\frac{3}{8} \text { Shazaam Woman }=\frac{17}{24} \text { comics that are not Boom }
$$

Therefore, $\frac{24}{24}-\frac{17}{24}=\frac{7}{24}$ of the books are in fact Boom comic books.

$$
\begin{aligned}
& \frac{7}{24} x=70 \\
& x=70 \times \frac{24}{7} \\
& x=240
\end{aligned}
$$

Thus, Mark has 240 comics.
In summary, do pick Smart Numbers when no amounts are given in the problem, but do not pick Smart Numbers when any amount or total is given!

Check Your Skills

Do not choose Smart Numbers to solve the following problem.
32. John spends $1 / 3$ of his waking hours working, $1 / 5$ of his waking hours eating meals, $3 / 10$ of his waking hours at the gym, and 2 hours going to and from work. He engages in no other activities while awake. How many hours is John awake?

Check Your Skills Answer Key

1. $\frac{5}{7}$: The denominators of the two fractions are the same, but the numerator of $\frac{5}{7}$ is bigger, so $\frac{5}{7}>\frac{3}{7}$.
2. $\frac{3}{10}$: The numerators of the two fractions are the same, but the denominator of $\frac{3}{10}$ is smaller, so $\frac{3}{10}>\frac{3}{13}$.
3. $\frac{5}{4}: \frac{1}{2}+\frac{3}{4}=\frac{1}{2} \times \frac{2}{2}+\frac{3}{4}=\frac{2}{4}+\frac{3}{4}=\frac{2+3}{4}=\frac{5}{4}$
4. $\frac{7}{24}: \frac{2}{3}-\frac{3}{8}=\frac{2}{3} \times \frac{8}{8}-\frac{3}{8} \times \frac{3}{3}=\frac{16}{24}-\frac{9}{24}=\frac{16-9}{24}=\frac{7}{24}$
5.

$$
\text { 11: } \begin{aligned}
\frac{x}{5}+\frac{2}{5} & =\frac{13}{5} \\
\frac{x}{5} & =\frac{13}{5}-\frac{2}{5} \\
\frac{x}{5} & =\frac{11}{5} \\
x & =11
\end{aligned}
$$

6.

$$
\text { 4: } \begin{aligned}
\frac{x}{3}-\frac{4}{9} & =\frac{8}{9} \\
\frac{x}{3} & =\frac{8}{9}+\frac{4}{9} \\
\frac{x}{3} & =\frac{12}{9} \\
\frac{x}{3} & \times \frac{3}{3}=\frac{12}{9} \\
\frac{3 x}{9} & =\frac{12}{9} \\
3 x & =12 \\
x & =4
\end{aligned}
$$

7. $\frac{5}{8}: \frac{25}{40}=\frac{5 \times 5}{8 \times 5}=\frac{5 \times 5}{8 \times 5}=\frac{5}{8}$
8. $\frac{\mathbf{2}}{3}: \frac{16}{24}=\frac{2 \times 8}{3 \times 8}=\frac{2 \times 8}{3 \times 8}=\frac{2}{3}$
9. $\frac{9}{35}: \frac{3}{10} \times \frac{6}{7}=\frac{3}{2 \times 5} \times \frac{3 \times 2}{7}=\frac{3}{2 \times 5} \times \frac{3 \times 22}{7}=\frac{3 \times 3}{5 \times 7}=\frac{9}{35}$
10. $\frac{1}{8}: \frac{5}{14} \times \frac{7}{20}=\frac{5}{2 \times 7} \times \frac{7}{4 \times 5}=\frac{5}{2 \times 7} \times \frac{7}{4 \times 85}=\frac{1}{1} \times \frac{2}{4}=\frac{1}{8}$
11. $\frac{11}{6}: \frac{1}{6} \div \frac{1}{11}=\frac{1}{6} \times \frac{11}{1}=\frac{11}{6}$
12. $6: \frac{8}{5} \div \frac{4}{15}=\frac{8}{5} \times \frac{15}{4}=\frac{2 \times 4}{5} \times \frac{3 \times 5}{4}=\frac{2 \times \frac{4}{5}}{5} \times \frac{3 \times 5}{4}=\frac{6}{1}=6$
13.

$$
\begin{aligned}
& 2: \frac{3}{4} x=\frac{3}{2} \\
& x=\frac{3}{2} \div \frac{3}{4}=\frac{3}{2} \times \frac{4}{3} \\
& x=\frac{3 \times 2 \times 2}{2 \times 3}=\frac{3 \times 2 \times 2}{2 \times 3}=\frac{2}{1} \\
& x=2
\end{aligned}
$$

14.

$$
\begin{aligned}
& 10: \frac{x}{6}=\frac{5}{3} \\
& 3 \times x=5 \times 6 \\
& 3 x=30 \\
& x=10
\end{aligned}
$$

$15.15 / 6: \frac{11}{6}=\frac{6+5}{6}=\frac{6}{6}+\frac{5}{6}=1+\frac{5}{6}=15 / 6$
$16.91 / 11: \frac{100}{11}=\frac{99+1}{11}=\frac{99}{11}+\frac{1}{11}=9+\frac{1}{11}=91 / 11$
17. $\frac{15}{4}: 33 / 4=3+\frac{3}{4}=\frac{3}{1} \times \frac{4}{4}+\frac{3}{4}=\frac{12}{4}+\frac{3}{4}=\frac{15}{4}$
18. $\frac{\mathbf{1 7}}{3}: 52 / 3=5+\frac{2}{3}=\frac{5}{1} \times \frac{3}{3}+\frac{2}{3}=\frac{15}{3}+\frac{2}{3}=\frac{17}{3}$
19. $\frac{9}{10}: \frac{\frac{3}{5}}{\frac{2}{3}}=\frac{\frac{3}{5} \times 15}{\frac{2}{3} \times 15}=\frac{9}{10}$. Alternatively, $\frac{\frac{3}{2}}{\frac{2}{3}}=\frac{3}{5} \times \frac{3}{2}=\frac{9}{10}$.
20. $\frac{\mathbf{2 0}}{7}: \frac{\frac{5}{7}}{\frac{1}{4}}=\frac{\frac{5}{7} \times 28}{\frac{1}{4} \times 28}=\frac{20}{7}$. Alternatively, $\frac{\frac{5}{7}}{\frac{1}{4}}=\frac{5}{7} \times \frac{4}{1}=\frac{20}{7}$
21. $\frac{1}{8}: \frac{1}{2} \times \frac{1}{4}=\frac{1}{8}$
22. 2: $\frac{1}{2} \div \frac{1}{4}=\frac{1}{2} \times \frac{4}{1}=\frac{4}{2}=2$
23. $\frac{1}{3}: \stackrel{3 \times 4=12}{13} \times \frac{4}{3} \xrightarrow{13 \times 1=13}$ is therefore greater than $\frac{4}{13}$.
24. $\frac{7}{13}: \stackrel{5 \times 13=65}{\square} \frac{7}{9}>\frac{7}{13}$ is therefore smaller than $\frac{5}{9}$.
25. 4: Add the numerator and simplify: $\frac{13+7}{5}=\frac{20}{5}=4$.
26. $2 \frac{1}{13}:$ Add the numerator and the denominator, then convert to a mixed number: $\frac{21+6}{7+6}=\frac{27}{13}=2 \frac{1}{13}$.
27. $\frac{\mathbf{1 2}(4 a+b)}{a+b}$: The only manipulation you can perform is to factor 12 out of the numerator: $\frac{48 a+12 b}{a+b}=\frac{12(4 a+b)}{a+b}$. No further simplification is possible.
28. $\frac{3}{2}$: Factor a 3 out of the numerator and a 2 out of the denominator:

$$
\frac{9 g-6 h}{6 g-4 h}=\frac{3(3 g-2 h)}{2(3 g-2 h)}
$$

Now you can cancel out the $3 g-2 h$ term out of both the numerator and denominator:

$$
\frac{3(3 g-2 h)}{2(3 g-2 h)}=\frac{3}{2} \times \frac{3 g-2 h}{3 g-2 h}=\frac{3}{2} \times 1=\frac{3}{2}
$$

29. $\frac{171}{340}: \frac{123}{250}$ is a little less than $\frac{125}{250}$, and so is less than $\frac{1}{2} \cdot \frac{171}{340}$ is a little more than $\frac{170}{340}$, and so is more than $\frac{1}{2} \cdot \frac{171}{340}$ is thus greater than $\frac{123}{250}$.
30. 50: Approximate each term: $\frac{15}{58} \approx \frac{15}{60} \approx \frac{1}{4}, \frac{9}{19} \approx \frac{9}{18} \approx \frac{1}{2}$, and 403 is close to 400 . $\left.\frac{15}{58}\right)\left(\frac{9}{19}\right) 403 \approx\left(\frac{1}{4}\right)\left(\frac{1}{2}\right) 400 \approx 50$. Note that the exact amount is approximately 49.369 , so your estimation was extremely close.
31. Yes: Since you are only given fractions, you pick Smart Numbers. The number 10 is a good number to pick because it is the common denominator of the fractions $1 / 2$ and $4 / 5$. Mili's first generation uHear has a capacity of 10 gigabytes. Her second-generation uHear, then, has a capacity of 30 gigabytes.

Her first-generation uHear then has 5 gigabytes filled $(1 / 2 \times 10)$ and her second-generation uHear has 24 gigabytes filled ($4 / 5 \times 30$). If she transferred the songs on the first uHear to the second, she would be at 29/30 capacity. There is enough room for the transfer.
32. 12 hours: Because you are given an actual number in the problem, you are not allowed to pick numbers. Assign a variable for what you are looking for: the number of hours John is awake. Call that total x.

Therefore, your equation will be $\frac{1}{3} x+\frac{1}{5} x+\frac{3}{10} x+2=x$
The common denominator of all the fractions is 30 . You can multiply the equation by 30 to eliminate all the fractions:

$$
30\left(\frac{1}{3} x+\frac{1}{5} x+\frac{3}{10} x+2\right)=(x) 30
$$

$10 x+6 x+9 x+60=30 x$
$25 x+60=30 x$
$60=5 x$
$12=x$
John is awake for 12 total hours.

Problem Set

For problems 1-5, decide whether the given operation will yield an Increase, a Decrease, or a result that will Stay the same.

1. Multiply the numerator of a positive, proper fraction by $\frac{3}{2}$.
2. Add 1 to the numerator of a positive, proper fraction and subtract 1 from its denominator.
3. Multiply both the numerator and denominator of a positive, proper fraction by $3 \frac{1}{2}$.
4. Multiply a positive, proper fraction by $\frac{3}{8}$.
5. Divide a positive, proper fraction by $\frac{3}{13}$.

Solve problems 6-15.
6. Simplify: $\frac{10 x}{5+x}$
7. Simplify: $\frac{8(3)(x)^{2}(3)}{6 x}$
8. Simplify: $\frac{\frac{3}{5}+\frac{1}{3}}{\frac{2}{3}+\frac{2}{5}}$
9. Simplify: $\frac{12 a b^{3}-6 a^{2} b}{3 a b} \quad$ (given that $a b \neq 0$)
10. Put these fractions in order from least to greatest: $\frac{9}{17}, \frac{3}{16}, \frac{19}{20}, \frac{7}{15}$
11. Put these fractions in order from least to greatest: $\frac{2}{3}, \frac{3}{13}, \frac{5}{7}, \frac{2}{9}$
12. Lisa spends $\frac{3}{8}$ of her monthly paycheck on rent and $\frac{5}{12}$ on food. Her roommate, Carrie, who earns twice as much as Lisa, spends $\frac{1}{4}$ of her monthly paycheck on rent and $\frac{1}{2}$ on food. If the two women decide to donate the remainder of their money to charity each month, what fraction of their combined monthly income will they donate? (Assume all income in question is after taxes.)
13. Rob spends $\frac{1}{2}$ of his monthly paycheck, after taxes, on rent. He spends $\frac{1}{3}$ on food and $\frac{1}{8}$ on entertainment. If he donates the entire remainder, $\$ 500$, to charity, what is Rob's monthly income, after taxes?
14. Are $\frac{\sqrt{3}}{2}$ and $\frac{2 \sqrt{3}}{3}$ reciprocals?
15. Estimate to the closest integer: What is $\frac{11}{40}$ of $\frac{5}{16}$ of 120 ?
16.

Quantity \mathbf{A}
$\frac{2}{3} \times \frac{3}{3}$

Quantity \mathbf{A}

Quntity

Quantity B
$\frac{2}{3} \times \frac{4}{4}$
17.

Quantity B

$$
\frac{6 x+6 y}{3 x+y}
$$

18. An 18 oz . glass is filled with 8 oz . of orange juice. More orange juice is added so that the glass is $\frac{5}{6}$ full.

Quantity_A

Number of ounces of orange juice added

Quantity B

6

Solutions

1. Increase: Multiplying the numerator of a positive fraction by a number greater than 1 increases the numerator. As the numerator of a positive fraction increases, its value increases.
2. Increase: As the numerator of a positive fraction increases, the value of the fraction increases. As the denominator of a positive fraction decreases, the value of the fraction also increases. Both actions will work to increase the value of the fraction.
3. Stay the same: Multiplying or dividing the numerator and denominator of a fraction by the same number will not change the value of the fraction.
4. Decrease: Multiplying a positive number by a fraction between 0 and 1 decreases the number.
5. Increase: Dividing a positive number by a fraction between 0 and 1 increases the number.
6. Cannot Simplify: There is no way to simplify this fraction; it is already in simplest form. Remember, you cannot split the denominator!
7. 12x: First, cancel terms in both the numerator and the denominator. Then combine terms:

$$
\frac{8(3)(x)^{2}(3)}{6 x}=\frac{8(3)(x)^{2}(3)}{62 x}=\frac{84(x)^{2}(3)}{2 x}=\frac{4(x)^{2}(3)}{x}=4(x)(3)=12 x
$$

8. $\frac{7}{8}$: First, add the fractions in the numerator and denominator. This results in $\frac{14}{15}$ and $\frac{16}{15}$, respectively. To save time, multiply each of the small fractions by 15 , which is the common denominator of all the fractions in the problem.
Because you are multiplying the numerator and the denominator of the whole complex fraction by 15 , you are not changing its value:

$$
\frac{\frac{3}{5}+\frac{1}{3}}{\frac{2}{3}+\frac{2}{5}}=\frac{\frac{9}{15}+\frac{5}{15}}{\frac{10}{15}+\frac{6}{15}}=\frac{\frac{14}{15}}{\frac{16}{15}}=\frac{\frac{14}{15} \times 15}{\frac{16}{15} \times 15}=\frac{14}{16}=\frac{7}{8}
$$

 Then, cancel terms in both the numerator and denominator:

$$
\frac{6 a b\left(2 b^{2}-a\right)}{3 a b}=2\left(2 b^{2}-a\right) \text { or } 4 b^{2}-2 a
$$

10. $\frac{3}{16}<\frac{7}{15}<\frac{9}{17}<\frac{19}{20}$: Use Benchmark Values to compare these fractions:
$\frac{9}{17}$ is slightly more than $\frac{1}{2} . \quad$ is slightly less than .
is slightly less than 1 .

$$
\frac{7}{15} \text { is slightly less than } \frac{1}{4} .
$$

This makes it easy to order the fractions: $\frac{3}{16}<\frac{7}{15}<\frac{9}{17}<\frac{19}{20}$.
11. $\frac{2}{9}<\frac{3}{13}<\frac{2}{3}<\frac{5}{7}$: Using Benchmark Values, you should notice that $\frac{3}{13}$ and $\frac{2}{9}$ are both less than $\frac{1}{2}$ and $\frac{2}{3}$ and $\frac{5}{7}$ are both more than $\frac{1}{2}$. Use crossmultiplication to compare each pair of fractions:

$3 \times 9=27$
$\frac{3}{13} \ll \frac{2}{9}$

$2 \times 7=14$

$$
\begin{array}{ll}
\hline 2 \times 13=26 & \text { Thus, } \frac{3}{13}>\frac{2}{9} . \\
5 \times 3=15 & \text { Thus, } \frac{2}{3}<\frac{5}{7} .
\end{array}
$$

This makes it easy to order the fractions: $\frac{2}{9}<\frac{3}{13}<\frac{2}{3}<\frac{5}{7}$.
12. $\frac{17}{72}$: Use Smart Numbers to solve this problem. Since the denominators in the problem are $8,12,4$, and 2, assign Lisa a monthly paycheck of $\$ 24$, since 24 is the least common multiple of the denominators. Assign her roommate, who earns twice as much, a monthly paycheck of $\$ 48$. The two women's monthly expenses break down as follows:
Lisa $\quad \frac{3}{8}$ of $24=9$

$$
24-(9+10)=5
$$

Carrie $\quad \frac{1}{4}$ of $48=12$

Rent

$$
\begin{gathered}
\text { Food } \\
\frac{5}{12} \text { of } 24=10 \\
\frac{1}{2} \text { of } 48=24
\end{gathered}
$$

$$
48-(12+24)=12
$$

The women will donate a total of $\$ 17$ out of their combined monthly income of \$72.
13. \$12,000: You cannot use Smart Numbers in this problem, because an amount is specified. This means that the total is a certain number that you are being asked to find.

First, use addition to find the fraction of Rob's money that he spends on rent, food, and entertainment: $\frac{1}{2}+\frac{1}{3}+\frac{1}{8}=\frac{12}{24}+\frac{8}{24}+\frac{3}{24}=\frac{23}{24}$. Therefore, the $\$ 500$ that he donates to charity represents $1-\frac{23}{24}=\frac{24-23}{24}=\frac{1}{24}$ of his total
monthly paycheck. In math terms, $\$ 500=\frac{1}{24} x$. Thus, Rob's monthly income is $\$ 500 \times 24$, or $x=\$ 12,000$.
14. Yes: The product of a number and its reciprocal must equal 1 . To test whether two numbers are reciprocals, multiply them. If the product is not 1 , they are not reciprocals:

$$
\frac{\sqrt{3}}{2} \times \frac{2 \sqrt{3}}{3}=\frac{2(\sqrt{3})^{2}}{2(3)}=\frac{6}{6}=1
$$

The numbers are thus indeed reciprocals.
15. Approximately 10: Use Benchmark Values to estimate: $\frac{11}{40}$ is slightly more than $\frac{1}{4}$, whereas $\frac{5}{16}$ is slightly less than $\frac{1}{3}$. Therefore, $\frac{11}{40}$ of $\frac{5}{16}$ of 120 is approximately $\frac{1}{4}$ of $\frac{1}{3}$ of 120 , or $\frac{120}{12}=10$. In this process, you rounded one fraction up and the other down, reducing the error you introduced by rounding. Another technique to solve this problem would be to write the product and cancel as much as possible before estimating:

$$
\frac{11}{40} \text { of } \frac{5}{16} \text { of } 120=\frac{11}{40} \times \frac{5}{16} \times 120=\frac{11}{1} \times \frac{5}{16} \times 3=\frac{11 \times 5 \times 3}{16}=\frac{33}{16} \times 5 \cong \frac{32}{16} \times 5=10
$$

This estimate is a bit on the low side, as you only rounded one numerator down. The error you introduced was $\frac{1}{16}$ of 5 , which is less than 0.5 , so you have still estimated to the closest integer.
16. (C): The fractions $3 / 3$ and $4 / 4$ are both equal to 1 . Each quantity can be rewritten as $2 / 3 \times 1$, which leaves you with $2 / 3$.

Quantity \mathbf{A}

$$
\begin{aligned}
& \frac{\text { Quantity B }}{\frac{2}{3} \times \frac{4}{4}=} \\
& \frac{2}{3} \times 1=\frac{2}{3}
\end{aligned}
$$

Therefore, the quantities are equal.

17. (D): When you add fractions, you cannot split the denominator. Therefore, the most that you can simplify the expression in Quantity A is $\frac{6(x+y)}{3 x+y}$. But that isn't enough to tell you whether the value of this expression is greater than or less than 8 .

For example, if $x=2$ and $y=1$, then Quantity $\mathrm{A}=\frac{6(2+1)}{3(2)+1}=\frac{18}{7}$, which is less than 8. If, however, $x=1$ and $y=-8$, then Quantity $A=\frac{6(1+(-8))}{3(1)+(-8)}=\frac{6(-7)}{3-8}=\frac{-42}{-5}=8.4$, which is greater than 8.

Therefore, you cannot determine which quantity is greater.
18. (A): The easiest way to solve this problem is to find out how much liquid is in the glass after the orange juice is added. The glass is $5 / 6$ full, and $5 / 6 \times 18=$ 15. There are 15 ounces of orange juice. There were 8 ounces of orange juice, so 7 ounces were added.

An 18 oz glass is filled with 8 oz of orange juice. More orange juice is added so the glass is $\frac{5}{6}$ full.

Quantity_A

Number of ounces of orange juice 6
added $=7$
Therefore, Quantity A is greater.

Quantity B

6

Chapter 3

Fractions, Decimals, \& Percents

Digits \& Decimals

In This Chapter...

$\begin{array}{r}\text { Digits } \\ \text { Decimals }\end{array}$
Place Value
Adding Zeroes to Decimals
$\frac{\text { Powers of 10: Shifting the Decimal }}{\text { The Heavy Division Shortcut }}$
$\underline{\text { Decimal Operations }}$
Terminating vs. Non-Terminating Decimals
Units Digit Problems

Chapter 3

Digits \& Decimals

Digits

Every number is composed of digits. There are only 10 digits in our number system: $0,1,2,3,4,5,6,7,8,9$. The term digit refers to one building block of a number; it does not refer to a number itself. For example, 356 is a number composed of three digits: 3,5 , and 6 .

Integers can be classified by the number of digits they contain. For example:
2,7 , and -8 are each single-digit numbers (they are each composed of one digit).
43, 63, and -14 are each double-digit numbers (composed of two digits). 500,000 and $-468,024$ are each six-digit numbers (composed of six digits). $789,526,622$ is a nine-digit number (composed of nine digits).

Non-integers are not generally classified by the number of digits they contain, since you can always add any number of zeroes at the end, on the right side of the decimal point:

$$
9.1=9.10=9.100
$$

That said, non-integers can be classified by how many non-zero digits they have to the right of the decimal point. For example, 0.23, 8.014, and 0.0000079 all have two non-zero digits to the right of the decimal point. (Later, there will be a discussion of decimals that do not terminate, that is, they have an infinite number of non-zero digits to the right of the decimal point.)

Decimals

GRE math goes beyond an understanding of the properties of integers (which include the counting numbers, such as $1,2,3$, their negative counterparts, such as $-1,-2,-3$,
and 0). The GRE also tests your ability to understand the numbers that fall in between the integers. Such numbers can be expressed as decimals. For example, the decimal 6.3 falls between the integers 6 and 7 :

Some other examples of decimals include:
Decimals less than -1 :
Decimals between -1 and 0 :
$-3.65,-12.01,-145.9$

Decimals between 0 and 1:
$-0.65,-0.8912,-0.076$

Decimals greater than 1 :
$0.65,0.8912,0.076$
$3.65,12.01,145.9$
Note that an integer can be expressed as a decimal by adding a decimal point and the digit 0 . For example:

$$
8=8.0 \quad-123=-123.0 \quad 400=400.0
$$

Place Value

Every digit in a number has a particular place value depending on its location within the number. For example, in the number 452, the digit 2 is in the ones (or "units") place, the digit 5 is in the tens place, and the digit 4 is in the hundreds place. The name of each location corresponds to the "value" of that place. Thus:

2 is worth two "units" (two "ones"), or $2(=2 \times 1)$.
5 is worth five tens, or $50(=5 \times 10)$.
4 is worth four hundreds, or $400(=4 \times 100)$.
You can now write the number 452 as the sum of these products:
$452=(4 \times 100)+(5 \times 10)+(2 \times 1)$
("four hundreds plus five tens plus two ones")

6	9	2	5	6	7	8	9	1	0	2	3		8	3	4	7
H	T	O	H	T	O	H	T	O	H	T	U		T	H	T	T
U	E	N	U	E	N	U	E	N	U	E	N		E	U	H	E
N	N	E	N	N	E	N	N	E	N	N	I		N	N	O	N
D			D			D			D	S	T		T	D	U	
R			R			R			R		S		H	R	S	
E			E			E			E				S	E	A	T
D			D			D			D		O			D	N	H
											R			T	D	O
														H	T	U
B	B	B	M	M	M	T	T	T			O			S	H	S
I	I	I	I	I	I	H	H	H			N				S	A
L	L	L	L	L	L	O	O	O			E					N
L	L	L	L	L	L	U	U	U			S					D
I	I	I	I	I	I	S	S	S								T
O	O	O	O	O	O	A	A	A								H
N	N	N	N	N	N	N	N	N								S
S	S	S	S	S	S	D	D	D								
						S	S	S								

The chart to the left analyzes the place value of all the digits in the number:

$\mathbf{6 9 2}, 567,891,023.8347$

Notice that the place values to the left of the decimal all end in "-s," while the place values to the right of the decimal all end in "-ths." This is because the suffix "-ths" gives these places (to the right of the decimal) a fractional value.

Now analyze the end of the preceding number: $\mathbf{0 . 8 3 4 7}$
The 8 is in the tenths place, giving it a value of 8 tenths, or $\frac{8}{10}$.
The 3 is in the hundredths place, giving it a value of 3 hundredths, or $\frac{3}{100}$.
The 4 is in the thousandths place, giving it a value of 4 thousandths, or $\frac{4}{1,000}$.
The 7 is in the ten-thousandths place, giving it a value of 7 ten-thousandths, or $\frac{7}{10,000}$.

To use a concrete example, 0.8 might mean eight-tenths of one dollar, which would be 8 dimes, or 80 cents. Additionally, 0.03 might mean three-hundredths of one dollar, which would be 3 pennies, or 3 cents.

Check Your Skills

1. How many digits are in 99,999 ?
2. In the number $4,472.1023$, in what place value is the " 1 "?

Answers can be found on page 83.

Adding Zeroes to Decimals

Adding zeroes to the end of a decimal or taking zeroes away from the end of a decimal does not change the value of the decimal. For example, 3.6 $=3.60=3.6000$.

Be careful, however, not to add or remove any zeroes to the left of a non-zero digit in the decimal portion of a number. Doing so will change the value of the number: 7.01 $\neq 7.1$, for example.

Powers of 10: Shifting the Decimal

Place values continually decrease from left to right by powers of 10 . Understanding this can help you understand the following shortcuts for multiplication and division.

When you multiply any number by a positive power of 10 , move the decimal forward (right) the specified number of places. This makes positive numbers larger:

$$
\begin{array}{ll}
3.9742 \times 10^{3}=3,974.2 & \text { Move the decimal forward } 3 \text { spaces } . \\
89.507 \times 10=895.07 & \text { Move the decimal forward } 1 \text { space } .
\end{array}
$$

When you divide any number by a positive power of 10 , move the decimal backward (left) the specified number of places. This makes positive numbers smaller:

$$
\begin{array}{ll}
4,169.2 \div 10^{2}=41.692 & \text { Move the decimal backward } 2 \text { spaces } \\
83.708 \div 10=8.3708 & \text { Move the decimal backward } 1 \text { space }
\end{array}
$$

Note that if you need to add zeroes in order to shift a decimal, you should do so:

$$
\begin{aligned}
& 2.57 \times 10^{6}=2,570,000 \\
& 14.29 \div 10^{5}=0.0001429
\end{aligned}
$$

Add 4 zeroes at the end.
Add 3 zeroes at the beginning.

Finally, note that negative powers of 10 reverse the regular process:

$$
6,782.01 \times 10^{-3}=6.78201 \quad 53.0447 \div 10^{-2}=5,304.47
$$

You can think about these processes as trading decimal places for powers of 10. Think about why this is. The expression 10^{-3} is equal to 0.001 . As a concrete example, if you multiply $6,782.01$ by 0.001 , you get a much smaller number.

For instance, all of the following numbers equal 110,700 .

110.7	\times
11.07	\times
1.107	\times
0.1107	\times
0.01107	\times
	$\frac{10^{3}}{10^{5}}$

The first number gets smaller by a factor of 10 as you move the decimal one place to the left, but the second number gets bigger by a factor of 10 to compensate.

Check Your Skills

3. $0.0652 \times 10^{-2}=$?
4. $\frac{264}{10^{-6}}=$?
5. Put these numbers in order from least to greatest:
a. 234×10^{-2}
b. 0.234×10^{2}
c. 2.34×10^{4}

Answers can be found on page 83.

The Heavy Division Shortcut

Some division problems involving decimals can look rather complex. But sometimes, you only need to find an approximate solution. In these cases, you often
can save yourself time by using the Heavy Division Shortcut: move the decimals in the same direction and round to whole numbers. For example:

What is $1,530,794 \div\left(31.49 \times 10^{4}\right)$ to the nearest whole number?
Step 1: Set up the division problem in fraction form:

Ste_ 2: Rewrite the problem, eliminating powers of 10:

$$
\begin{aligned}
& \frac{1,530,794}{31.49 \times 10^{4}} \\
& \frac{1,530,794}{314,900}
\end{aligned}
$$

Step 3: The goal is to get a single digit to the left of the decimal in the denominator. In this problem, you need to move the decimal point backward 5 spaces. You can do this to the denominator as long as you do the same thing to the numerator. (Technically, what you are doing is dividing top and bottom by the same power of 10: 100,000.)

$$
\frac{1,530,794}{314,900}=\frac{15.30794}{3.14900}
$$

Now you have the single digit 3 to the left of the decimal in the denominator.
$\frac{\text { Step 4: Focus only on the whole number parts of the numerator and } \frac{15.30794}{3.14900} \approx \frac{15}{3} \approx 5}{\text { denominator and solve. }}$

An approximate answer to this complex division problem is 5 . If this answer is not precise enough, keep one more decimal place and do long division (e.g., $153 \div 31 \approx$ 4.9).

Check Your Skills

6. What is the integer closest to $\frac{64,239,028}{16,127,512}$?

Answer can be found on page 83.

Decimal Operations

Addition and Subtraction

To add or subtract decimals, make sure to line up the decimal points. Then add zeroes to make the right sides of the decimals the same length:
$4.319+221.8$
$10-0.063$

4.319	Line up the	10.000	Line up the
+221.800	decimal points	-0.063	decimal points and add zeroes.

Addition \& Subtraction: Line up the decimal points!

Multiplication

To multiply decimals, ignore the decimal point until the very end. First, multiply the numbers as you would if they were whole numbers. Then count the total number of digits to the right of the decimal point in the factors. The product should have the same number of digits to the right of the decimal point:

$$
\mathbf{0 . 0 2 \times 1 . 4} \begin{aligned}
14 & \text { Multiply normally } \\
\times 2 & \\
\hline 28 &
\end{aligned}
$$

There are three digits to the right of the decimal point in the factors (the digits 0 and 2 in the first factor and the digit 4 in the second factor). Therefore, move the decimal point three places to the left in the product: $28 \rightarrow 0.028$.

Multiplication: In the factors, count all the digits to the right of the decimal point-then put that many digits to the right of the decimal point in the product.

If the product ends with 0 , count it in this process: $0.8 \times 0.5=0.40$, since $8 \times 5=40$. Thus, $0.8 \times 0.5=0.4$.

If you are multiplying a very large number and a very small number, the following trick works to simplify the calculation: move the decimals in the opposite direction the same number of places.

$$
0.0003 \times 40,000=?
$$

Move the decimal point right four places on the $0.0003 \rightarrow 3$
Move the decimal point left four places on the $40,000 \rightarrow 4$
$0.0003 \times 40,000=3 \times 4=12$
The reason this technique works is that you are multiplying and then dividing by the same power of 10. In other words, you are trading decimal places in one number for decimal places in another number. This is just like trading decimal places for powers of 10 , as we saw earlier.

Division

If there is a decimal point in the dividend (the inner number) only, you can simply bring the decimal point straight up to the answer and divide normally:

Ex. $\mathbf{1 2 . 4 2} \div \mathbf{3}=4.14$

$3 \longdiv { 4 . 1 4 }$
$\frac{12}{12.42}$
04
$\frac{3}{12}$

However, if there is a decimal point in the divisor (the outer number), you should shift the decimal point to the right in both the divisor and the dividend to make the divisor a whole number. Then, bring the decimal point up and divide. Be sure to shift the decimal in both numbers before dividing.

Ex: $\mathbf{1 2 . 4 2} \div \mathbf{0 . 3} \rightarrow 124.2 \div 3=41.4$

Move the decimal one space to the right ts 0.3 a whole number. Then, move the deci1 space in 12.42 to make it 124.2 .

Division: Always shift the decimals on top and bottom so you are dividing by

 whole numbers!You can always simplify division problems that involve decimals by shifting the decimal point in the same direction in both the divisor and the dividend, even when the division problem is expressed as a fraction:

Move the decimal four spaces to the ri to make both the numerator and the denominator whole numbers.

Note that this is essentially the same process as simplifying a fraction. You are simply multiplying the numerator and denominator of the fraction by a power of 10 -in this case, $\frac{10^{4}}{10^{4}}$, or $\frac{10,000}{10,000}$.

Keep track of how you move the decimal point! To simplify multiplication, you can move decimals in opposite directions. But to simplify division, you move decimals in the same direction.

Equivalently, by adding zeroes, you can express the numerator and the denominator as the same units, then simplify:

$$
\frac{0.0045}{0.09}=\frac{0.0045}{0.0900}=45 \text { ten-thousandths } \div 900 \text { ten-thousandths }=\frac{45}{900}=\frac{5}{100}=0.05
$$

Check Your Skills

7. $62.8+4.5768=$?
8. $7.125-4.309=$?
9. $0.00018 \times 600,000=$?
10. $85.702 \div 0.73=$?

Answers can be found on pages 83-84.
Terminating vs. Non-Terminating Decimals

Repeating Decimals

Dividing an integer by another integer yields a decimal that either terminates (see below) or that never ends and repeats itself:

$$
2 \div 9=? \quad 2 \div 9=0.2222 \ldots=0 . \overline{2}
$$

The bar above the 2 indicates that the digit 2 repeats infinitely.

Generally, you should just do long division to determine the repeating cycle. It is worth noting the following example patterns:

$$
\begin{aligned}
& 4 \div 9=0.4444 \ldots=0 . \overline{4} \quad 23 \div 99=0.2323 \ldots=0 . \overline{23} \\
& \frac{1}{11}=\frac{9}{99}=0.0909 \ldots=0 . \overline{09} \quad \frac{3}{11}=\frac{27}{99}=0.2727 \ldots=0 . \overline{27}
\end{aligned}
$$

If the denominator is $9,99,999$, or another number equal to a power of 10 minus 1 , then the numerator gives you the repeating digits (perhaps with leading zeroes).
These aren't the only denominators that result in repeating digits though, as you will see when you read about terminating decimals. Don't worry about trying to memorize decimal patterns for all of the repeating decimals though, you can always find them by simple long division, which can be done with your GRE on-screen calculator.

Non-Repeating Decimals

Some numbers, like $\sqrt{2}$ and π, have decimals that never end and never repeat themselves. The GRE will only ask you for approximations for these decimals (e.g., $\sqrt{2} \approx 1.4, \sqrt{3} \approx 1.7$, and $\pi \approx 3.14$). For numbers such as these, you can often find an estimate of the decimal using your GRE on-screen calculator

Terminating Decimals

Occasionally, the GRE asks you about properties of "terminating" decimals; that is, decimals that end. You can tack on zeroes, of course, but they do not matter. Here are some examples of terminating decimals: $0.2,0.47$, and 0.375 . Terminating decimals can all be written as a ratio of integers (which might be reducible):

$$
\begin{array}{cl}
\frac{\text { Some integer }}{\text { Some power of ten }} \\
0.2=\frac{2}{10}=\frac{1}{5} & 0.47=\frac{47}{100} \quad 0.375=\frac{375}{1000}=\frac{3}{8}
\end{array}
$$

Positive powers of 10 are composed of only 2 's and 5 's as prime factors. This means that when you reduce this fraction, you only have prime factors of 2's and/or 5's in the denominator. Every terminating decimal shares this characteristic: if, after being fully reduced, the denominator has any prime factors besides 2 or 5 , then its decimal will not terminate (it will repeat). If the denominator only has factors of 2 and/or 5 , then the decimal will terminate.

Check Your Skills

11. Which of the following decimals terminate? Which non-terminating decimals repeat, and which do not?
a. $\frac{11}{250}$
b. $\frac{393}{7}$
c. $\frac{1,283}{741}$
d. $\frac{\sqrt{3}}{\sqrt{2}}$

Answer can be found on page 84.

Units Digit Problems

Sometimes the GRE asks you to find a units (ones) digit of a large product, or a remainder after division by 10 (these are the same thing). For example:

What is the units digit of $(8)^{2}(9)^{2}(3)^{3}$?
In this problem, you can use the Last Digit Shortcut:
To find the units digit of a product or a sum of integers, only pay attention to the units digits of the numbers you are working with. Drop any other digits.

This shortcut works because only units digits contribute to the units digit of the product:

$$
\text { STEP } 1: 8 \times 8=6 \underline{4}
$$

Drop the tens digit and keep only the 1
digit: 4.

STEP 2: $9 \times 9=8 \underline{1}$
STEP 3: $3 \times 3 \times 3=2 \underline{7}$
STEP 4: $4 \times 1 \times 7=2 \underline{8}$

Drop the tens digit and keep only the 1 digit: 1.
Drop the tens digit and keep only the 1 digit: 7.
Multiply the last digits of each of the products.

The units digit of the final product is 8 .

Check Your Skills

Calculate the units digit of the following products:
12. $4^{3} \times 7^{2} \times 8$
13. 13^{3}
14. 15^{37}

Answers can be found on pages 84-85.

Check Your Skills Answer Key

1. 5: There are five digits in 99,999 . Although there are only 9 's, the 9 takes up five digit places (ten-thousands, thousands, hundreds, tens, and ones).
2. Tenths place: In the number $4,472.1023$, the 1 is in the tenths place.
3. $\mathbf{0 . 0 0 0 6 5 2}$: Move the decimal to the left when you multiply by 10 raised to a negative power. In this case, move the decimal to the left two places:

$$
0.0652 \times 10^{-2}=0.000652
$$

4. 264,000,000: Move the decimal to the right when dividing by 10 raised to a negative power. In this case, move the decimal to the right six places. Notice that dividing by 10 raised to a negative power has exactly the same effect as multiplying by 10 raised to the positive version of that power:

$$
\frac{264}{10^{-6}}=264,000,000
$$

5. $\mathbf{a}, \mathbf{b}, \mathbf{c}:$

$$
\begin{aligned}
& \mathrm{a}=2.34 \\
& \mathrm{~b}=23.4 \\
& \mathrm{c}=23,400
\end{aligned}
$$

6. 4: With large numbers, you can effectively ignore the smaller digits:

$$
\frac{64,239,028}{16,127,512} \approx \frac{64.239028}{16.127512} \approx \frac{64}{16} \approx 4
$$

Note that it is not good enough to focus on just the first digits in the numerator and denominator. That would give you $\frac{6}{1}$, or 6 , which is not accurate enough.
62.8000
7. $\mathbf{6 7 . 3 7 6 8 : ~}+4.5768$
67.3768
7.125
8. 2.816: - 4.309

$$
2.816
$$

9. 108: Trade decimal places. Change 0.00018 to 18 by moving the decimal to the right five places. To compensate, move the decimal of 600,000 to the left five places, making it 6 . The multiplication problem is now:

$$
18 \times 6=108
$$

10. 117.4: Be sure to move the decimal so that you are dividing by whole numbersand be sure to move the decimal the same direction and number of places in both the dividend and the divisor: $85.702 \div 0.73 \rightarrow 8,570.2 \div 73$.

11. Terminating: a.; Repeating: b., c.; Non-Repeating: d.:

The fraction $\frac{11}{250}$ has a denominator with a prime factorization of $2 \times 5 \times 5 \times 5$. Since this only includes 2's and 5's, the decimal form of the fraction will terminate. To be precise, $\frac{11}{250}=0.044$.

In $\frac{393}{7}, 393$ is not divisible by 7 , and 7 is a prime (but not a 2 or a 5). Thus, the decimal will repeat infinitely:
$\frac{393}{7}=56 . \overline{142857}$.

In $\frac{1,283}{741}$, the prime factorization of the denominator is $741=3 \times 13 \times 19$. Since this includes primes other than 2 and 5 and is fully reduced, and since the numerator and denominator are both integers, the decimal will repeat infinitely (eventually!).

In $\frac{\sqrt{3}}{\sqrt{2}}$, both the numerator and denominator are what are known as irrational numbers. This means they are decimals that never exhibit a repeating pattern and therefore cannot be expressed as fractions with integers.
12. 8: Focus only on the units digit of each step of the problem:

$$
\begin{aligned}
4^{3} & =4 \times 4 \times 4=6 \underline{4} \\
7^{2} & =7 \times 7=4 \underline{9} \\
8 & =\underline{\mathbf{8}} \\
4 \times 9 & =3 \underline{6} \\
6 \times 8 & =4 \underline{\mathbf{8}}
\end{aligned}
$$

13. 7: Since you are dealing with only the units digit of the product, you can ignore the tens digit of $13(1)$ and focus only on $3^{3}: 3 \times 3 \times 3=27$.
14. 5: For higher exponents in units digit problems, try to find a pattern as you raise the base to higher powers:

$$
\begin{aligned}
& 5^{1}=\underline{\mathbf{5}} \\
& 5^{2}=2 \underline{\mathbf{5}} \\
& 5^{3}=12 \underline{\mathbf{5}}
\end{aligned}
$$

Notice that the units digit is always 5 . This is because $5 \times 5=2 \underline{5}$.
Therefore, $15^{37} \rightarrow 5^{37}=5 \times 5 \times 5 \times \ldots=2 \underline{5} \times 5 \times \ldots \rightarrow 2 \underline{\mathbf{5}} \times \ldots \rightarrow \underline{\mathbf{5}}$.

Problem Set

Solve each problem, applying the concepts and rules you learned in this section.

1. If k is an integer, and if 0.02468×10^{k} is greater than 10,000 , what is the least possible value of k ?
2. Which integer values of b would give the number $2002 \div 10^{-b}$ a value between 1 and 100 ?
3. Estimate to the nearest $10,000: \frac{4,509,982,344}{5.342 \times 10^{4}}$
4. Simplify: $(4.5 \times 2+6.6) \div 0.003$
5. Simplify: $\left(4 \times 10^{-2}\right)-\left(2.5 \times 10^{-3}\right)$
6. What is $4,563,021 \div 10^{5}$, rounded to the nearest whole number?
7. Simplify: $(0.08)^{2} \div 0.4$
8. Simplify: $[8-(1.08+6.9)]^{2}$
9. Which integer values of j would give the number $-37,129 \times 10^{j}$ a value between -100 and -1 ?
10. Simplify: $\frac{0.00081}{0.09}$
11. Determine the number of non-zero digits to the right of the decimal place for the following terminating decimals:
a. $\frac{631}{100}$
b. $\frac{13}{250}$
c. $\frac{35}{50}$
12. What is the units digit of $16^{4} \times 27^{3}$?
13.

Quantity_

$$
\frac{573}{10^{-2}}
$$

Quantity B

0.573×10^{5}
14.

> Quantity A

603,789,420
13.3×10^{7}
15.

Quantity A

$$
\left(1+\frac{2}{5}\right) \times 0.25
$$

Quantity B

0.35

Solutions

1. 6: Multiplying 0.02468 by a positive power of 10 will shift the decimal point to the right. Simply shift the decimal point to the right until the result is greater than

10,000. Keep track of how many times you shift the decimal point. Shifting the decimal point five times results in 2,468 . This is still less than 10,000 . Shifting one more place yields 24,680 , which is greater than 10,000 .
2. $\{\mathbf{- 2},-\mathbf{3}\}$: In order to give 2002 a value between 1 and 100 , you must shift the decimal point to change the number to 2.002 or 20.02 . This requires a shift of either two or three places to the left. Remember that while multiplication shifts the decimal point to the right, division shifts it to the left. To shift the decimal point two places to the left, divide by 10^{2}. To shift it three places to the left, divide by 10^{3}. Therefore, the exponent $-b=\{2,3\}$, and $b=\{-2,-3\}$.
3. 90,000: Use the Heavy Division Shortcut to estimate:

$$
\frac{4,509,982,344}{53,420}=\frac{450,998 \cdot 2344}{5.3420} \approx \frac{450,000}{5} \approx 90,000
$$

4. 5,200: Use the order of operations, PEMDAS (Parentheses, Exponents, Multiplication \& Division, Addition \& Subtraction), to simplify. Remember that the numerator acts as a parentheses in a fraction:

$$
\begin{aligned}
& 4.5 \times 2=9 \\
& \frac{9+6.6}{0.003}=\frac{15.6}{0.003}=\frac{15,600}{3}=5,200
\end{aligned}
$$

5. 0.0375: First, rewrite the numbers in standard notation by shifting the decimal point. Then, add zeroes, line up the decimal points, and subtract:

$$
\begin{array}{r}
0.0400 \\
-\quad 0.0025 \\
\hline 0.0375
\end{array}
$$

6. 46: To divide by a positive power of 10 , shift the decimal point to the left. This yields 45.63021 . To round to the nearest whole number, look at the tenths place. The digit in the tenths place, 6 , is more than 5 . Therefore, the number is closest to 46 .
7. 0.016: Use the order of operations, PEMDAS (Parentheses, Exponents, Multiplication \& Division, Addition \& Subtraction), to simplify. Shift the decimals in the numerator and denominator so that you are dividing by an integer:

$$
\frac{(0.08)^{2}}{0.4}=\frac{0.0064}{0.4}=\frac{0.064}{4}=0.016
$$

8. 0.0004: Use the order of operations, PEMDAS (Parentheses, Exponents, Multiplication \& Division, Addition \& Subtraction), to simplify:

First, add $1.08+6.9$ by lining up the decimal points.

Then, subtract 7.98 from 8 by lining up the decimal points, 8.00 adding zeroes to make the decimals the same length. $\underline{-7.98}$
0.02

Finally, square 0.02 , by multiplying 2×2, and then 0.02 recognizing that $(0.02) \times(0.02)$ has a total of four digits to $\times \underline{0.02}$ the right of the decimal point. 40.0004
9. $\{-\mathbf{3},-\mathbf{4}\}$: In order to give $-37,129$ a value between -100 and -1 , you must shift the decimal point to change the number to -37.129 or -3.7129 . This requires a shift of either three or four places to the left. Remember that multiplication shifts the decimal point to the right. To shift the decimal point three places to the left, you would multiply by 10^{-3}. To shift it four places to the left, you would multiply by 10^{-4}. Therefore, the exponent $j=\{-3,-4\}$.
10. 0.009: Shift the decimal point two spaces to eliminate the decimal point in the denominator:

$$
\frac{0.00081}{0.09}=\frac{0.081}{9}
$$

Then divide. First, drop the three decimal places: $81 \div 9=9$. Then put the three decimal places back: 0.009 .
11. $\mathbf{a}=\mathbf{2}, \mathbf{b}=\mathbf{2}, \mathbf{c}=\mathbf{1}:$

$$
\frac{631}{100}=6.31 \underset{2}{31} \frac{13}{250}=0.052 \quad \frac{35}{50}=\frac{7}{10}=0.7
$$

12. 8: You can focus on the last digits only: $16^{4} \times 27^{3} \rightarrow 6^{4} \times 7^{3}$

$$
\begin{array}{r}
6^{4} \rightarrow 6^{2} \times 6^{2} \rightarrow 3 \underline{6} \times 3 \underline{6} \rightarrow 36 \rightarrow 6 \\
7^{3} \rightarrow 7^{2} \times 7 \rightarrow 4 \underline{9} \times 7 \rightarrow 6 \underline{3} \rightarrow 3 \\
6 \times 3=1 \underline{8} \rightarrow 8
\end{array}
$$

13. (C): In Quantity A, when you divide by 10 raised to a negative power, move the decimal to the right, so that 573 becomes 57,300:

$$
\begin{gathered}
\text { Quantity A } \\
\frac{573}{10^{-2}}=57,300
\end{gathered}
$$

Quantity_B
0.573×10^{5}

In Quantity B, when you multiply by 10 raised to a positive power, move the decimal to the right, so that 0.573 becomes 57,300 .

Quantity_

$$
57,300
$$

Quantity B

$0.573 \times 10^{5}=\mathbf{5 7 , 3 0 0}$

Therefore, the two quantities are equal.
14. (B): Quantity A looks pretty intimidating at first. The trap here is to try to find an exact value for the expression in Quantity A. Let's estimate instead:
$603,789,420 \approx 600,000,000$.
$13.3 \times 10^{7} \approx 133,000,000$, or even better, $130,000,000$

Quantity_A

$$
\frac{603,789,420}{13.3 \times 10^{7}} \approx \frac{\mathbf{6 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}}{\mathbf{1 3 0 , 0 0 0 , 0 0 0}}
$$

Quantity B
5

Quantity B

5

$$
\frac{600,000,000}{130,000,000}=\frac{\mathbf{6 0}}{\mathbf{1 3}}
$$

Multiply both quantities by 13 :
Quantity_
Quantity B
$5 \times 13=65$

$$
\frac{60}{13} \times 13=\mathbf{6 0}
$$

Therefore, Quantity B is greater.
15. (C): Whenever you multiply fractions or decimals, it is usually preferable to convert the numbers to fractions. Simplify the parentheses in Quantity A and convert 0.25 to a fraction:

$$
\begin{gathered}
\text { Quantity } \mathbf{A} \\
\left(1+\frac{2}{5}\right) \times 0.25= \\
\left(\frac{5}{5}+\frac{2}{5}\right) \times\left(\frac{1}{4}\right)= \\
\left(\frac{7}{5}\right) \times\left(\frac{1}{4}\right)=\frac{7}{20}
\end{gathered}
$$

Quantity B

0.35

Now compare $7 / 20$ and 0.35 . Put 0.35 into fraction form and reduce:
Quantity A
$\frac{7}{20}$
Therefore, the quantities are the same.

Chapter 4 of

 Fractions, Decimals, \& Percents

 Fractions, Decimals, \& Percents}

Percents

In This Chapter...

Percents as Fractions: The Percent Table Benchmark Values: 10\% and 5\% Percent Increase and Decrease

Percent Change vs. Percent of Original Successive Percents Smart Numbers: Pick 100 Interest Formulas: Simple and Compound

Chapter 4

Percents

The other major way to express a part-whole relationship (in addition to decimals and fractions) is to use percents. Percent literally means "per one hundred." You can conceive of percents as simply a special type of fraction or decimal that involves the number 100. For example:
75% of the students like chocolate ice cream.
This means that, out of every 100 students, 75 like chocolate ice cream. In fraction form, this is written as $\frac{75}{100}$, which simplifies to $\frac{3}{4}$.

In decimal form, this is written as 0.75 , or seventy-five hundredths. Note that the last digit of the percent is in the hundredths place value.

One common error is to mistake 100% for 100 . This is not correct. In fact, 100% means $\frac{100}{100}$, or one hundred hundredths. Therefore, $100 \%=1$. Another common mistake is to incorrectly enter percents on the GRE calculator, which does not have a percent button. For example, 7% must be entered as .07 , which is $7 / 100$, not .7 , which is 70%. Practicing some Fractions, Decimals, \& Percents (FDP) math by hand and learning to use benchmarks will help to develop your "number sense" and so avoid this mistake.

Percent problems occur frequently on the GRE. Another key to these percent problems frequntly is to make them concrete by picking real numbers with which to work.

Percents as Fractions: The Percent Table

A simple but useful way of structuring basic percent problems on the GRE is by relating percents to fractions through a percent table as shown below:

A part is some percent of a whole.

$$
\frac{\text { Part }}{\text { Whole }}=\frac{\text { Percent }}{100}
$$

Example 1: What is 30% of 80 ?
You are given the whole amount and the percent, and you are looking for the part. First, fill in the percent table. Then, set up a proportion, cancel, crossmultiply, and solve:

PART	x	30
WHOLE	80	100

$$
\frac{x}{80}=\frac{3 \varnothing}{10 \varnothing}=\frac{3}{10} \quad 10 x=240 \quad x=24
$$

You can also solve this problem using decimal equivalents: $(0.30)(80)=(3)(8)$ $=24$.

Example 2: 75% of what number is 21 ?
You are given the part and the percent, and you are looking for the whole amount. First, fill in the percent table. Then, set up a proportion, cancel, crossmultiply, and solve:

PART	21	75
WHOLE	x	100

$$
\frac{21}{x}=\frac{75}{100}=\frac{3}{4} \quad 3 x=84 \quad x=28
$$

Likewise, you can also solve this problem using decimal equivalents:

$$
(0.75) x=21 \text { then move the decimal } \rightarrow
$$

$75 x=2,100$
$x=28$
Example 3: 90 is what percent of 40 ?
This time you are given the part and the whole amount, and you are looking for the percent. Note that the "part" (90) is greater than the "whole" (40). While potentially confusing, this can happen, so watch the wording of the question carefully. Just make sure that you are taking the percent of the "whole." Here, you are taking a percent of 40 , so 40 is the "whole."

First, you fill in the percent table. Then, you set up a proportion again and solve:

PART	90	x
WHOLE	40	100

$$
\frac{90}{40}=\frac{9}{4}=\frac{x}{100} \quad 4 x=900 \quad x=225
$$

Note that 90 is 225% of 40 . Notice that you wind up with a percent greater than 100%. That is what you should expect when the "part" is bigger than the "whole."

Check Your Skills

1. 84 is 70% of what number?
2. 30 is what percent of 50 ?

Answers can be found on page 105.

Benchmark Values: 10\% and 5\%

To find 10% of any number, just move the decimal point to the left one place:
10% of 500 is $50 \quad 10 \%$ of $34.99=3.499 \quad 10 \%$ of 0.978 is 0.0978
Once you know 10% of a number, it is easy to find 5% of that number, because 5% is half of 10% :

$$
10 \% \text { of } 300 \text { is } 30 \quad 5 \% \text { of } 300 \text { is } 30 \div 2=15
$$

These quick ways of calculating 10% and 5% of a number can be useful for more complicated percentages. For example:

What is 35% of 640 ?
Instead of multiplying 640 by 0.35 , begin by finding 10% and 5% of 640 :

$$
10 \% \text { of } 640 \text { is } 64 \quad 5 \% \text { of } 640 \text { is } 64 \div 2=32
$$

Note that 35% of a number is the same as ($3 \times 10 \%$ of a number $)+(5 \%$ of a number):

$$
3 \times 64+32=192+32=224
$$

You can also use the Benchmark Values to estimate percents. For example:
Karen bought a new television, originally priced at $\$ 690$. However, she had a coupon that saved her $\$ 67$. For what percent discount was Karen's coupon?

You know that 10% of 690 would be 69 . Therefore, 67 is slightly less than 10% of 690 .

Check Your Skills

3. What is 10% of 145.028 ?
4. What is 20% of 73 ?

Percent Increase and Decrease

Some percent problems involve the concept of percent change. For example:
The price of a cup of coffee increased from 80 cents to 84 cents. By what percent did the price change?

Percent change problems can be solved using your handy percent table, with a small adjustment. The price change ($84-80$, or 4 cents) is considered the part, while the original price (80 cents) is considered the whole.

CHANGE	4	x
ORIGINAL	80	100

$$
\begin{aligned}
& \frac{\text { Change }}{\text { Original }}=\frac{\text { Percent }}{100} \\
& \frac{4}{80}=\frac{1}{20}=\frac{x}{100} \quad 20 x=100 \quad x=5
\end{aligned}
$$

Thus, the price increased by 5%.
By the way, do not forget to divide by the original! The percent change is not 4%, which may be a wrong answer choice.

Alternatively, a question might be phrased as follows:
If the price of a $\$ 30$ shirt decreased by 20%, what was the final price of the shirt?

The whole is the original price of the shirt. The percent change is 20%. In order to find the answer, you must first find the part, which is the amount of the decrease:

CHANGE	x	20
ORIGINAL	30	100

$$
\frac{x}{30}=\frac{20}{100}=\frac{1}{5} \quad 5 x=30 \quad x=6
$$

Therefore, the price of the shirt decreased by $\$ 6$. The final price of the shirt was $\$ 30$ - \$6, or $\$ 24$.

Check Your Skills

5. An exam score increased from 1250 to 1600 . By what percent did the score increase?
6.15% of the water in a full 30 -gallon drum evaporated. How much water is remaining?

Answers can be found on page 105.

Percent Change vs. Percent of Original

Looking back at the cup of coffee problem, you see that the new price (84 cents) was higher than the original price (80 cents).

You can ask what percent of the original price is represented by the new price:

$$
\frac{84}{80}=\frac{21}{20}=\frac{x}{100} \quad 20 x=2,100 \quad x=105
$$

Thus, the new price is 105% of the original price. Remember that the percent change is 5%. That is, the new price is 5% higher than the original price. There is a fundamental relationship between these numbers, resulting from the simple idea that the Change equals the New value minus the Original value, or equivalently, Original + Change $=$ New .

If a quantity is increased by x percent, then the new quantity is $(100+x) \%$ of the original. Thus, a 15% increase produces a quantity that is $\mathbf{1 1 5 \%}$ of the original.

You can write this relationship thus:
Original $\times\left(1+\frac{\text { Percent Increase }}{100}\right)=$ New.
In the case of the cup of coffee, you see that $80 \times\left(1+\frac{5}{100}\right)=80(1.05)=84$.
Likewise, in the shirt problem, you had a 20% decrease in the price of a $\$ 30$ shirt, resulting in a new price of $\$ 24$.

The new price is some percent of the old price. Calculate that percent:

$$
\frac{24}{30}=\frac{4}{5}=\frac{x}{100} \quad 5 x=400 \quad x=80
$$

Thus, the new price (20% less than the original price) is 80% of the original price.

If a quantity is decreased by x percent, then the new quantity is $(100-x) \%$ of the original. Thus, a 15% decrease produces a quantity that is $\mathbf{8 5 \%}$ of the original.

You can write this relationship thus:
Original $\times\left(1-\frac{\text { Percent Decrease }}{100}\right)=$ New.
In the case of the shirt, $30 \times\left(1-\frac{20}{100}\right)=30(0.80)=24$.
These formulas are all just another way of saying Original \pm Change $=$ New.
Example 4: What number is 50% greater than 60 ?
The whole amount is the original value, which is 60 . The percent change (i.e., the percent "greater than") is 50%. In order to find the answer, you must first find the part, which is the amount of the increase:

CHANGE	x	50
ORIGINAL	60	100

$$
\frac{x}{60}=\frac{50}{100}=\frac{1}{2} \quad 2 x=60 \quad x=30
$$

You know that Original \pm Change $=$ New. Therefore, the number that is 50% greater than 60 is $60+30$, or 90 , which is also 150% of 60 .

You could also solve this problem using the formula:
Original $\times\left(1+\frac{\text { Percent Increase }}{100}\right)=$ New.
Thus, $60\left(1+\frac{50}{100}\right)=60(1.5)=90$.
Example 5: What number is 150% greater than 60 ?
The whole amount is the original value, which is 60 . The percent change (i.e., the percent "greater than") is 150%. In order to find the answer, you must first find the part, which is the amount of the increase:

CHANGE	x	150
ORIGINAL	60	100

$$
\frac{x}{60}=\frac{150}{100}=\frac{3}{2} \quad 2 x=180 \quad x=90
$$

Now, x is the Change, not the new value! It is easy to forget to add back the original amount when the percent change is more than $\mathbf{1 0 0 \%}$. Thus, the number that is 150% greater than 60 is $60+90$, or 150 , which is also 250% of 60.

You could also solve this problem using the formula:
Original $\times\left(1+\frac{\text { Percent Increase }}{100}\right)=$ New.
Thus, $60\left(1+\frac{150}{100}\right)=60(2.5)=150$.

Check Your Skills

7. A plant originally cost $\$ 35$. The price is increased by 20%. What is the new price?
8.70 is 250% greater than what number?

Answers can be found on page 106.

Successive Percents

One of the GRE's favorite tricks involves successive percents. For example:
If a ticket increased in price by 20%, and then increased again by 5%, by what percent did the ticket price increase in total?

Although it may seem counterintuitive, the answer is not 25%.
To understand why, consider a concrete example. Say that the ticket initially cost $\$ 100$. After increasing by 20%, the ticket price went up to $\$ 120$ ($\$ 20$ is 20% of $\$ 100$).

Here is where it gets tricky. The ticket price goes up again by 5%. However, it increases by 5% of the new price of $\$ 120$ (not 5% of the original $\$ 100$ price). Thus, 5% of $\$ 120$ is $0.05(120)$, or $\$ 6$. Therefore, the final price of the ticket is $\$ 120+\$ 6$, or $\$ 126$, not $\$ 125$.

You can now see that two successive percent increases, the first of 20% and the second of 5%, do not result in a combined 25% increase. In fact, they result in a combined 26% increase (because the ticket price increased from $\$ 100$ to $\$ 126$).

Successive percents cannot simply be added together! This holds for successive increases, successive decreases, and for combinations of increases and decreases. If a ticket goes up in price by 30% and then goes down by 10%, the price has not in fact gone up a net of 20%. Likewise, if an index increases by 15% and then falls by 15%, it does not return to its original value! (Try it-you will see that the index is actually down 2.25% overall!)

A great way to solve successive percent problems is to choose real numbers and see what happens. The preceding example used the real value of $\$ 100$ for the initial price of the ticket, making it easy to see exactly what happened to the ticket price with each increase. Usually, $\mathbf{1 0 0}$ will be the easiest real number to choose for percent problems. This will be explored in greater detail in the next section.

You could also solve by converting to decimals. Increasing a price by 20% is the same as multiplying the price by 1.20 .

Increasing the new price by 5% is the same as multiplying that new price by 1.05 .

Thus, you can also write the relationship this way:

$$
\text { Original } \times(1.20) \times(1.05)=\text { final price }
$$

When you multiply 1.20 by 1.05 , you get 1.26 , indicating that the price increased by 26% overall.

This approach works well for problems that involve many successive steps (e.g., compound interest, which will be addressed later). However, in the end, it is still usually best to pick $\$ 100$ for the original price and solve using concrete numbers.

Check Your Skills

9. If your stock portfolio increased by 25% and then decreased by 20%, what percent of the original value would your new stock portfolio have?

Answer can be found on page 106.

Smart Numbers: Pick 100

Sometimes, percent problems on the GRE include unspecified numerical amounts; often, these unspecified amounts are described by variables. For example:

A shirt that initially cost d dollars was on sale for 20% off. If s represents the sale price of the shirt, d is what percentage of s ?

This is an easy problem that might look confusing. To solve percent problems such as this one, simply pick 100 for the unspecified amount (just as you did when solving successive percents).

If the shirt initially cost $\$ 100$, then $d=100$. If the shirt was on sale for 20% off, then the new price of the shirt is $\$ 80$. Thus, $s=80$.

The question asks: d is what percentage of s, or 100 is what percentage of 80 ? Using a percent table, fill in 80 as the whole amount and 100 as the part. You are looking for the percent, so set up a proportion, cross-multiply, and solve:

PART	100	x
WHOLE	80	100

$$
\frac{100}{80}=\frac{x}{100} \quad 80 x=10,000 \quad x=125
$$

Therefore, d is 125% of s.
The important point here is that, like successive percent problems and other percent problems that include unspecified amounts, this example is most easily solved by plugging in a real value. For percent problems, the easiest value to plug in is generally 100 . The fastest way to success with GRE percent problems with unspecified amounts is to pick 100 as a value. (Note that, as you saw in the fractions chapter, if any amounts are specified, you cannot pick numbers-you must solve the problem algebraically.)

Check Your Skills

10. If your stock portfolio decreased by 25% and then increased by 20%, what percent of the original value would your new stock portfolio have?

Answer can be found on page 106.

Interest Formulas: Simple and Compound

Certain GRE percent problems require a working knowledge of basic interest formulas. The compound interest formula may look complicated, but it just expresses the idea of "successive percents" for a number of periods.

Especially for compound interest questions, be prepared to use the GRE onscreen calculator to help with the math involved!

Formula

Simple Interest	Principal $(P) \times$ Rate $(r) \times$ Time (t)	$\$ 5,000$ invested for 6 months at an annual rate of 7% will earn $\$ 175$ in simple interest. Principal $=\$ 5,000$, Rate $=7 \%$ or 0.07, Time $=6$ months or 0.5 years. Prt $=\mathbf{\$ 5 , 0 0 0 (0 . 0 7) (0 . 5) ~}=\$ 175$
Compound Interest	, where $P=$ principal, $r=$ rate (decimal) $n=$ number of times per year $t=$ number of years	$\$ 5,000$ invested for 1 year at a rate of 8% compounded quarterly will earn approximately $\$ 412$: (or $\$ 412$ of interest)

Check Your Skills

11. Assume an auto loan in the amount of $\$ 12,000$ is made. The loan carries an interest charge of 14%. What is the amount of interest owed in the first three years of the loan, assuming there is no compounding?
12. For the same loan, what is the loan balance after 3 years assuming no payments on the loan, and annual compounding?
13. For the same loan, what is the loan balance after 3 years assuming no payments, and quarterly. compounding?

> Answers can be found on pages 106-107.

Check Your Skills Answer Key

1. 120:

PART	84	70
WHOLE	x	100

$$
\frac{84}{x}=\frac{70}{100}=\frac{7}{10} \quad 7 x=840 \quad x=120
$$

2. 60:

PART	30	x
WHOLE	50	100

$$
\frac{x}{100}=\frac{30}{50}=\frac{3}{5} \quad 5 x=300 \quad x=60
$$

3. 14.5028: Move the decimal to the left one place: $145.028 \rightarrow 14.5028$
4. 14.6: To find 20% of 73 , first find 10% of 73 . Move the decimal to the left one place: $73 \rightarrow 7.3 .20 \%$ is twice 10% :
$7.3 \times 2=14.6$
5. $\mathbf{2 8 \%}$: First find the change: $1600-1250=350$.

$$
\frac{\text { CHANGE }}{\text { ORIGINAL }}=\frac{350}{1250}=\frac{7}{25}=\frac{7 \times 4}{25 \times 4}=\frac{28}{100}=28 \%
$$

6. 25.5:

CHANGE	x	15
ORIGINAL	30	100

$$
\frac{x}{30}=\frac{15}{100}=\frac{3}{20} \quad 20 x=90 \quad x=4.5
$$

However, the question asks how much water is remaining. Because 4.5 gallons have evaporated, then $30-4.5$, or 25.5 , gallons remain.
7. 42: Recall that Original $\times\left(1+\frac{\text { Percent Increase }}{100}\right)=$ New:

$$
35 \times\left(1+\frac{20}{100}\right)=35(1.2)=42
$$

8. 20: Recall that Original $\times\left(1+\frac{\text { Percent Increase }}{100}\right)=$ New. Designate the original value x :

$$
\begin{aligned}
& x \times\left(1+\frac{250}{100}\right)=70 \\
& 3.5 x=70 \\
& x=20
\end{aligned}
$$

9. $\mathbf{1 0 0 \%}$: Pick 100 for the original value of the portfolio. A 25% increase is:

$$
100\left(1+\frac{25}{100}\right)=100(1.25)=125
$$

A 20\% decrease is:

$$
125\left(1-\frac{20}{100}\right)=125(0.8)=100
$$

The final value is 100 . Because the starting value was also 100 , the portfolio is 100% of its original value.
10.90% : Pick 100 for the original value of the portfolio. A 25% decrease is:

$$
100\left(1-\frac{25}{100}\right)=100(0.75)=75 .
$$

A 20% increase is:

$$
75\left(1+\frac{20}{100}\right)=75(1.2)=90 .
$$

The final value is 90 and the original value was 100 . Thus, $\frac{90}{100}=90 \%$ of the original value.
11. \$5,040: $P \times r \times t=\$ 12,000 \times 14 \% \times 3=\$ 5,040$.

12. $\$ 17,778.53: P\left(1+\frac{r}{n}\right)^{n t}$, where $P-\$ 12,000, r=14 \%, n=1$ (annual compounding), and $t=3$ years.

$\$ 12,000\left(1+\frac{14 \%}{1}\right)^{1 \times 3}=\$ 12,000 \times(1.14)^{3}=\$ 17,778.53$ (rounded to the nearest penny). This represents $\$ 17,778.53-\$ 12,000$, or $\$ 5,778.53$ in interest.
13. $\$ 18,132.82: P\left(1+\frac{r}{n}\right)^{n t}$, where $P=\$ 12,000, r=14 \%, n=4$ (quarterly compounding), and $t=3$
 years.
$\$ 12,000\left(1+\frac{14 \%}{4}\right)^{4 \times 3}=\$ 12,000 \times(1.035)^{12}=\$ 18,132.82$ (rounded to the nearest penny). This represents $\$ 18,132.82-\$ 12,000$, or $\$ 6,132.82$ in interest.

Problem Set

Solve the following problems. Use a percent table to organize percent problems, and pick 100 when dealing with unspecified amounts.

1. $x \%$ of y is $10 . y \%$ of 120 is 48 . What is x ?
2. A stereo was marked down by 30% and sold for $\$ 84$. What was the pre-sale price of the stereo?
3. From 1980 to 1990, the population of Mitannia increased by 6%. From 1990 to 2000 , it decreased by 3%. What was the overall percentage change in the population of Mitannia from 1980 to 2000?
4. If y is decreased by 20% and then increased by 60%, what is the new number, expressed in terms of y ?
5. A 7% car loan, which is compounded annually, has an interest payment of $\$ 210$ after the first year. What is the principal on the loan?
6. A bowl was half full of water. Next, 4 cups of water were then added to the bowl, filling the bowl to 70% of its capacity. How many cups of water are now in the bowl?
7. A large tub is filled with 920 liters of water and 1,800 liters of alcohol. If 40% of the alcohol evaporates, what percent of the remaining liquid is water?
8. x is 40% of y and 50% of y is 40 . Thus, 16 is what percent of x ?
9. 800 , increased by 50% and then decreased by 30%, yields what number?
10. If 1,600 is increased by 20%, and then reduced by $y \%$, yielding 1,536 , what is y ?
11. Lori deposits $\$ 100$ in a savings account at 2% interest, compounded annually. After 3 years, what is the balance on the account? (Assume Lori makes no withdrawals or deposits.)
12. Steve uses a certain copy machine that reduces an image by 13%.

Quantity A

The percent of the original if Steve reduces the image by another 13%

Quantity B 75\%
13.
y is 50% of $x \%$ of x.

Quantity \mathbf{A}

y
14.

Quantity \mathbf{A}
10% of 643.38

Quantity \mathbf{B}
20% of 321.69

Solutions

1. 25: Use two percent tables to solve this problem. Begin with the fact that $y \%$ of 120 is 48 :

PART	48	y
WHOLE	120	100

$4,800=120 y$

$$
y=40
$$

Then, set up a percent table for the fact that $x \%$ of 40 is 10 :

PART	10	x
WHOLE	40	100

$1,000=40 x$

$$
x=25
$$

Set up equations with decimal equivalents to solve: $(0.01 y)(120)=48$, so $1.2 y$ $=48$ or $y=40$. Therefore, since you know that $(0.01 x)(y)=10$, you have:

$$
(0.01 x)(40)=10 \quad 40 x=1,000 \quad x=25
$$

2. \$120: Use a percent table to solve this problem. Remember that the stereo was marked down 30% from the original, so you have to solve for the original price:

CHANGE	x	30
ORIGINAL	$\$ 84+x$	100

$$
\begin{array}{ccc}
\frac{x}{84+x}=\frac{30}{100} & 100 x=30(84+x) & 100 x=30(84)+30 x \\
70 x=30(84) & x=36
\end{array}
$$

Therefore, the original price was $84+36$, or $\$ 120$.

You could also solve this problem using the formula, Original $\times\left(1-\frac{\text { Percent Decrease }}{100}\right)=$ New:

$$
x\left(1-\frac{30}{100}\right)=84 \quad 0.7 x=84 \quad x=120
$$

3. 2.82\% increase: For percent problems, the Smart Number is 100. Therefore, assume that the population of Mitannia in 1980 was 100 . Then, apply the successive percents procedure to find the overall percent change:

From 1980-1990, there was a $6 \% \quad 100(1+0.06)=100(1.06)=106$ increase:
From 1990-2000, there was a 3\% $\quad 106(1-0.03)=106(0.97)=102.82$ decrease:

Overall, the population increased from 100 to 102.82 , representing a 2.82% increase.
4. 1.28y: For percent problems, the Smart Number is 100 . Therefore, assign y a value of 100 . Then, apply the successive percents procedure to find the overall percentage change:
(1) y is decreased by 20% :

$$
\begin{aligned}
& 100(1-0.20)=100(0.8)=80 \\
& 80(1+0.60)=80(1.6)=128
\end{aligned}
$$

(2) Then, it is increased by 60% :

Overall, there was a 28% increase. If the original value of y is 100 , the new value is $1.28 y$.
5. $\mathbf{\$ 3 , 0 0 0}$: Use a percent table to solve this problem, which helps you find the decimal equivalent equation:

PART	210	7
WHOLE	x	100

$21,000=7 x$

$$
x=3,000
$$

6. 14: For some problems, you cannot use Smart Numbers, since the total amount can be calculated. This is one of those problems. Instead, use a percent table:

PART	$0.5 x+4$	70
WHOLE	x	100

$$
\begin{aligned}
\frac{0.5 x+4}{x}=\frac{70}{100}=\frac{7}{10} \quad 5 x+40 & =7 x \\
40 & =2 x \\
x & =20
\end{aligned}
$$

The capacity of the bowl is 20 cups. There are 14 cups of water in the bowl $\{70 \%$ of 20 , or $0.5(20)+4\}$:

Alternatively, the 4 cups of water added to the bowl represent 20% of the total capacity. Use a percent table to solve for x, the whole. Since $x=20$, there are 14 ($4+50 \%$ of 20) cups of water in the bowl.
7. $\mathbf{4 6} \%$: For this liquid mixture problem, set up a table with two columns: one for the original mixture and one for the mixture after the alcohol evaporates from the tub:

	Original	After Evaporation
Water	920	920
Alcohol	1,800	$0.60(1,800)=1,080$
TOTAL	2,720	2,000

The remaining liquid in the tub is $\frac{920}{2,000}=46 \%$ water.

Alternatively, you could skip the chart and solve for the new amount of alcohol using the formula:

$$
\text { Original } \times\left(1-\frac{\text { Percent Decrease }}{100}\right)=\mathrm{New}
$$

$1,800\left(1-\frac{40}{100}\right)=(1,800)(0.6)=1,080$ units of alcohol. Water is
$\frac{920}{920+1,080}=\frac{920}{2,000}=46 \%$ of the total.
8. 50\%: Use two percent tables to solve this problem. Begin with the fact that 50% of y is 40 :

PART	40	50
WHOLE	y	100

$4,000=50 y$

$$
y=80 \text { Finally, } 16 \text { is } 50 \% \text { of } 32 .
$$

Then, set up a percent table for the fact that x is 40% of y :

PART	x	40
WHOLE	80	100

$$
\begin{aligned}
3,200 & =100 x \\
x & =32
\end{aligned}
$$

Finally, 16 is 50% of 32 . You could alternatively set up equations with decimal equivalents to solve: $x=(0.4) y$. You also know that $(0.5) y=40$, so $y=80$ and x $=(0.4)(80)=32$. Therefore, 16 is half, or 50%, of x.
9. 840: Apply the successive percents procedure to find the overall percentage change:
(1) 800 is increased by 50% :

$$
800 \times 1.5=1,200
$$

(2) Then, the result is decreased by $30 \%: 1,200 \times 0.7=840$
10. 20: Apply the percents in succession with two percent tables:

PART	x	120
WHOLE	1,600	100

$192,000=100 x$

$$
x=1,920
$$

Then, fill in the "change" for the part $(1,920-1,536=384)$ and the original for the whole $(1,920)$:

PART	384	y
WHOLE	1,920	100

$1,920 y=38,400$

$$
y=20
$$

Alternatively, you could solve for the new number using formulas. Because this is a successive percents problem, you need to "chain" the formula: once to reflect the initial increase in the number, then twice to reflect the subsequent decrease:

Original $\times\left(1+\frac{\text { Percent Increase }}{100}\right) \times\left(1-\frac{\text { Percent Decrease }}{100}\right)=$ New
$1,600 \times\left(1+\frac{20}{100}\right) \times\left(1-\frac{y}{100}\right)=1,536 \quad 1,920 \times\left(1-\frac{y}{100}\right)=1,536 \quad 1,920-\frac{1,920 y}{100}=1,536$
$1,920-1,536=19.2 y \quad 384=19.2 y \quad 20=y$

11. \$106.12: Interest compounded annually is just a series of successive percents:
(1) 100.00 is increased by $2 \%: \quad 100(1.02)=102$
(2) 102.00 is increased by $2 \%: \quad 102(1.02)=104.04$
(3) 104.04 is increased by 2% :
$104.04(1.02) \cong 106.12$

12. (A): In dealing with percents problems, you should choose 100. In this case, the original size of the image is 100 . The question tells you that Steve reduces the image by 13%. Thus:

$$
100-0.13(100)=100-13=87
$$

So the image is at 87 percent of its original size. Quantity A tells you that you have to reduce the image size by another 13%.

If the image size is reduced by 13%, then 87% of the image remains. Multiply 87 (the current size of the image) by 0.87 (87% expressed as a decimal):
$87 \times 0.87=75.69$

Quantity_A

The percent of the original if Steve reduces the image by another 13%

$$
=75.69 \%
$$

Therefore, Quantity A is larger.

13. (D): First translate the statement in the question stem into an equation:

$$
y=50 \% \times \frac{x}{100} \times x \longrightarrow y=0.5 \times \frac{x}{100} \times x=\frac{x^{2}}{200} \longrightarrow 200 y=x^{2}
$$

Now try to pick some easy numbers. If $y=1$, then $x=\sqrt{200}$, which is definitely greater than 1 :

Quantity \mathbf{A}

$y=1$

Quantity B
$x=\sqrt{200}$

However, if $y=200$, then x must also equal 200:

Quantity_

$$
y=\mathbf{2 0 0}
$$

Quantity B
$x=200$
y can be less than x, but y can also be equal to x. You could also choose values for which y is greater than x. Therefore, you do not have enough information to answer the question.
14. (C): To calculate 10% of 643.38 , move the decimal to the left one place: $643.38 \rightarrow 64.338$.

Quantity \mathbf{A}

10% of $643.38=\mathbf{6 4 . 3 3 8}$

Quantity B

20% of 321.69

To calculate 20% of 321.69 , don't multiply by 0.2 . Instead, find 10% first by moving the decimal to the left one place: $321.69 \rightarrow 32.169$.

Now multiply by $2: 32.169 \times 2=64.338$.

Quantity_

 64.338
Quantity B

20% of $321.69=\mathbf{6 4 . 3 3 8}$

Therefore, the two quantities are equal.

Chapter 5
 Fractions, Decimals, \& Percents
 FDP Connections

In This Chapter...

Converting Among Fractions, Decimals, \& Percents (FDPs)

Common FDP Equivalents When to Use Which Form FDPs and Algebraic Translations FDP Word Problems

Chapter 5

FDP Connections

Fractions, decimals, and percents are three different ways of representing the same thing: "parts of a whole."

Consider the following:

1/3 of the orange $\quad 2.5$ times the $\quad 110 \%$ of the sales distance

In each of these instances, you using a fraction, a decimal, or a percent to indicate that you have some portion of a whole. In fact, these different forms are very closely related. For instance, you might say that a container is $1 / 2$ full, which is the same thing as saying that it is 50% full, or filled to 0.5 of its capacity. To illustrate, see the table below. Each row consists of a fraction, a decimal, and a percent representing the same part of a whole:

$\frac{\text { Fraction }}{\frac{1}{4} \text { or } 1 / 4}$ or $1 / 4$	$\underline{\text { Decimal }}$	$\frac{\text { Percent }}{25}$

The container is $\frac{1}{2} \quad \begin{aligned} & \text { The container is filled } \\ & \text { to } 0.5 \text { of its capacity. }\end{aligned} \begin{aligned} & \text { The container is filled to } 50 \% \\ & \text { of its capacity. }\end{aligned}$ full.
3/2
1.5
150\%

Thus, one helpful feature of fractions, decimals, and percents is that you can use whichever form is most convenient to solve a particular problem. Thus far, fractions, decimals, and percents have been discussed individually. This chapter is devoted to changing from one form to another so that you can choose the form best suited to answering the question at hand.

Converting Among Fractions, Decimals, \& Percents (FDPs)

From Percent to Decimal or Fraction

Percent to Decimal

As discussed earlier, to convert from a percent to a decimal, simply move the decimal point two spots to the left and remove the percent symbol:
53% becomes 0.53 .
40.57% becomes 0.4057 .
3% becomes 0.03 .

Percent to Fraction

To convert from a percent to a fraction, remember that per cent literally means "per hundred," so put the percent figure over one hundred and then simplify:
45% becomes $45 / 100=9 / 20$.
8% becomes $8 / 100=2 / 25$.

Check Your Skills

1. Change 87% to a decimal.
2. Change 30% to a fraction.

From Decimal to Percent or Fraction

Decimal to Percent

To convert from a decimal to a percent, simply move the decimal point two spots to the right and add a percent symbol:
0.53 becomes 53%.
0.4057 becomes 40.57%.
0.03 becomes 3\%.

Decimal to Fraction

To convert from decimal to fraction, it helps to remember the proper names for the digits: the first digit to the right of the decimal point is the tenths digit, next is the hundredth-digit, next is the thousandth-digit, and so on.

$\mathbf{4}$	$\mathbf{5}$	$\mathbf{7}$		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$		
	Hundreds	Tens			Tenths	Hundredths	Thousandths		Ten-
:---:									
Thousandths									

The number of zeroes in the denominator should match the number of digits in the decimal (not including a possible 0 in front of the decimal point). For example:
0.3 is three-tenths, or $3 / 10$.
0.23 is twenty-three hundredths, or $23 / 100$.
0.007 is seven-thousandths, or $7 / 1,000$.

Check Your Skills

3. Change 0.37 to a percent.
4. Change 0.25 to a fraction.

Answers can be found on page 129.

From Fraction to Decimal or Percent

Fraction to Decimal

To convert from a fraction to a decimal, divide the numerator by the denominator:

$$
3 / 8 \text { is } 3 \div 8=0.375
$$

$$
1 / 4 \text { is } 1 \div 4=0.25
$$

8.375
8.000
0.25
$4 \longdiv { 1 . 0 0 }$

Fraction to Percent

To convert from a fraction to a percent, first convert from fraction to decimal, and then convert that decimal to a percent.

Step 1: $1 / 2=1 \div 2=0.50$
Step 2: $0.50=50 \%$
Dividing the numerator by the denominator can be cumbersome and time consuming. Ideally, you should have the most basic conversions memorized before test day. A list of common FDP conversions that you should memorize appears later in the chapter.

The following chart reviews the ways to convert from fractions to decimals, from decimals to fractions, from fractions to percents, from percents to fractions, from decimals to percents, and from percents to decimals. You should practice so that each becomes natural to you.

$\text { From } \downarrow \text { To } \rightarrow$	$\text { Fraction } \frac{3}{8}$	Decimal 0.375	Percent 37.5\%
Fraction $\frac{3}{8}$		Divide the numerator by the denominator: $3 \div 8=0.375$	Divide the numerator by the denominator and move the decimal two places to the right, adding a percent symbol: $3 \div 8=0.375 \rightarrow 37.5 \%$
$\begin{gathered} \hline \text { Decimal } \\ 0.375 \end{gathered}$	Use the place value of the last digit in the decimal as the denominator, and put the decimal's digits in the numerator. Then simplify: $\frac{375}{1000}=\frac{3}{8}$		Move the decimal point two places to the right and add a percent symbol: $0.375 \rightarrow 37.5 \%$
Percent 37.5\%	Use the digits of the percent for the numerator and 100 for the denominator. Then simplify: $\frac{37.5}{100}=\frac{375}{1,000}=\frac{3}{8}$	Move the decimal point two places to the left and remove the percent symbol: $37.5 \% \rightarrow 0.375$	

Check Your Skills

5. Change $\frac{3}{5}$ to a decimal.
6. Change $\frac{3}{8}$ to a percent.

Answers can be found on page 129.

Common FDP Equivalents

You should memorize the following common equivalents:

Fraction	Decimal

$1 / 100$	0.01	1\%
$1 / 50$	0.02	2\%
$1 / 25$	0.04	4\%
$1 / 20$	0.05	5\%
$1 / 10$	0.10	10\%
$1 / 9$	$0.11 \approx 0.111$	$\approx 11.1 \%$
$1 / 8$	0.125	12.5\%
$1 / 6$	$0.16 \approx 0.167$	$\approx 16.7 \%$
$1 / 5$	0.2	20\%
$1 / 4$	0.25	25\%
$3 / 10$	0.3	30\%
$1 / 3$	$0.3 \approx 0.333$	$\approx 33.3 \%$
$3 / 8$	0.375	37.5\%
$2 / 5$	0.4	40\%
$1 / 2$	0.5	50\%
$3 / 5$	0.6	60\%
$5 / 8$	0.625	62.5\%
	$0.6 \approx 0.667$	$\approx 66.7 \%$

$2 / 3$		
$7 / 10$	0.7	70%
$3 / 4$	0.75	75%
$4 / 5$	0.8	80%
$5 / 6$	$0.83 \approx 0.833$	$\approx 83.3 \%$
$7 / 8$	0.875	87.5%
$9 / 10$	0.9	90%
$1 / 1$	1	100%
$5 / 4$	1.25	125%
$4 / 3$	$1.3 \approx 1.33$	133%
$3 / 2$	1.5	150%
	1.75	175%

When to Use Which Form

Fractions are good for canceling factors in multiplication and division. They are also the best way of exactly expressing proportions that do not have clean decimal equivalents, such as $1 / 7$. Switch to fractions if there is a handy fractional equivalent of the decimal or percent and/or you think you can cancel a lot of factors. For example:

What is 37.5% of 240 ?
If you simply convert the percent to a decimal and multiply, you will have to do a fair bit of arithmetic:
$0.375 \quad$ Alternatively, you can recognize that $0.375=\frac{3}{8}$.
$\times 240$
0
15000
75000
90.000

So you have $(0.375)(240)=\left(\frac{3}{8}\right)\left(240^{30}\right)=3(30)=90$.
This is much faster!

A dress is marked up $16 \frac{2}{3} \%$ to a final price of $\$ 140$. What is the original price of the dress?

From the previous page, you know that $16 \frac{2}{3} \%$ is equivalent to $\frac{1}{6}$. Thus, adding $\frac{1}{6}$ of a number to itself is the same thing as multiplying by $1+\frac{1}{6}=\frac{7}{6}$:

$$
\frac{7}{6} x=140 \quad x=\left(\frac{6}{7}\right) 140=\left(\frac{6}{7}\right) \geq 40^{20}=120 \text {. The original price is } \$ 120 .
$$

Decimals, on the other hand, are good for estimating results or for comparing sizes. The reason is that the basis of comparison is equivalent (there is no denominator). The same holds true for percents. The implied denominator is always 100 , so you can easily compare percents (of the same whole) to each other.

To convert certain fractions to decimals or percents, multiply the numerator and the denominator by the same number:

$$
\frac{17}{25}=\frac{17 \times 4}{25 \times 4}=\frac{68}{100}=0.68=68 \%
$$

This process is faster than long division, but it only works when the denominator has only 2's and/or 5's as factors (as you learned earlier, fractions with denominators containing prime factors other than 2's and 5's will be nonterminating, and therefore cannot be represented exactly by decimals or percents).

In some cases, you might find it easier to compare a series of fractions by giving them all a common denominator, rather than by converting them all to decimals or percents. The general rule is this: prefer fractions for doing multiplication or division, but prefer decimals and percents for doing addition or subtraction, for estimating numbers, or for comparing numbers.

FDPs and Algebraic Translations

Fractions, decimals, and percents show up in many Algebraic Translations problems. Make sure that you understand and can apply the very common translations below:

In the Problem	Translation
X percent	
of	Y Multiply (usually)
Y is X percent of Z	Y is the Part, and Z is the Whole
Y is X percent of Z	
A is of B	
C is 20% of D	
E is 10% greater than F	Profit $=$ Revenue - Cost Profit $=(1.25) J-J$ Profit $=(0.25) J$
G is 30% less than H	
The dress cost $\$ J$. Then it was marked up 25% and sold. What is the profit?	
ratio of X to Y	

FDP Word Problems

As mentioned earlier, the purpose of fractions, decimals, and percents is to represent the proportions between a part and a whole.

Most FDP Word Problems hinge on these fundamental relationships:

$$
\begin{aligned}
\text { Part } & =\text { Fraction } \times \mathrm{W} \text { hole } \\
\text { Part } & =\text { Decimal } \times \mathrm{W} \text { hole } \\
\text { Part } & =\frac{\text { Percent }}{100} \times \mathrm{Whole}
\end{aligned}
$$

In general, these problems will give you two parts of the equation and ask you to figure out the third.

Here are three examples:
A quarter of the students attended the pep rally. If there are a total of 200 students, how many of them attended the pep rally?

In this case, you are told the fraction and the total number of students. You are asked to find the number of students who attended the pep rally. Thus:

$$
\begin{aligned}
& a=(1 / 4)(200) \\
& a=50
\end{aligned}
$$

Fifty students attended the pep rally.
At a certain pet shop, there are four kittens, two turtles, eight puppies, and six snakes. If there are no other pets, what percentage of the store's animals are kittens?

Here you are told the part (there are four kittens) and the whole (there are $4+2$ $+8+6=20$ animals total). You are asked to find the percentage. Thus:

$$
\begin{aligned}
4 & =x(20) \\
4 \div 20 & =x \\
0.2 & =x
\end{aligned}
$$

$$
x=20 \%
$$

Twenty percent of the animals are kittens.
Sally receives a commission equal to 30% of her sales. If Sally earned $\$ 4,500$ in commissions last month, what were her total sales?

Here you are given the part, and told what percent that part is, but you don't know the whole. You are asked to solve for the whole. Thus:

$$
\begin{aligned}
4,500 & =0.30 s \\
4,500 \div 0.30 & =s \\
s & =15,000
\end{aligned}
$$

Her total sales for the month were $\$ 15,000$.
Tip: If in doubt-sound it out! Do you ever get confused on how exactly to set up an equation for a word problem? If so, you're not alone! For instance, consider the following problem:

$$
x \text { is } 40 \% \text { of what number? }
$$

First, assign a variable to the number you're looking for-call it y.
Should this be set up as $40 \% \times x=(y)$, or $x=40 \% \times(y)$?
If you are unsure of how to set up this equation, try this-say it aloud or to yourself. Often, that will clear up any confusion, and put you on the right track.

Look again at the two options:

Equation

Option 1: $\quad 40 \% \times x=(y)$
Option 2: $x=40 \%(y)$

Read out loud as...

40% of x is y
x is 40% of y

Now, it's much easier to see that the second option, $x=40 \%(y)$, is the equation that represents the original question.

Check Your Skills

Write the following sentences as equations.
7. x is 60% of y.
8. $1 / 3$ of a is b.
9. y is 25% of what number?

Answers can be found on page 129.

Typical Complications

Now take those three problems and try them with a typical GRE twist:
A quarter of the students attended the pep rally. If there are a total of 200 students, how many of them did not attend the pep rally?

Notice here that the fraction one-quarter represents the students who did attend the pep rally, but you are asked to find the number that did not attend the pep rally.

Here are two ways you can solve this:

1. Find the value of one-quarter and subtract from the whole:

$$
\begin{aligned}
& a=(1 / 4)(200) \\
& a=50
\end{aligned}
$$

Once you figure out 50 students did attend, you can see that $200-50=150$, so 150 did not attend.

OR
2. Find the value of the remaining portion.

If $1 / 4$ did attend, that must mean $3 / 4$ did not attend:

$$
\begin{aligned}
& n=(3 / 4)(200) \\
& n=150
\end{aligned}
$$

At a certain pet shop, there are four kittens, two turtles, eight puppies, and six snakes. If there are no other pets, what percentage of the store's
animals are kittens or puppies?
Here you are asked to combine two different elements. You can take either of two approaches:

1. Figure each percentage out separately and then add:

$$
\begin{aligned}
& 4=x(20) \\
& 0.2=x \\
& 8=y(20) \\
& 0.4=y \\
& 0.2+0.4=0.6
\end{aligned}
$$

Kittens and puppies represent 60% of the animals.
OR
2. Add the quantities first and then solve:

There are 4 kittens and 8 puppies, for a total of $4+8$, or 12 , of these animals:

$$
\begin{aligned}
& 12=x(20) \\
& 0.6=x
\end{aligned}
$$

Kittens and puppies represent 60% of the animals.
Sally receives a monthly salary of $\$ 1,000$ plus a 30% commission of her total sales. If Sally earned $\$ 5,500$ last month, what were her total sales?

In this case, a constant $(\$ 1,000)$ has been added in to the proportion equation. Thus:

$$
\begin{aligned}
& \text { Her salary }=\$ 1,000+0.30 \text { (total sales) } \\
& 5,500=1000+0.3(s) \\
& 4,500=0.3(s) \\
& 15,000=s
\end{aligned}
$$

Alternatively, you could subtract out Sally's $\$ 1,000$ salary from her earnings of $\$ 5,500$ first, to arrive at the portion of her income $(\$ 5,500-\$ 1,000=\$ 4,500)$ derived from her 30% commission and proceed from there.

Check Your Skills

10. A water drum is filled to $1 / 4$ of its capacity. If another 30 gallons of water were added, the drum would be filled. How many gallons of water does the drum currently contain?

Answer can be found on pages 129-130.

Check Your Skills Answer Key

1. 0.87: Shift the decimal two places to the left and remove the percent symbol: 87% becomes 0.87 .
2.3/10: Divide the percent figure by 100 , then simplify:
30% becomes $30 / 100$, which reduces to $3 / 10$.
2. 37\%: Shift the decimal two places to the right and add a percent sign: 0.37 becomes 37%.
3. 1/4: Notice that the decimal has two digits to the right of the decimal place: 0.25 is 25 hundredths, so it becomes $25 / 100$, which reduces to $1 / 4$.
4. 0.6: Divide the numerator by the denominator:
$3 / 5$ is $3 \div 5=0.6$
5. $\mathbf{3 7 . 5 \%}$: Divide the numerator by the denominator, shift the decimal two places to the right, and add a percent sign:
Step 1: $3 / 8$ is $3 \div 8=0.375$
Step 2: $0.375=37.5 \%$

$$
\text { 7. } \begin{aligned}
\boldsymbol{x} & =\mathbf{0 . 6 y :} \\
x & =60 \%(y) \\
x & =0.6 y
\end{aligned}
$$

8. $\left(\frac{1}{3}\right) a=b$.
9. $\boldsymbol{y}=\mathbf{0 . 2 5 x}$: Let x equal the number in question:

$$
\begin{aligned}
& y=25 \%(x) \\
& y=0.25(x)
\end{aligned}
$$

10. 10 gallons: Let x be the capacity of the water drum. If the drum is $1 / 4$ full, and 30 gallons would make it full, then $30=(1-1 / 4) x$, which means:

$$
30=\frac{3}{4} x
$$

Divide both sides by $3 / 4$. This is equivalent to multiplying by $4 / 3$:

$$
\begin{aligned}
30 & =\frac{3}{4} x \\
\frac{4}{3} \times 30 & =x \\
\frac{4}{\not x} \times 3610 & =x \\
40 & =x
\end{aligned}
$$

If the total capacity is 40 gallons and the drum is $1 / 4$ full, then the drum currently contains $1 / 4 \times 40$, or 10 gallons.

Problem Set

1. Express the following as fractions:
2. Express the following as fractions:
3. Express the following as decimals:
4. Express the following as decimals:
5. Express the following as percents:
2.450 .008

420\% 8\%
$\frac{3,000}{10,000}$
$1 \frac{27}{4} \quad 12 \frac{8}{3}$

$\frac{25}{9}$

6. Express the following as percents:

$$
80.4 \quad 0.0007
$$

7. Order from least to greatest:
8. Order from least to greatest:
$\frac{8}{18} \quad 0.8 \quad 40 \%$

$$
1.19 \quad \frac{120}{84} \quad 131.44 \%
$$

9. Order from least to greatest:
10. Order from least to greatest $(x \neq 0)$:
11. Order from least to greatest:
$2 \frac{4}{7} \quad 2400 \% \quad 2.401$
$\frac{50}{17} x^{2} 2.9 x^{2} \quad\left(x^{2}\right)$
$\frac{500}{199} 248,000 \%$
2.9002003
12. What number is 62.5% of 192 ?
13. 200 is 16% of what number?

For problems 14-15, express your answer in terms of the variables given.
14. What number is X percent of Y ?
15. X is what percent of Y ?
16. For every $1,000,000$ toys sold, 337,000 are action figures.

Quantity_

Percent of toys sold that are action figures
17.

Quantity_A

$$
10^{-3} \times\left(\frac{0.002}{10^{-3}}\right)
$$

Quantity B

33.7%

Quantity B

0.02
18. $\$ 1,600$ worth of $\$ 20$ bills are stacked up and reach 0.35 inches high. $\$ 1,050$ worth of $\$ 10$ bills are also stacked up (assume all denominations are the same thickness).

Quantity \mathbf{A}

The percent by which the height of the stack of $\$ 10$ bills is greater than that of the stack of $\$ 20$ bills

Quantity B

33.5%

Solutions

1. To convert a decimal to a fraction, write it over the appropriate power of 10 and simplify:

$$
\begin{aligned}
& 2.45=2 \frac{45}{100}=\mathbf{2} \frac{\mathbf{9}}{\mathbf{2 0}}(\text { mixed })=\frac{\mathbf{4 9}}{\mathbf{2 0}} \text { (improper) } \\
& 0.008=\frac{8}{1,000}=\frac{\mathbf{1}}{\mathbf{1 2 5}}
\end{aligned}
$$

2. To convert a percent to a fraction, write it over a denominator of 100 and simplify:

$$
\begin{aligned}
420 \% & =\frac{420}{100}=\frac{\mathbf{2 1}}{5}(\text { improper })=4 \frac{1}{5}(\text { mixed }) \\
8 \% & =\frac{8}{100}=\frac{2}{25}
\end{aligned}
$$

3. To convert a fraction to a decimal, divide the numerator by the denominator:

$$
\frac{9}{2}=9 \div 2=4.5
$$

It often helps to simplify the fraction before you divide:

$$
\frac{3,000}{10,000}=\frac{3}{10}=\mathbf{0 . 3}
$$

4. To convert a mixed number to a decimal, simplify the mixed number first, if needed:

$$
\begin{aligned}
& 1 \frac{27}{4}=1+6 \frac{3}{4}=7 \frac{3}{4}=7.75 \\
& 12 \frac{8}{3}=12+2 \frac{2}{3}=14 . \overline{6}
\end{aligned}
$$

5. To convert a fraction to a percent, rewrite the fraction with a denominator of 100:

$$
\frac{1,000}{10}=\frac{10,000}{100}=\mathbf{1 0 , 0 0 0} \%
$$

Alternatively, you can convert the fraction to a decimal and shift the decimal point two places to the right and add a percent symbol:

$$
\frac{25}{9}=25 \div 9=2.7777 \ldots=2 . \overline{7}=277 . \overline{7} \%
$$

6. To convert a decimal to a percent, shift the decimal point two places to the right and add a percent symbol:

$$
\begin{aligned}
& 80.4=\mathbf{8 , 0 4 0} \% \\
& 0.0007=\mathbf{0 . 0 7} \%
\end{aligned}
$$

7. $\mathbf{4 0 \%}<\frac{\mathbf{8}}{\mathbf{1 8}}<\mathbf{0 . 8}$: To order from least to greatest, express all the terms in the same form:

$$
\begin{aligned}
& \frac{8}{18}=\frac{4}{9}=0.4444 \ldots=0 . \overline{4} \\
& 0.8=0.8 \\
& 40 \%=0.4 \\
& 0.4<0 . \overline{4}<0.8
\end{aligned}
$$

Alternatively, you can use FDP logic and Benchmark Values to solve this problem: $\frac{8}{18}$ is $\frac{1}{18}$ less than $\frac{1}{2} .40 \%$ is 10% (or $\frac{1}{10}$) less than $\frac{1}{2}$. Since $\frac{8}{18}$ is a smaller piece away from $\frac{1}{2}$, it is closer to $\frac{1}{2}$ and therefore larger than 40%. Thus, 0.8 is clearly greater than $\frac{1}{2}$. Therefore, $40 \%<\frac{8}{18}<0.8$.
8. $\mathbf{1 . 1 9}<\mathbf{1 3 1 . 4 4 \%}<\frac{\mathbf{1 2 0}}{\mathbf{8 4}}$: To order from least to greatest, express all the terms in the same form:
$1.19=1.19$

$$
\frac{120}{84}=\frac{10}{7} \approx 1.4286
$$

$131.44 \%=1.3144$
$1.19<1.3144<1.4286$
9. $\mathbf{2 . 4 0 1}<\mathbf{2} \frac{\mathbf{4}}{7}<\mathbf{2 4 0 0 \%}$: To order from least to greatest, express all the terms in the same form:

$$
\begin{aligned}
& 2 \frac{4}{7} \approx 2.5714 \\
& 2,400 \%=24 \\
& 2.401=2.401 \\
& 2.401<2.5714<24
\end{aligned}
$$

Alternatively, you can use FDP logic and Benchmark Values to solve this problem: 2400% is 24 , which is clearly the largest value. Then, you can use

Benchmark Values to compare $2 \frac{4}{7}$ and 2.401. Since the whole number portion, 2, is the same, just compare the fraction parts. $\frac{4}{7}$ is greater than $\frac{1}{2}$. Thus, 0.401 is less than $\frac{1}{2}$. Therefore, $2 \frac{4}{7}$ must be greater than 2.401. So, $2.401<2 \frac{4}{7}<$ $2,400 \%$.
10. $\left.\left(\boldsymbol{x}^{\mathbf{2}}\right) \mathbf{(3 . 1 0 \%}\right)<\mathbf{2 . 9} \boldsymbol{x}^{\mathbf{2}}<\frac{\mathbf{5 0}}{\mathbf{1 7}} \boldsymbol{x}^{\mathbf{2}}$: To order from least to greatest, express all the terms in the same form:
(Note that, since x^{2} is a positive term common to all the terms you are comparing, you can ignore its presence completely. If the common term were negative, then the order would be reversed.)

$$
\begin{aligned}
& \frac{50}{17}=2 \frac{16}{17} \approx 2.94 \\
& 2.9=2.9 \\
& 3.10 \%=0.0310 \\
& 0.0310<2.9<2.94
\end{aligned}
$$

You can find the first few digits of the decimal by long division.
Alternatively, you can use FDP logic and Benchmark Values to solve this problem: 3.10% is 0.0310 , which is clearly the smallest value. Then, compare 2.9 and $2 \frac{16}{17}$ to see which one is closer to 3:2.9 is $\frac{1}{10}$ away from 3 and $2 \frac{16}{17}$ is $\frac{1}{17}$ away from 3. Since $\frac{1}{17}$ is smaller than $\frac{1}{10}, 2 \frac{16}{17}$ is closest to 3 ; therefore, it is larger. So, $3.10 \%<2.9<\frac{50}{17}$.
11. $\frac{\mathbf{5 0 0}}{\mathbf{1 9 9}}<\mathbf{2 . 9 0 0 2 0 0 3}<\mathbf{2 4 8 , 0 0 0 \%}$: To order from least to greatest, express all the terms in the same form:

$$
\begin{aligned}
& \frac{500}{199} \approx 2.51 \\
& 248,000 \%=2,480 \\
& 2.9002003=2.9002003 \\
& 2.51<2.9002003<2.480
\end{aligned}
$$

You can find the first few digits of the decimal by long division.
Alternatively, you can use FDP logic and Benchmark Values to solve this problem: $248,000 \%=2,480$, which is clearly the largest value. The fraction $\frac{500}{199}$ is approximately $\frac{500}{200}$, or $\frac{5}{2}$, which is 2.5 . This is clearly less than
2.9002003. Therefore, $\frac{500}{199}<2.9002003<248,000 \%$.
12. 120: This is best handled as a percent-to-decimal conversion problem. If you simply recognize that $62.5 \%=0.625=\frac{5}{8}$, this problem will become much easier: $\frac{5}{8} \times 192=\frac{5}{1} \times 24=120$. Multiplying 0.625×240 will take much longer to complete, unless you use a calculator.
13. 1,250: This is best handled as a percent-to-decimal conversion problem. If you simply recognize that $16 \%=0.16=\frac{16}{100}=\frac{4}{25}$, this problem will become much easier: $\frac{4}{25} x=200$, so $x=200 \times \frac{25}{4}=50 \times 25=1,250$. Dividing out 200 $\div 0.16$ would likely take longer to complete.
14. $\frac{X Y}{100}$: You can use decimal equivalents. X percent is $\frac{X}{100}$, and you simply need to multiply by Y.

Alternatively, you can set up a table and solve for the unknown (in this case, call it Z):

PART	Z	X
WHOLE	Y	100

$100 Z=X Y$
$Z=\frac{X Y}{100}$
15. $\frac{100 X}{Y}$: You can use decimal equivalents. X equals some unknown percent of Y (call it Z percent), so $X=\frac{Z}{100} \times Y$, and then simply solve for $Z: \frac{100 X}{Y}=Z$.

Alternatively, you can set up a table and solve for the unknown Z :

PART	X	Z
WHOLE	Y	100

$100 X=Z Y$
$Z=\frac{100 X}{Y}$
16. (C): Simplify Quantity A. You can divide the number of action figures by the total number of toys to find the percentage of action figures:

Quantity_A

Percent of toys sold that are action

$$
\text { figures }=\frac{337,000}{1,000,000}
$$

Quantity B

33.7%

A percentage is defined as being out of 100 , so reduce the fraction until the denominator is 100 :

Quantity A
\qquad

Quantity B
33.7\%

$$
\begin{aligned}
& \frac{337,000}{1,000,000}=\frac{337, \varnothing \varnothing \varnothing}{1,000, \varnothing \varnothing \varnothing}= \\
& \frac{337}{1,000}=\frac{\mathbf{3 3 . 7}}{\mathbf{1 0 0}}
\end{aligned}
$$

Because the denominator is 100 , the number in the numerator is the percent. So action figures are 33.7% of the total number of toys. The two quantities are equal.
17. (B): Take a close look at the expression in Quantity A: 0.002 is first divided by 10^{-3}, and then multiplied by 10^{-3}. The net effect is the same as multiplying by 1 . The two 10^{-3} terms cancel out:

Quantity A

$$
\begin{align*}
10^{-3} \times\left(\frac{0.002}{10^{-3}}\right) & =0.002 \times \frac{10^{-3}}{10^{-3}}= \\
0.002 \times 1 & =\mathbf{0 . 0 0 2}
\end{align*}
$$

Quantity B

0.02

Therefore, Quantity B is larger.

18. (B): Because all bills have the same height, you can compare the number of bills in each stack directly to determine the percent increase in height. The number of $\$ 20$ bills in a stack with a value of $\$ 1,600$ is:
$1600 / 20=80$
The number of $\$ 10$ bills in a stack with a value of $\$ 1,050$ is

$$
1,050 / 10=105
$$

Plug these values into the percent change formula to evaluate Quantity A:

Quantity_A

The percent by which the height of the stack of $\$ 10$ bills is greater than that of

Quantity B

33.5\%

$$
\begin{aligned}
& \text { the stack of } \$ 20 \text { bills }= \\
& \frac{105-80}{80}=\frac{25}{80}=\frac{\mathbf{5}}{\mathbf{1 6}}
\end{aligned}
$$

Now compare the two quantities. $\frac{5}{16}<\frac{5}{15}$, so Quantity A must be less than $\frac{1}{3}$.
Recall that $\frac{1}{3}$ is $33 . \overline{3} \%$ as a percent, so 33.5% is slightly larger than $\frac{1}{3}$.
Therefore, the value in Quantity A must be less than 33.5%.
Thus, Quantity B is greater.

Chapter 6 of
 Fractions, Decimals, \& Percents

Drill Sets

In This Chapter...

Chapter Review: Drill Sets

Chapter Review: Drill Sets

Drill Set 1

For each of the following pairs of fractions, decide which fraction is larger.

1. $\frac{1}{4}, \frac{3}{4}$
2. $\frac{1}{5}, \frac{1}{6}$
3. $\frac{53}{52}, \frac{85}{86}$
4. $\frac{7}{9}, \frac{6}{10}$
5. $\frac{700}{360}, \frac{590}{290}$

Add or subtract the following fractions.
6. $\frac{2}{7}+\frac{3}{7}=$
7. $\frac{5}{8}-\frac{4}{8}=$
8. $\frac{7}{9}-\frac{2}{9}=$
9. $\frac{9}{11}+\frac{20}{11}=$
10. $\frac{3}{4}-\frac{10}{4}=$

Add or subtract the following fractions.
11. $\frac{2}{3}+\frac{5}{9}$
12. $\frac{7}{8}-\frac{5}{4}$
13. $\frac{4}{9}+\frac{8}{11}$
14. $\frac{20}{12}-\frac{5}{3}$
15. $\frac{1}{4}+\frac{4}{5}+\frac{5}{8}$

Solve for x in the following equations.
16. $\frac{1}{5}+\frac{x}{5}=\frac{4}{5}$
17. $\frac{x}{8}-\frac{3}{8}=\frac{10}{8}$
18. $\frac{x}{6}+\frac{5}{12}=\frac{11}{12}$
19. $\frac{2}{7}-\frac{x}{21}=-\frac{2}{21}$
20. $\frac{2}{5}+\frac{x}{8}=\frac{31}{40}$

Drill Set 2

Simplify the following fractions.

1. $\frac{6}{9}$
2. $\frac{12}{28}$
3. $\frac{24}{36}$
4. $\frac{35}{100}$
5. $\frac{6 x}{70}$

Multiply or divide the following fractions (the final answer must be simplified).
6. $\frac{4}{7} \times \frac{8}{9}$
7. $\frac{9}{4} \div \frac{2}{3}$
8. $\frac{7}{15} \div \frac{8}{5}$
9. $\frac{5}{12} \times \frac{8}{10}$
10. $\frac{3 x}{13} \times \frac{5}{6}$

Multiply or divide the following fractions (the final answer must be simplified).
11. $\frac{14}{20} \times \frac{15}{21}$
12. $\frac{6}{25} \div \frac{9}{10}$
13. $\frac{4}{21} \times \frac{14}{13} \times \frac{5}{8}$
14. $\frac{3}{11} \div \frac{3}{11}$
15. $\frac{57}{63} \times \frac{0}{18}$

Solve for x in the following equations.
16. $\frac{5}{3} x=\frac{3}{7}$
17. $\frac{2}{x}=\frac{7}{3}$
18. $\frac{6}{11} x=\frac{10}{33}$
19. $\frac{2 x}{13}=\frac{3}{7}$
20. $\frac{3 x}{4}-\frac{5}{6}=\frac{17}{12}$

Drill Set 3

Convert the following improper fractions to mixed numbers.

1. $\frac{9}{4}$
2. $\frac{31}{7}$
3. $\frac{47}{15}$
4. $\frac{70}{20}$
5. $\frac{91}{13}$

Convert the following mixed numbers to improper fractions.
6. $32 / 3$
7. $21 / 6$
8. $63 / 7$
9. $45 / 9$
10. $125 / 12$

Drill Set 4

Evaluate the following expressions.

1. $6.75 \times 10^{3}=$
2. $72.12 \times 10^{-4}=$
3. $2,346 \times 10^{-3}=$
4. $27.048 \times 10^{2}=$
5. $54.197 / 10^{2}=$

Evaluate the following expressions.
$6.1+0.2+0.03+0.004=$
7. $0.48+0.02=$
8. $1.21+0.38=$
9. $-0.02+0.35=$
10. $0.370+0.042=$

Evaluate the following expressions.
11. $0.27 \times 2=$
12. $0.403 \times 3=$
13. $0.2 \times 0.2=$
14. $20 \times 0.85=$
15. $0.04 \times 0.201=$

Evaluate the following expressions.
16. $2.1 \times 0.08=$
17. $0.063 \times 0.4=$
18. $0.03 \times 0.005=$
19. $0.75(80)+0.50(20)=$
$20.100 \times 0.01 \times 0.01=$
Evaluate the following expressions.
21. $4 / 0.2=$
22. $12.6 / 0.3=$
23. $3 \cdot 20 / 0.04=$
24. $0.49 / 0.07=$
25. $6 / 0.5=$

Drill Set 5

Fill in the missing information in the chart below.
1.

Fraction	Decimal	Percent
$1 / 100$	0.01	1%

1/20		
	0.1	
1/8		
	0.2	
		25\%
	0.3	
		33.33...\%
3/8		
		40\%
1/2		
	0.6	
		66.66...\%
		70\%
	0.75	
4/5		
	0.875	
9/10		
		100\%

2. Convert 45% to a decimal.
3. Convert 70% to a fraction.
4. Convert 13.25% to a decimal.
5. Convert 36% to a fraction.
6. Convert 0.02% to a decimal.
7. Convert 0.20 to a percent.
8. Convert 0.55 to a fraction.
9. Convert 0.304 to a percent.
10. Convert 0.455 to a fraction.
11. Convert 0.375 to a fraction.
12. Convert $4 / 5$ to a percent.
13. Convert $3 / 6$ to a percent.
14. Convert $9 / 12$ to a percent.
15. Convert $6 / 20$ to a percent.
16. Convert $3 / 2$ to a percent.

Drill Set 6

1. Forty percent of the balls in a bag are red. If there are a total of 300 balls in the bag, how many of them are red?
2. Anna always puts 15% of her salary in a retirement fund. If she put $\$ 6,000$ in her retirement fund last year, what was her salary that year?
3. Sixteen students wear glasses. If there are 40 students total, what fraction of the students wear glasses?
4. What is the new price of an $\$ 80$ sweater after being discounted 20% ?
5. Billy has $\$ 20$ and Johnny has $\$ 30$. If both Billy and Johnny invest 25% of their combined money in baseball cards, how much money will they invest?
6. Last year, a furniture store sold 400 chairs, 200 tables, 400 couches, and nothing else. The chairs made up what percent of the total items sold?
7. At her old job, Marie earned a yearly salary of $\$ 80,000$. At her new job, Marie earns a salary equal to $\$ 40,000$ plus a commission of 25% on all her sales. If Marie wants to make a yearly salary at her new job that is the same as that of her old job, how much does she have to produce in terms of yearly sales?
8. Of 250 people surveyed, 36% said they preferred regular soda, 40% said they preferred diet soda, and the rest did not have a preference. How many of the 250 people did not have a preference?
9. A jar contains $1 / 3$ red marbles and $1 / 2$ blue marbles. The remaining 25 marbles are white. How many marbles does the jar contain?
10. Ted has $2 / 3$ as many friends as Billy has, and Chris has $1 / 2$ as many friends as Billy has. The number of friends that Chris has is what percent of the number of friends that Ted has?

Drill Set Answers

Drill Set 1

1. $\frac{3}{4}$: The denominators are the same, but the numerator of $\frac{3}{4}$ is larger, so $\frac{3}{4}>\frac{1}{4}$.
2. $\frac{1}{5}$: The numerators are the same, but the denominator of $\frac{1}{5}$ is smaller, so $\frac{1}{5}>\frac{1}{6}$.
3. $\frac{\mathbf{5 3}}{\mathbf{5 2}}$: In the first fraction, $\frac{53}{52}$, the numerator is bigger than the denominator, so the fraction is greater than 1 . In the second fraction, $\frac{85}{86}$, the denominator is bigger than the numerator, so the fraction is less than 1. Thus, $\frac{53}{52}>\frac{85}{86}$.
4. $\frac{7}{9}$: The second fraction, $\frac{6}{10}$, has both a smaller numerator and a larger denominator than the first fraction. Therefore, $\frac{6}{10}<\frac{7}{9}$.
5. $\frac{\mathbf{5 9 0}}{\mathbf{2 9 0}}$: The first fraction is greater than 1 but less than 2 , because 700 is less than twice $360(2 \times 360=720)$. The second fraction is greater than 2 , because 590 is more than twice $290(2 \times 290=580)$. Thus, $\frac{590}{290}>\frac{700}{360}$.
6. $\frac{5}{7}: \frac{2}{7}+\frac{3}{7}=\frac{2+3}{7}=\frac{5}{7}$
7. $\frac{1}{8}: \frac{5}{8}-\frac{4}{8}=\frac{5-4}{8}=\frac{1}{8}$
8. $\frac{5}{9}: \frac{7}{9}-\frac{2}{9}=\frac{7-2}{9}=\frac{5}{9}$
9. $\frac{29}{11}: \frac{9}{11}+\frac{20}{11}=\frac{9+20}{11}=\frac{29}{11}$
10. $\frac{-7}{4}: \frac{3}{4}-\frac{10}{4}=\frac{3-10}{4}=\frac{-7}{4}$
11. $\frac{11}{9}: \frac{2}{3}+\frac{5}{9}=\frac{2}{3} \times \frac{3}{3}+\frac{5}{9}=\frac{2 \times 3}{3 \times 3}+\frac{5}{9}=\frac{6}{9}+\frac{5}{9}=\frac{6+5}{9}=\frac{11}{9}$
12. $\frac{-3}{8}: \frac{7}{8}-\frac{5}{4}=\frac{7}{8}-\frac{5}{4} \times \frac{2}{2}=\frac{7}{8}-\frac{5 \times 2}{4 \times 2}=\frac{7}{8}-\frac{10}{8}=\frac{7-10}{8}=\frac{-3}{8}$
13. $\frac{116}{99}: \frac{4}{9}+\frac{8}{11}=\frac{4}{9} \times \frac{11}{11}+\frac{8}{11} \times \frac{9}{9}=\frac{4 \times 11}{9 \times 11}+\frac{8 \times 9}{11 \times 9}=\frac{44}{99}+\frac{72}{99}=\frac{116}{99}$
14. $0: \frac{20}{12}-\frac{5}{3}=\frac{20}{12}-\frac{5}{3} \times \frac{4}{4}=\frac{20}{12}-\frac{5 \times 4}{3 \times 4}=\frac{20}{12}-\frac{20}{12}=0$
15.

$$
\begin{aligned}
& \frac{\mathbf{6 7}}{\mathbf{4 0}}: \frac{1}{4}+\frac{4}{5}+\frac{5}{8}=\frac{1}{4} \times \frac{10}{10}+\frac{4}{5} \times \frac{8}{8}+\frac{5}{8} \times \frac{5}{5}=\frac{1 \times 10}{4 \times 10}+\frac{4 \times 8}{5 \times 8}+\frac{5 \times 5}{8 \times 5}= \\
& \frac{10}{40}+\frac{32}{40}+\frac{25}{40}=\frac{10+32+25}{40}=\frac{67}{40}
\end{aligned}
$$

16.

$$
\text { 3: } \begin{aligned}
\frac{1}{5} & +\frac{x}{5}=\frac{4}{5} \\
\frac{x}{5} & =\frac{4}{5}-\frac{1}{5} \\
\frac{x}{5} & =\frac{4-1}{5}=\frac{3}{5} \\
x & =3
\end{aligned}
$$

17.

13: $\frac{x}{8}-\frac{3}{8}=\frac{10}{8}$

$$
\begin{aligned}
& \frac{x}{8}=\frac{10}{8}+\frac{3}{8} \\
& \frac{x}{8}=\frac{10+3}{8}=\frac{13}{8} \\
& x=13
\end{aligned}
$$

18.

$$
\begin{aligned}
& 3: \frac{x}{6} \\
&+\frac{5}{12}=\frac{11}{12} \\
& \frac{x}{6}=\frac{11}{12}-\frac{5}{12} \\
& \frac{x}{6}=\frac{11-5}{12}=\frac{6}{12} \\
& \frac{x \times 2}{6 \times 2}=\frac{2 x}{12}=\frac{6}{12} \\
& 2 x=6 \\
& x=3
\end{aligned}
$$

19.

$$
\begin{aligned}
& 8: \frac{2}{7}-\frac{x}{21}=-\frac{2}{21} \\
& -\frac{x}{21}=-\frac{2}{21}-\frac{2}{7} \\
& -\frac{x}{21}=-\frac{2}{21}-\frac{2 \times 3}{7 \times 3} \\
& -\frac{x}{21}=-\frac{2}{21}-\frac{6}{21}=\frac{-2-6}{21}=\frac{-8}{21} \\
& \frac{x}{21}=\frac{8}{21} \\
& x=8
\end{aligned}
$$

20.

$$
\text { 3: } \begin{aligned}
& \frac{2}{5}+\frac{x}{8}=\frac{31}{40} \\
& \frac{x}{8}=\frac{31}{40}-\frac{2}{5} \\
& \frac{x}{8}=\frac{31}{40}-\frac{2 \times 8}{5 \times 8}=\frac{31}{40}-\frac{16}{40}=\frac{15}{40} \\
& \frac{x \times 5}{8 \times 5}=\frac{5 x}{40}=\frac{15}{40} \\
& 5 x=15 \\
& x=3
\end{aligned}
$$

Drill Set 2

1. $\frac{2}{3}: \frac{6}{9}=\frac{2 \times 3}{3 \times 3}=\frac{2}{3} \times \frac{3}{3}=\frac{2}{3}$
2. $\frac{3}{7}: \frac{12}{28}=\frac{4 \times 3}{4 \times 7}=\frac{3}{7} \times \frac{4}{4}=\frac{3}{7}$
3. $\frac{2}{3}: \frac{24}{36}=\frac{2 \times 12}{3 \times 12}=\frac{2}{3} \times \frac{12}{12}=\frac{2}{3}$
4. $\frac{7}{\mathbf{2 0}}: \frac{35}{100}=\frac{5 \times 7}{2 \times 2 \times 5 \times 5}=\frac{7}{2 \times 2 \times 5} \times \frac{5}{5}=\frac{7}{20}$
5. $\frac{3 \boldsymbol{x}}{35}: \frac{6 x}{70}=\frac{2 \times 3 \times x}{2 \times 5 \times 7}=\frac{3 \times x}{5 \times 7} \times \frac{2}{2}=\frac{3 x}{35}$
6. $\frac{\mathbf{3 2}}{\mathbf{6 3}}: \frac{4}{7} \times \frac{8}{9}=\frac{4 \times 8}{7 \times 9}=\frac{32}{63}$
7. $\frac{\mathbf{2 7}}{\mathbf{8}}: \frac{9}{4} \div \frac{2}{3}=\frac{9}{4} \times \frac{3}{2}=\frac{9 \times 3}{4 \times 2}=\frac{27}{8}$
8. $\frac{7}{24}: \frac{7}{15} \div \frac{8}{5}=\frac{7}{15} \times \frac{5}{8}=\frac{7 \times 5}{3 \times 5 \times 8}=\frac{7 \times 5}{3 \times 5 \times 8}=\frac{7}{24}$
9. $\frac{1}{3}: \frac{5}{12} \times \frac{8}{10}=\frac{5}{3 \times 4}=\frac{2 \times 4}{2 \times 5}=\frac{5}{3 \times 4}=\frac{2 \times 4}{2 \times 5}=\frac{1}{3}$
10. $\frac{5 x}{26}: \frac{3 x}{13} \times \frac{5}{6}=\frac{3 \times x \times 5}{13 \times 2 \times 3}=\frac{3 \times x \times 5}{13 \times 2 \times 3}=\frac{5 x}{26}$
11. $\frac{1}{2}: \frac{14}{20} \times \frac{15}{21}=\frac{2 \times 7 \times 3 \times 5}{2 \times 2 \times 5 \times 7 \times 3}=\frac{2 \times 8 \times 3 \times 5}{2 \times 2 \times 5 \times 8 \times 3}=\frac{1}{2}$
12. $\frac{4}{15}: \frac{6}{25} \div \frac{9}{10}=\frac{6}{25} \times \frac{10}{9}=\frac{2 \times 3 \times 2 \times 5}{5 \times 5 \times 3 \times 3}=\frac{2 \times 3 \times 2 \times 5}{5 \times 5 \times 3 \times 3}=\frac{4}{15}$
13.

$\frac{5}{39}: \frac{4}{21} \times \frac{14}{13} \times \frac{5}{8}=\frac{2 \times 2 \times 2 \times 7 \times 5}{3 \times 7 \times 13 \times 2 \times 2 \times 2}=\frac{2 \times 2 \times 2 \times 8 \times 5}{3 \times 8 \times 13 \times 2 \times 2 \times 2}=\frac{5}{39}$
14. $1: \frac{3}{11} \div \frac{3}{11}=\frac{3}{11} \times \frac{11}{3}=\frac{3 \times 11}{11 \times 3}=\frac{33}{33}=1$
15. 0: $\frac{57}{63} \times \frac{0}{18}=\frac{57 \times 0}{63 \times 18}=0$. Or you could simply note that anything \times $0 /$ something $=0$.
16.

$$
\begin{aligned}
\frac{9}{35}: \frac{5}{3} x & =\frac{3}{7} \\
x & =\frac{3}{7} \div \frac{5}{3}=\frac{3}{7} \times \frac{3}{5} \\
x & =\frac{9}{35}
\end{aligned}
$$

17.

$$
\begin{aligned}
& \frac{6}{7}: \frac{2}{x}=\frac{7}{3} \\
& 2 \times 3=7 \times x \\
& 6=7 x \\
& \frac{6}{7}=x
\end{aligned}
$$

18.

$$
\frac{5}{9}: \frac{6}{11} x=\frac{10}{33}
$$

$$
\begin{aligned}
& x=\frac{10}{33} \div \frac{6}{11}=\frac{10}{33} \times \frac{11}{6} \\
& x=\frac{2 \times 5 \times 11}{3 \times 11 \times 2 \times 3}=\frac{2 \times 5 \times 11}{3 \times \mathrm{N} \times 2 \times 3} \\
& x=\frac{5}{9}
\end{aligned}
$$

19.

$$
\begin{aligned}
\frac{39}{14}: \frac{2 x}{13} & =\frac{3}{7} \\
2 x & \times 7=3 \times 13 \\
14 x & =39 \\
x & =\frac{39}{14}
\end{aligned}
$$

20.

$$
\begin{aligned}
& 3: \frac{3 x}{4}-\frac{5}{6}=\frac{17}{12} \\
& \frac{3 x}{4} \times \frac{3}{3}-\frac{5}{6} \times \frac{2}{2}=\frac{17}{12} \\
& \frac{9 x}{12}-\frac{10}{12}=\frac{17}{12} \\
& 9 x=10=17 \\
& 9 x=27 \\
& x=3
\end{aligned}
$$

Drill Set 3

1. $2 \frac{1}{4}: \frac{9}{4}=\frac{8+1}{4}=\frac{8}{4}+\frac{1}{4}=2+\frac{1}{4}=2 \frac{1}{4}$
2. $4 \frac{3}{7}: \frac{31}{7}=\frac{28+3}{7}=\frac{28}{7}+\frac{3}{7}=4+\frac{3}{7}=4 \frac{3}{7}$
$3.3 \frac{2}{15}: \frac{47}{15}=\frac{45+2}{15}=\frac{45}{15}+\frac{2}{15}=3+\frac{2}{15}=3 \frac{2}{15}$
3. $3 \frac{1}{2}: \frac{70}{20}=\frac{60+10}{20}=\frac{60}{20}+\frac{10}{20}=3+\frac{10}{20}=3+\frac{1}{2}=3 \frac{1}{2}$
$5.7: \frac{91}{13}=7$
4. $\frac{11}{3}: 3 \frac{2}{3}=3+\frac{2}{3}=\frac{3 \times 3}{1 \times 3}+\frac{2}{3}=\frac{9}{3}+\frac{2}{3}=\frac{11}{3}$
5. $\frac{13}{6}: 2 \frac{1}{6}=2+\frac{1}{6}=\frac{2 \times 6}{1 \times 6}+\frac{1}{6}=\frac{12}{6}+\frac{1}{6}=\frac{13}{6}$
6. $\frac{45}{7}: 6 \frac{3}{7}=6+\frac{3}{7}=\frac{6 \times 7}{1 \times 7}+\frac{3}{7}=\frac{42}{7}+\frac{3}{7}=\frac{45}{7}$
7. $\frac{41}{9}: 4 \frac{5}{9}=4+\frac{5}{9}=\frac{4 \times 9}{1 \times 9}+\frac{5}{9}+\frac{36}{9}+\frac{5}{9}=\frac{41}{9}$
8. $\frac{149}{12}: 12 \frac{5}{12}=12+\frac{5}{12}=\frac{12 \times 12}{1 \times 12}+\frac{5}{12}=\frac{144}{12}+\frac{5}{12}=\frac{149}{42}$

Drill Set 4

1. $6.75 \times 10^{3}=\mathbf{6 , 7 5 0}$
2. $72.12 \times 10^{-4}=\mathbf{0 . 0 0 7 2 1 2}$
3. $2,346 \times 10^{-3}=\mathbf{2 . 3 4 6}$
4. $27.048 \times 10^{2}=\mathbf{2 , 7 0 4 . 8}$
5. $54.197 / 10^{2}=\mathbf{0 . 5 4 1 9 7}$

Move the decimal to the right three places.
Move the decimal to the left four places
Move the decimal to the left three places.
Move the decimal to the right two places.
Because you are dividing by 10^{2}, move the decimal to the left two places.
6.

$$
\begin{array}{r}
1.000 \\
+0.200 \\
+0.030 \\
+0.004 \\
\hline \mathbf{1 . 2 3 4}
\end{array}
$$

7.

$$
\begin{array}{r}
0.148 \\
+0.02 \\
\hline \mathbf{0 . 5 0}
\end{array}
$$

8.

1.21
$+0.38$
1.59
9.

$$
\begin{array}{r}
0.35 \\
-0.02 \\
\hline \mathbf{0 . 3 3}
\end{array}
$$

10.

$$
0.1370
$$

$$
\frac{+0.042}{0.412}
$$

11. 0.54: $0.27 \times 2=$
$27 \times 2=54$
$0.27 \times 2=0.54$
12. 1.209: $0.403 \times 3=$

Move the decimal to the left two places.
$403 \times 3=1,209$
$0.403 \times 3=1.209$
13. 0.04: $0.2 \times 0.2=$ $2 \times 2=4$
$0.2 \times 0.2=0.04$
14. 17: $20 \times 0.85=$ $20 \times 85=1,700$ $20 \times 0.85=17$
15. 0.00804: $0.04 \times 0.201=$ $4 \times 201=804$
$0.04 \times 0.201=0.00804$
16. 0.168: $2.1 \times 0.08=$
$21 \times 8=168$
$2.1 \times 0.08=0.168$
17. 0.0252: $0.063 \times 0.4=$
$63 \times 4=252$
$0.063 \times 0.4=0.0252$
18. $\mathbf{0 . 0 0 0 1 5 :} 0.03 \times 0.005=$ $3 \times 5=15$
$0.03 \times 0.005=0.00015$

Move the decimal to the left three places.

Move the decimal to the left two places.

Move the decimal to the left two places.

Move the decimal to the left five places.

Move the decimal to the left three places.

Move the decimal to the left four places.

Move the decimal to the left five places.
19. 70: $0.75(80)+0.50(20)=$
$0.75 \times 80=60$
$0.50 \times 20=10$

$$
60+10=70
$$

20. $\mathbf{0 . 0 1 :} 100 \times 0.01 \times 0.01=$ $100 \times 1 \times 1=100$

$$
100 \times 0.01 \times 0.01=0.01
$$

21.

$$
\begin{aligned}
& 20: \frac{4}{0.2}= \\
& \frac{4}{0.2} \times \frac{10}{10}=\frac{40}{2}=20
\end{aligned}
$$

22.

$42: \frac{12.6}{0.3}=$
$\frac{12.6}{0.3} \times \frac{10}{10}=\frac{126}{3}=42$
23.

$$
\begin{aligned}
& 80: \frac{3.20}{0.04}= \\
& \frac{3.20}{0.04} \times \frac{100}{100}=\frac{320}{4}=80
\end{aligned}
$$

24.

$$
\begin{aligned}
& 7: \frac{0.49}{0.07}= \\
& \frac{0.49}{0.07} \times \frac{100}{100}=\frac{49}{7}=7
\end{aligned}
$$

25.

$12: \frac{6}{0.5}=$
$\frac{6}{0.5} \times \frac{10}{10}=\frac{60}{5}=12$

Drill Set 5

1.

Fraction	Decimal	Percent
$1 / 100$	0.01	1%
$1 / 20$	0.05	5%
$1 / 10$	0.1	10%
$1 / 8$	0.125	12.5%
$1 / 5$	0.2	20%
$1 / 4$	0.25	25%
$3 / 10$	0.3	30%
$1 / 3$	$0.3333 \ldots$	$33.33 \ldots \%$
$3 / 8$	0.375	37.5%
$2 / 5$	0.4	40%
$1 / 2$	0.5	50%
$3 / 5$	0.6	60%
$2 / 3$	$0.6666 \ldots$	$66.66 \ldots \%$

$7 / 10$	0.7	70%
$3 / 4$	0.75	75%
$4 / 5$	0.8	80%
$7 / 8$	0.875	87.5%
$9 / 10$	0.9	90%
1	1.0	100%

2. 0.45: 45% becomes 0.45 .
3. 7/10: 70\% becomes 70/100, which reduces to 7/10.
4. 0.1325: 13.25% becomes 0.1325 .
5. 9/25: 36% becomes $36 / 100$, which reduces to $9 / 25$.
6. 0.0002: 0.02% becomes 0.0002 .
7. 20\%: 0.20 becomes 20%.
8. 11/20: 0.55 becomes 55/100, which reduces to $11 / 20$.
9. 30.4\%: 0.304 becomes 30.4%.
10. 91/200: 0.455 becomes 455/1000, which reduces to $91 / 200$.
11. 3/8: 0.375 becomes $375 / 1000$, which reduces to $3 / 8$.
12. 80\%: Step $1: 4 \div 5=0.8$

Step 2: 0.8 becomes 80%
$5 \longdiv { 4 . 0 }$
13. 50\%: Step $1: 3 \div 6=0.5$

Step 2: 0.5 becomes 50%
0.5
$6 \longdiv { 3 . 0 }$
14. 75\%: Step $1: 9 \div 12=0.75$

Step 2: 0.75 becomes 75%
$1 2 \longdiv { 9 . 7 5 }$
15. 30\%: Step 1: $6 \div 20=0.30$

Step 2: 0.30 becomes 30%

$$
\frac{0.3}{2 0 \longdiv { 6 . 0 }}
$$

16. 150\%: Step $1: 3 \div 2=1.5$

Step 2: 1.5 becomes 150%

Drill Set 6

1. 120: $300 \times 40 \%=300 \times 4 / 10=120$.
2. \$40,000: Let $a=$ Anna's total salary:

$$
\begin{aligned}
& \$ 6,000=15 \% \text { of } a \\
& \$ 6,000=15 / 100 \times a \\
& \$ 6,000=3 / 20 \times a \\
& \$ 6,000 \times 20 / 3=a \\
& \$ 40,000=a
\end{aligned}
$$

3. $2 / 5: \frac{16}{40}=\frac{8 \times 2}{8 \times 5}=\frac{2}{5} \times \frac{8}{8}=\frac{2}{5}$
4. \$64: If the sweater has been discounted 20%, then the new price is 80% of the original (because $100 \%-20 \%=80 \%$):

$$
80 \% \times \$ 80=4 / 5 \times \$ 80=\$ 64
$$

5. $\mathbf{\$ 1 2 . 5 0 : ~}(0.25 \times \$ 20)+(0.25 \times \$ 30)=\$ 5+\$ 7.50=\$ 12.50$
$6.40 \%: 400 /(400+200+400)=400 / 1000=4 / 10=40 \%$
6. $\mathbf{\$ 1 6 0 , 0 0 0 :}$ Let m represent the amount of sales that Marie needs to generate in her new job to equal her previous salary:

$$
\begin{aligned}
& \$ 80,000=\$ 40,000+m \times 25 \% \\
& \$ 80,000=\$ 40,000+1 / 4 m \\
& \$ 40,000=1 / 4 m \\
& \$ 160,000=m
\end{aligned}
$$

8. 60: The percent of people who did not have a preference: $100 \%-(36 \%+$ $40 \%)=100 \%-76 \%=24 \%$

The number of people who did not have a preference:

$$
24 \% \times 250=\frac{24}{100} \times 250=\frac{6}{25} \times 250=\frac{6}{25} \times \frac{25 \times 10}{1}=60 .
$$

9. 150: First figure out what fraction of the marbles are white. Do this by figuring out what fraction of the marbles are not white. Add the fractional amounts of red and blue marbles:

$$
\begin{aligned}
& 1 / 3+1 / 2=2 / 6+3 / 6=5 / 6 . \\
& 1-5 / 6=1 / 6
\end{aligned}
$$

The white marbles are $1 / 6$ of the total number of marbles.
Now $x=$ total number of marbles:

$$
\begin{aligned}
& 25=1 / 6 x \\
& 150=x
\end{aligned}
$$

10. 75\%: Let $T=$ the number of friends Ted has.

Let $B=$ the number of friends Billy has.
Let $C=$ the number of friends Chris has.
The denominators of the fractions in the question are 3 and 2. Thus, a Smart Number is $(3)(2)=6$. Billy has the most friends, so set $B=6$. That would imply that $T=\frac{2}{3} \times 6=4$ and $C=\frac{1}{2} \times 6=3$. With these numbers, the question "The number of friends that Chris has is what percent of the number of friends that Ted has?" becomes " 3 is what percent of 4 ?" Since 3 is $\frac{3}{4}$ (or 75%) of 4 , you could probably answer 75% without even setting up an equation. Alternatively, solve $3=\frac{x}{100} \times 4$ for x, getting $x=75$.

Chapter 7

Fractions, Decimals, \& Percents

FDPs Practice Question Sets

In This Chapter...

Easy Practice Question Set Easy Practice Question Solutions Medium Practice Question Set Medium Practice Question Solutions Hard Practice Question Set Hard Practice Question Solutions

Easy Practice Question Set

1. If $\frac{1}{2}$ of the students in a class are women and $\frac{3}{4}$ of these women are employed full-time, what portion of the class consists of women that are not employed full-time?
(A) $\frac{1}{8}$
(B) $\frac{3}{8}$
(C) $\frac{1}{2}$
(D) $\frac{5}{8}$
(E) $\frac{7}{8}$
2.

Quantity A

$\frac{1}{3} \div \frac{4}{5}$
3.

Quantity_A

The tens digit of (6.4×3)

Quantity B

$\frac{1}{3} \times \frac{4}{5}$
4. If $35 x$ is 50% of 7 , then $x=$
(A) 0.1
(B) 0.5
(C) 1
(D) 5
(E) 7
5. If 25 is less than 10% of x, then x could be which of the following?

Indicate all such values.

| A 2.5 |
| :--- | :--- |

B 25
C 125
D 250
E 300
F 500
6. $\frac{1}{3}$ of the 90 ducks on a pond are mallards. If 22 ruddy ducks and 18 whitefaced whistling ducks depart from the pond, what fraction of the remaining ducks are mallards?
(A) $\frac{3}{13}$
(B) $\frac{1}{3}$
(C) $\frac{4}{9}$
(D) $\frac{3}{5}$
(E) $\frac{2}{3}$
7. If John has $\$ 100$ to spend and was unable to buy a particular item before the price was reduced by 25%, but can afford the item after the price reduction, what was the maximum possible price of the item prior to the price reduction?
(A) $\$ 110.50$
(B) $\$ 120.66$
(C) $\$ 125.00$
(D) $\$ 133.33$
(E) $\$ 140.00$
8. What is the value of $(3.6 \times 0.2-0.3) \div 0.02$?
(A) -18
(B) -1.8
(C) 1.8
(D) 2.1
(E) 21
9. a is the hundredths digit of b, which is equal to $1.5 a 4$.

Quantity_A

b rounded to the nearest hundredth

Quantity B

b rounded to the nearest tenth
10.

Quantity_A

$$
\frac{3}{4}-\frac{1}{3}
$$

11. p is a fraction between 0 and 1.

Quantity \mathbf{A}

The average of p and its reciprocal

Quantity B

$$
\frac{3}{4} \times \frac{1}{3}
$$

12. After a 20% discount, a dress is sold at a price of $\$ 176$

Quantity_

The original price of the dress

Quantity B

\$200
13. The average home price in Pleasantville was $\$ 260,000$ in 2008. If the average home price rose by 5% from 2008 to 2009 , and then fell 10% from 2009 to 2010, what was the average home price in 2010 ?
(A) $\$ 222,300$
(B) $\$ 245,700$
(C) $\$ 247,000$
(D) $\$ 271,000$
(E) $\$ 300,300$
14.

Quantity_A

The value of $\$ 1,000$ after earning simple interest at 20% for 5 years

Quantity B

The value of $\$ 1,000$ after earning compound interest at 20% for 4 years, compounded annually
15. 150% of $\frac{3}{2}$ equals:
(A) $\frac{2}{3}$
(B) $\frac{3}{4}$
(C) 1
(D) $\frac{9}{4}$
(E) $\frac{15}{4}$
16.

Quantity_A
$\frac{3}{8}$ of 288

Quantity B

110
17. According to a survey, $\frac{3}{5}$ of students at University X eat lunch at the university's dining hall, while only $\frac{1}{6}$ of the university's faculty members eat lunch at the dining hall.

Quantity_A

The number of students and faculty members who eat lunch at the university's dining hall

Quantity B

The number of students and faculty members who do not eat lunch at the university's dining hall
18.

$$
15 \text { is } \frac{5}{3} \text { of } x \text {. }
$$

Quantity \mathbf{A}

x

Quantity B

10
19. A comet is traveling towards a distant planet at a speed of 85,000 kilometers per minute. If the comet is currently 17 billion kilometers from the planet, approximately how many hours will it take for the comet to hit the planet?
(A) 350
(B) 1,333
(C) 2,000
(D) 2,500
(E) 3,333
20.

Quantity_A

749
299

Quantity B

$$
250 \%
$$

Easy Practice Question Solutions

1. (A): If $\frac{3}{4}$ of the women are employed full-time, then $\frac{1}{4}$ of the women are not employed full-time. Thus, if $\frac{1}{2}$ of the class are women, then $\frac{1}{4}$ of $\frac{1}{2}$ of the class is female and not employed full-time. This yields $\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}$.

Another way to solve this problem is to choose a Smart Number for the population of the class. Since the two fractions in the question have denominators of 2 and 4, a Smart Number to choose for this problem is 8 . Let 8 be the total number of people in the class. Then, since half of the class consists of women, there are 4 women. And, since $\frac{3}{4}$ of these women work, there are 3 women employed full time.

This also tells you that there is 1 woman who is not employed full-time. Thus, the fraction of the class that consists of women who are not employed full-time is $\frac{1}{8}$.
2. (A): To simplify Quantity B, multiply straight across:

$$
\frac{1}{3} \times \frac{4}{5}=\frac{4}{15}
$$

To simplify Quantity A, flip and multiply:

$$
\frac{1}{3} \div \frac{4}{5}=\frac{1}{3} \times \frac{5}{4}=\frac{5}{12}
$$

Since Quantity A has both a larger numerator and a smaller denominator than Quantity B, Quantity A is greater.

To be absolutely certain, find a common denominator and multiply both results by that denominator to more easily compare:

$$
\begin{aligned}
& \text { Quantity A: } \frac{5}{12}\left(\frac{5}{5}\right)=\frac{25}{60} \\
& \text { Quantity B: } \frac{4}{15}\left(\frac{4}{4}\right)=\frac{16}{60}
\end{aligned}
$$

Again, Quantity A is greater.

3. (B): $6.4 \times 3=19.2$, so the tens digit of Quantity A equals 1 .
$\frac{3}{8}=0.375$, so the thousandths digit of Quantity B is 5 .

Therefore, Quantity B is greater.

4. (A): The information in the question can be translated as follows:

$$
\begin{aligned}
& 35 x=0.5 \times 7 \\
& 35 x=3.5
\end{aligned}
$$

$$
x=0.1
$$

Thus, Choice (A) is the correct answer.
5. (E) and (F): The information given in the question can be translated as follows:

$$
\begin{aligned}
& 25<0.1 x \\
& \frac{25}{0.1}<x \\
& 250<x
\end{aligned}
$$

Since x must be greater than 250 , only the last two values are possibilities for x.
6. (D): $\frac{1}{3}$ of 90 ducks $=30$, so there are 30 mallards; $22+18=40$, so 40 ducks in total depart from the pond.

This leaves $90-40$, or 50 , ducks remaining on the pond.
Mallards now represent $\frac{30}{50}$, or $\frac{3}{5}$, of the ducks on the pond.
7. (D): In order to solve for the maximum price of the item, you must solve the following inequality, where x is the original value of the item: $x-(25 \%$ of $x) \leq$ $\$ 100$, or $x-0.25 x \leq \$ 100$. This can be simplified to:

$$
\begin{aligned}
& x-0.25 x \leq \$ 100 \\
& 0.75 x \leq \$ 100 \\
& x \leq \$ \frac{100}{75} \\
& x \leq \$ 133 \frac{1}{3}
\end{aligned}
$$

Thus, x must be less than $\$ 133 \frac{1}{3}$, and the largest price smaller than that figure (in dollars and cents) is $\$ 133.33$.

A quick note on why choice (C) is a trap answer and is not correct: A 25% reduction in the price of an item that costs $\$ 125$ would yield a reduction of greater than $\$ 25$ (if the original price of the item were $\$ 100$, a 25% reduction would yield an exact reduction of $\$ 25$, but the greater price leads to a greater dollar reduction). This implies that the new price would be less than $\$ 100$. (If $\$ 125$ were the original price, a 25% reduction would lead to a new price of $\$ 125-\$ 31.25$, or 93.75 .)
8. (E): Using the acronym PEMDAS to remember the proper order of operations, first perform the operations inside the parentheses. Multiply 3.6 and 0.2 and only then subtract 0.3 from the result. Finally, divide by 0.02 to obtain:

$$
(3.6 \times 0.2-0.3) \div 0.02=\frac{(0.72-0.3)}{0.02}=\frac{0.42}{0.02}=21
$$

Using the calculator (which will automatically perform the multiplication before the subtraction), the keying order would be as follows:

9. (D): To approximate a decimal to the nearest hundredth, you must keep the first two digits after the decimal point, rounding up if the following digit is 5 or greater. In this case, the thousandths digit is 4 , so no rounding up is performed and, therefore, Quantity A is $1.5 a$.

Likewise, to approximate a decimal to the nearest tenth, you must keep the first digit after the decimal point, rounding up if the following digit is 5 or greater. In this case, the hundredths digit is equal to a, which may or may not be 5 or greater. Thus, you do not know whether Quantity B should be 1.5 or 1.6. Accordingly, you cannot tell whether Quantity B would be less than, equal to, or greater than $1.5 a$. You do not have enough information to answer the question.
10. (A): To perform the calculation in Quantity A, set up the fractions to have a common denominator, which in this case is $3 \times 4=12$:

$$
\frac{3}{4}-\frac{1}{3}=\frac{9}{12}-\frac{4}{12}=\frac{5}{12}
$$

Meanwhile, for Quantity B, multiply straight across the numerators and straight across the denominators:

Quantity A

Quantity B

$$
\frac{3}{4} \times \frac{1}{3}=\frac{3 \times 1}{4 \times 3}=\frac{3}{12}
$$

Because the fractions in both quantities have the same denominator, the quantities are easy to compare: the one with the greater numerator is greater. Therefore, Quantity \mathbf{A} is greater.

Note that, ordinarily, you would have cancelled the 3's in the numerator and denominator of Quantity B prior to the multiplication, so as to reduce the math needed to perform the multiplication. Here, leaving them in place made the subsequent comparison of Quantity A and Quantity B easier.
11. (A): One approach (probably the easiest) is to test a couple of fractions to observe what happens. For example, if $p=\frac{1}{2}$, then Quantity A is equal to the average of $\frac{1}{2}$ and 2 , which equals $\frac{\frac{1}{2}+2}{2}=1.25$.

Similarly, if $p=\frac{2}{3}$, then Quantity A equals $\frac{\left(\frac{2}{3}+\frac{3}{2}\right)}{2}=\frac{\frac{4}{6}+\frac{9}{6}}{2}=\frac{13}{12}$, which (again) is greater than 1.

While it is true that testing numbers is rarely 100% conclusive, you might feel quite confident in this instance that a similar result would hold for all fractions between 0 and 1 .

To prove the result algebraically is more challenging. Suppose that $p=\frac{a}{b}$, where a and b are positive and $b>a$ (so that $0<p<1$). Then, the difference between 1 and p is given by $1-\frac{a}{b}=\frac{b-a}{b}$. The difference between the
reciprocal of p and 1 , meanwhile, is given by $\frac{b}{a}-1=\frac{b-a}{a}$. Note that both differences are fractions with the same numerator, so the fraction with the smaller denominator will be larger. Since $a<b$, the difference between the reciprocal of p and 1 is greater than the difference between 1 and p. Put differently, on a number line, the reciprocal of p is farther to the right of 1 than p is to the left of 1 . Therefore, the average of p and its reciprocal must be greater than 1 .
12. (A): One way to approach this problem is to solve directly for the original price of the dress. Call that value P. Then, you could write $P-\frac{20}{100} \times P=\$ 176$, from which you could isolate P. (Note that the 20% discount is taken on the original value and not on the final value.) While this approach is certainly correct, it is not the quickest way to arrive at the answer, because the arithmetic involved is somewhat cumbersome. A better way is to test what would happen if the original price were $\$ 200$ and see how the resulting final price compares to $\$ 176$. If the original price is $\$ 200$, the discount is $\frac{20}{100} \times \$ 200=\$ 40$. The dress would then be sold for $\$ 200-\$ 40$, or $\$ 160$. This value is lower than $\$ 176$. Therefore, $\$ 200$ must be too low compared to the actual original price, and Quantity A must be greater. (Incidentally, the original price of the dress is $\$ 220$.)
13. (B): The result of a percent change to a quantity can be determined by way of a multiplier. Suppose that the initial value is P, which then rises by $5 \%: \frac{5}{100}=0.05$. The resulting new price is equal to the original price plus the increase: $P+0.05 P=1.05 P$. Similarly, the multiplier corresponding to a 10% decrease is equal to $P-0.1 P=0.9 P$.

The multiplier concept can save you time in computing the result of individual percent changes, but becomes even more useful when dealing with successive percent changes, as in this problem. The original $\$ 260,000$ becomes $(0.9) \times$ $(1.05) \times(\$ 260,000)=\$ 245,700$.

Note that the answer is not the same as what would be obtained by simply reducing $\$ 260,000$ by 5%. This is because the initial 5% increase is based on
the original $\$ 260,000$, but the following 10% decrease is based on the 2009 price, which is higher.
14. (B): Simple interest earned at 20% annually on a principal of $\$ 1,000$ yields $\$ 200$ per year. Thus, after 5 years, the value of the principal plus interest will be $\$ 1,000+5 \times \$ 200=\$ 2,000$. Meanwhile, the final value of principal P plus interest at a rate of r, compounded annually for n years, is given by the formula $F=P(1+r)^{n}$, where r is expressed as the decimal equivalent of the annual percentage interest rate. In this case, you have:

$$
F=\$ 1,000(1+0.2)^{4}, \approx \$ 2,073.6 .
$$

The value of $\$ 1,000$ after earning simple interest at 20% for 5 years $=$ \$2,000

The value of $\$ 1,000$ after earning compound interest at 20% for 5 years, compounded annually $\approx \$ 2,073.6$

Therefore, Quantity B is larger.

(It should be noted that, as a practical matter, the fourth power of a number is computed most easily by squaring the number twice. Squaring is accomplished on the GRE on-screen calculator by the keystroke sequence " $x=$ ". Thus, the fastest way to obtain the value of F in the formula above is to key in "

$1.2 \times=\times=\times 1,000$

15. (D): $150 \%=1.5=\frac{3}{2}$. Therefore, 150% of $\frac{3}{2}$ equals $\frac{3}{2} \times \frac{3}{2}=\frac{9}{4}$.
16. (B): $\frac{3}{8}$ of 288 is equal to $\frac{3}{8} \times 288=3 \times 36=108$. Therefore, Quantity B is greater.
17. (D): The problem tells you that $\frac{3}{5}$ of the students at University X eat lunch at the dining hall, while $\frac{1}{6}$ of the faculty members eat there. However, you do not know how many students there are relative to the number of faculty
members at this university. For example, if there are 9 students for every faculty member, then among the students and faculty members combined,
$\frac{9\left(\frac{3}{5}\right)+1\left(\frac{1}{6}\right)}{9+1}=\frac{\frac{27}{5}+\frac{1}{6}}{10}=\frac{\frac{27 \times 6+5 \times 1}{30}}{10}=\frac{167}{300}$, or more than half, eat at the
dining hall. By contrast, if there are only 2 students for every faculty member,
then $\frac{2\left(\frac{3}{5}\right)+1\left(\frac{1}{6}\right)}{2+1}=\frac{\frac{6}{5}+\frac{1}{6}}{3}=\frac{\frac{6 \times 6+5 \times 1}{30}}{3}=\frac{41}{90}$ of the combined population eats at the dining hall-that is, less than half. You do not have enough information to determine which quantity is greater.
18. (B): If 15 is $\frac{5}{3}$ of x, then $15=\frac{5}{3} x$, so $x=\frac{3}{5} \times 15=3 \times 3=9$. Therefore, Quantity B is greater.
19. (E): The comet is currently 17 billion, or $17,000,000,000$, kilometers from the planet. Since it is traveling at a speed of 85,000 kilometers per minute, it will reach the planet in $\frac{17,000,000,000}{85,000}=\frac{17,000,000}{85}=\frac{1,000,000}{5}=200,000$ minutes. Since there are 60 minutes per hour, the comet will reach the planet in $\frac{200,000}{60}=3,333 \frac{1}{3} \approx 3,333$ hours.
20. (A): Perhaps the easiest way to compare these quantities is to convert Quantity B to a decimal $(250 \%=2.5)$, and to note that Quantity A is very similar to $\frac{750}{300}$, which is equal to 2.5 . Let's call that fraction, $\frac{750}{300}$, the "baseline" fraction for Quantity A in this comparison.

Relative to the baseline fraction, the actual fraction in Quantity A has a numerator that is 1 lower than 750 , and a denominator that is 1 lower than 300 . Notice that subtracting 1 from 750 takes away a smaller portion of the original (baseline) number than does subtracting 1 from 300. In other words, as a proportion of the original number in the "baseline" fraction, the decrease in the denominator is larger than the decrease in the numerator. Since the denominator is falling faster than the numerator, relative to the baseline fraction, the fraction in Quantity A should be slightly larger than the baseline fraction. Therefore, Quantity A is greater.

Notice that you can prove that $\frac{749}{299}$ is slightly greater than 2.5 by plugging it into the GRE on-screen calculator. If you do this, you will see that $\frac{749}{299} \approx 2.50517$, 害品 which again is a bit greater than Quantity B.

Medium Practice Question Set

1. A parking lot has a number of automobiles, each of which is a car or a truck. If there are 3 times as many cars as trucks and 20% of the cars are foreign, what percentage of the automobiles are foreign cars?
(A) 7.5%
(B) 12%
(C) $13 \frac{1}{3} \%$
(D) 15%
(E) 20%
2. Suppose that x and y are integers and that $0<x<y<10$. The tenths digit of the decimal representation of $\frac{x}{16}$ is 5 . What is the hundredths digit of the result of $\frac{17}{y}$?

3. How many one-fourths are in $\frac{3}{5}$ of $12 \frac{1}{2}$?
\square
4. What percent of 6 is equal to 15 percent of 150 percent of 20 ?

Give your answer in percentage points: \square
5. At a symposium, 20% of the professors are psychologists, 60% are biologists, and the remaining 12 professors are economists. If 20 of the professors wear glasses, what percent of the professors do not wear glasses?
(A) 20%
(B) $33 \frac{1}{3} \%$
(C) 50%
(D) $66 \frac{2}{3} \%$
(E) 80%
6.

Quantity_A

The hundreds digit of $5^{3} 10^{2}$

Quantity B

The hundredths digit of $\frac{1}{4}$
7.

Year	Percent Change from Previous Year (rounded 1 nearest 0.1 percent)
2006	-8.8%
2007	7.5%
2008	2.0%
2009	-4.9%

The annual percent change in the number of babies born at Hospital X is given in the table above. If 102 babies were born at Hospital X in 2005, how many babies were born in Hospital X in 2009?
\square
8.
x is a positive integer.

Quantity \mathbf{A}

Quantity B

$$
\frac{\frac{5 x}{7}}{\frac{8}{2 x+3}}
$$

9. What is the result of the following calculation, when expressed as a simple fraction?

$$
\frac{3 \frac{1}{4}-2 \frac{2}{3}}{1 \frac{1}{2}}=
$$

10.

Quantity A

Quantity B

$$
\frac{\frac{3}{2}+\frac{5}{6}}{\frac{4}{2}+\frac{4}{6}}
$$

11. The ratio of $\frac{2}{5}$ of 4 to $\frac{4}{3}$ of 5 is equal to the ratio of:
(A) 16 to 3
(B) 2 to 3
(C) 6 to 25
(D) 8 to 15
(E) 6 to 1
12. In a department, $\frac{3}{5}$ of the workers are men and the rest are women. If $\frac{1}{2}$ of the men and $\frac{3}{7}$ of the women in the department are over 35 , what fraction of all the workers in the department are over 35 ?

13.

$$
q>0
$$

Quantity \mathbf{A}
The result of
increasing, then
decreasing, q by 1%

Quantity B

The result of increasing, then decreasing, q by 2%
14.

State X Population by County

To the nearest percent, the combined population of the two most populous counties in State X is what percent greater than the combined population of all other counties?
(A) 3
(B) 6
(C) 13
(D) 35
(E) 113
15. If $x=80 \%$, by what percent is x larger than x^{2} ?
(A) 8%
(B) 16%
(C) 20%
(D) 25%
(E) 80%
16. Which of the following is equal to $\frac{\frac{3}{8} \div\left(\frac{3}{4}-\frac{1}{3}\right)}{\frac{2}{5}}$?
(A) 2.25
(B) 1.25
(C) $1.60 \overline{714285}$
(D) 0.390625
(E) 0.078125
17. A bar over a sequence of digits in a decimal indicates that the sequence repeats indefinitely. Which of the following fractions is equivalent to $0 . \overline{12}$?
(A) $\frac{3}{25}$
(B) $\frac{4}{33}$
(C) $\frac{109}{900}$
(D) $\frac{11}{90}$
(E) $\frac{12}{90}$
18. $\frac{(1)(0.1)+(2)(0.2)+(3)(0.3)+(4)(0.4)}{(1)(0.1)+\left(\frac{1}{2}\right)(0.2)+\left(\frac{1}{3}\right)(0.3)+\left(\frac{1}{4}\right)(0.4)}=$
(A) 2.5
(B) 3
(C) 7.5
(D) 10
(E) 30
19. $\frac{\frac{5}{3}-\frac{1}{6}}{\frac{0.3^{2}}{0.2}}$
(A) $\frac{1}{30}$
(B) $\frac{1}{3}$
(C) $\frac{10}{3}$
(D) $\frac{25}{3}$
(E) $\frac{5}{6}$
20. A shipping company charges a shipping fee that varies depending upon the weight of the package to be shipped. The price to ship all packages weighing less than or equal to 5 pounds is $\$ 2.80$, and an additional $\$ 0.25$ is charged for each additional pound above 5 pounds. If the cost to ship Package A is
greater than $\$ 7$ but less than $\$ 8$, which of the following could be the weight of Package A, in pounds?

Indicate all that apply.

B 21
C 22
D 23
E 24
F 25
G 26

Medium Practice Question Solutions

1. (D): If there are 3 times as many cars as trucks, then for every truck that appears in the lot there are exactly 3 cars. That means that for every set of 4 automobiles, there will be exactly 3 cars, so cars make up $\frac{3}{4}$, or 75%, of the total population of the lot. If 20% of these cars are foreign, then you want 20% of 75%, which is $(0.20)(0.75)=0.15$, or 15%.

You may also solve this problem by choosing numbers, and the best number to choose for the number of automobiles in the lot is 100 , since you are dealing with percentages. If there are 100 automobiles in the lot and there are 3 times as many cars as trucks, then there are 75 cars and 25 trucks. If 20% of the cars are foreign, then $(20 \%)(75)=(0.20)(75)=15$ cars are foreign. Therefore, the percentage of foreign cars in the lot of automobiles is given by $\frac{15}{100}=15 \%$.
2. 8: Since the tenths digit of the decimal version of $\frac{x}{16}$ is $5, x$ must have a value of at least half of 16 . That is, $x \geq 8$. Since $y>x$ and $y<10$, and both must be integers, x must equal exactly 8 and y must equal exactly 9 . Thus, $\frac{17}{y}=\frac{17}{9}=1 \frac{8}{9}=1.88 \overline{8}$. Therefore, the correct answer is 8 .
3. 30: Assigning a variable (e.g., x) to the desired quantity, the question can be translated as follows: $\frac{x}{4}=\frac{3}{5} \times 12 \frac{1}{2}$. What is x ?

$$
\begin{aligned}
& \frac{x}{4}=\frac{3}{5} \times 12 \frac{1}{2} \\
& \frac{x}{4}=\frac{3}{5} \times \frac{25}{2} \\
& \frac{x}{4}=\frac{75}{10} \\
& x=\frac{75}{10} \times 4=\frac{300}{10}=30 .
\end{aligned}
$$

4. 75: You should assign a variable (e.g., x) to represent the unknown quantity in this Percents Word Problem. The question can then be translated as follows:

$$
\begin{aligned}
& \frac{x}{100} \times 6=(15 \%) \times(150 \%) \times 20 \\
& \frac{x}{100} \times 6=0.15 \times 1.5 \times 20
\end{aligned}
$$

Use your calculator to simplify:

$$
\begin{aligned}
& \frac{x}{100} \times 6=4.5 \\
& \frac{x}{100}=0.75 \\
& x=75
\end{aligned}
$$

Note that the phrase "what percent" is expressed here as a variable (x) over 100. You could simply use x without a fraction, but you would need to remember to convert the value to a percentage point value at the end:

$$
x \times 6=0.15 \times 1.5 \times 20
$$

$$
\begin{aligned}
& x \times 6=4.5 \\
& x=0.75 \\
& x=75 \%=75 \text { percentage points }
\end{aligned}
$$

5. (D): The information given in the question can be represented as follows. First, determine the total number of professors at the symposium, assigning a variable (in this case, x) to represent the unknown quantity:

$$
\begin{aligned}
& (20 \%) \times x+(60 \%) \times x+12=x \\
& 0.2 x+0.6 x+12=x \\
& 0.8 x+12=x \\
& 12=0.2 x \\
& 60=x
\end{aligned}
$$

There are 60 professors at the symposium. If 20 of them wear glasses, then 40 do not: $\frac{40}{60}=\frac{2}{3}$, or $66 \frac{2}{3} \%$.
6. (C): $5^{3} 10^{2}=125 \times 100=12, \underline{\mathbf{5}} 00$, which has a hundreds digit of $5 ; \frac{1}{4}=0.2 \underline{\mathbf{5}}$, which has a hundredths digit of 5 . Therefore, the two quantities are equal.

Note that, in this case, it is not strictly necessary to calculate the value of the power of 5 in Quantity A. All powers of 5 end in $5(\underline{5} ; 2 \underline{5} ; 12 \underline{\underline{5}} ; 62 \underline{5} ; 3,12 \underline{\underline{5}}$; etc.), and since you are multiplying the 5 term by 100 , its units digit will end up in the hundreds place of the final number ($\mathbf{5} 00 ; 2, \underline{5} 00 ; 12, \underline{5} 00 ; 62, \underline{5} 00 ; 312, \underline{5} 00$, etc.).
7. 97 babies: Percent change is calculated using the following formula, where B_{N} is the number of babies born in the new year, and B_{O} is the number of babies born in the original (previous) year:

$$
\left(1+\frac{\text { Percent Change }}{100}\right) B_{O}=B_{N}
$$

Therefore:

Babies in $2006=$ Babies in $2005 \times(1-0.088)=102 \times(0.912)=93$ babies (Rounded to nearest integer)
Babies in $2007=$ Babies in $2006 \times(1+0.075)=93 \times(1.075)=100$ babies (Rounded to nearest integer)
Babies in $2008=$ Babies in $2007 \times(1+0.020)=100 \times(1.020)=102$ babies (Rounded to nearest integer)
Babies in $2009=$ Babies in $2008 \times(1-0.049)=102 \times(0.951)=97$ babies (Rounded to nearest integer)

You could also solve this using the calculator. Input as follows:

$$
102 \times 0.912 \times 1.075 \times 1.020 \times 0.951=97.003
$$

However, babies only come in whole numbers, so the correct response is 97 .
Note that the original table specifies that the percentage change in births each year is rounded to the nearest tenth of a percent. Therefore, for example, the actual percent change in 2006 is not necessarily precisely -8.8%-it could range anywhere between -8.85% and -8.75%. Therefore, the actual number of babies born in 2006 could range between $102 \times(0.9115)=92.97$ babies and $102 \times(0.9125)=93.08$ babies. If you follow the whole percentage chain all the way through the calculation, though, the lowest possible result for 2009 is 96.81 babies and the highest possible result is 97.20 babies. Therefore, the precise number of births in 2009 must be exactly 97.

If the percent change were reported with less accuracy (e.g., being rounded to the nearest percent), a wider range of possibilities could occur: the correct answer could be somewhere between 95 and 99 babies.
8. (B): Quantity A can be rewritten as $\left(\frac{5 x}{7}\right)\left(\frac{2 x+3}{8}\right)=\frac{10 x^{2}+15 x}{56}$ (notice that the fraction in the denominator flips in going from division to multiplication).

Quantity B can be rewritten as $\frac{7 x^{2}}{28}+\frac{32 x}{28}=\frac{7 x^{2}+32 x}{28}$ (with 28 as the least common multiple of 4 and 7). In order to compare the two fractions, it is convenient to set the denominators equal to each other. This can be achieved by multiplying the numerator and denominator of $\frac{7 x^{2}+32 x}{28}$ by 2 , giving you $\frac{14 x^{2}+64 x}{56}$. You can now easily compare the numerators of the two expressions.

Since you are told that x is a positive integer, you can conclude that $14 x^{2}+64 x$ $>10 x^{2}+15 x$ because $14 x^{2}$ will always be greater than $10 x^{2}$, and $64 x$ will always be larger than $15 x$, whenever x is positive. Therefore, Quantity B is greater.
9. $\frac{7}{18}$ (or any mathematical equivalent): First, transform the mixed numbers 18 into improper fractions:

$$
\frac{3 \frac{1}{4}-2 \frac{2}{3}}{1 \frac{1}{2}}=\frac{\frac{13}{4}-\frac{8}{3}}{\frac{3}{2}}
$$

At this point, you can perform the subtraction in the numerator by expressing both fractions in terms of a common denominator. You can then divide the result by the fraction in the denominator. However, an even faster way to arrive at the answer is to determine the common denominator of all fractions in the calculation (including those in the denominator), and then multiply both the numerator and the denominator of the main fraction by that number. This clears the top and bottom fractions at once and leaves you with just integers. In this case, the common denominator of all fractions is 12. Therefore:

$$
\frac{\frac{13}{4}-\frac{8}{3}}{\frac{3}{2}} \times \frac{12}{12}=\frac{13 \times 3-8 \times 4}{3 \times 6}=\frac{39-32}{18}=\frac{7}{18}
$$

Note that any equivalent fraction, such as $\frac{14}{36}$ or $\frac{70}{180}$, is also an acceptable answer.
10. (C): To perform the calculation in Quantity A as easily as possible, first find the least common denominator of all the fractions in the expression, which is 6 . Then, multiply the numerator and the denominator by that common denominator to eliminate all the fractions at once:

$$
\frac{\frac{3}{2}+\frac{5}{6}}{\frac{4}{2}+\frac{4}{6}} \times \frac{6}{6}=\frac{3 \times 3+5}{4 \times 3+4}=\frac{14}{16}=\frac{7}{8}
$$

Therefore, the two quantities are equal.
11. (C): To find the ratio of two quantities, you divide the first by the second. In this case, the second quantity is a fraction, so you invert it and multiply. Also note that "of" means multiplication. Thus:

$$
\frac{\frac{2}{5} \times 4}{\frac{4}{3} \times 5}=\frac{\frac{8}{5}}{\frac{20}{3}}=\frac{8}{5} \times \frac{3}{20}
$$

At this point, you could just multiply the numerators and denominators separately and then simplify the resulting fraction. However, it is preferable to cancel common factors before the multiplication, so as to minimize the amount of work you need to do to solve the problem. In this case, the 8 in the numerator and the 20 in the denominator both have a factor of 4 , so you can cancel those out to obtain:

$$
\frac{8}{5} \times \frac{3}{20}=\frac{4 \times 2}{5} \times \frac{3}{4 \times 5}=\frac{2}{5} \times \frac{3}{5}=\frac{6}{25}
$$

12. $\frac{33}{70}$ (or any mathematical equivalent): In order to calculate the fraction of all workers that are over 35 , you can reason as follows: $\frac{3}{5}$ of the workers are
men, and of those, $\frac{1}{2}$ are over 35. Thus, $\frac{3}{5} \times \frac{1}{2}=\frac{3}{10}$ of the workers are men over 35 . Similarly, $\left(1-\frac{3}{5}\right) \times \frac{3}{7}=\frac{6}{35}$ of the workers are women over 35 . The total fraction of workers over 35 , noting that the least common denominator of 10 and 35 is 70 , is given by:

$$
\frac{3}{10}+\frac{6}{35}=\frac{3 \times 7}{70}+\frac{6 \times 2}{70}=\frac{21+12}{70}=\frac{33}{70}
$$

Another approach is to use a Smart Number. Given the various fractions in the problem, a number that is divisible by all the denominators is 70 . Thus, you might assume that there are a total of 70 workers in the department, and solve for how many of the 70 are men and how many are women. You can then determine how many of those are over 35 years of age. The obvious advantage of the Smart Number approach is that it avoids fraction addition altogether.

Note that any equivalent fraction, such as $\frac{66}{140}$ or $\frac{330}{700}$, is also an acceptable answer.
13. (A): You can apply multipliers to q to account for the successive percent changes it undergoes. The multiplier for a 1% increase is $1+\frac{1}{100}=1.01$. Thus, raising q by 1% turns it into $1.01 q$. This quantity must then be multiplied by 0.99 , which is the multiplier for a 1% decrease. The end result for Quantity A is thus $(0.99) \times(1.01) \times q=0.9999 q$. You can perform similar calculations in Quantity B, where q is lowered and then raised by 2% :

$$
(0.99) \times(1.01) \times q=\mathbf{0 . 9 9 9 9} \boldsymbol{q} \quad(0.98) \times(1.02) \times q=\mathbf{0 . 9 9 9 6 \boldsymbol { q }}
$$

Because q is a positive number, Quantity A is greater.
An alternative to this approach is to use the Smart Number of 100 for the initial value of q. In that case, the quantities are found to be:
14. (C): The two most populous counties in State X are A and B, which together account for $31 \%+22 \%$, or 53% of the total population. This means that all other counties make up $100 \%-53 \%$, or 47% of the total population. It is tempting to answer that the difference is $53 \%-47 \%$, or 6%, but that would be incorrect. This is because 6% is the difference relative to the total population of the state. The problem asks us to express the answer relative to the combined population of all other counties. In numbers, this question asks " 53 is what percent greater than 47?" The correct calculation is therefore:

$$
\text { percent greater }=\frac{53 \%-47 \%}{47 \%} \times 100 \approx 13 \text { 詔品 }
$$

15. (D): First you should write x as a decimal in order to calculate x^{2}. This gives $x=0.8$ and $x^{2}=0.64$. The percent difference is equal to the actual difference divided by the basis of the comparison. The basis of the comparison is what follows the word "than" in the problem statement:

$$
\text { percent difference }=\frac{0.8-0.64}{0.64}=\frac{0.16}{0.64}=\frac{1}{4}=25 \%
$$

Note that if the problem had instead been worded as "by what percent is 0.64 smaller than 0.8 ?", the basis of the comparison would have been 0.8 . The answer in that case would have been 20%.
16. (A): Using the acronym PEMDAS to remember the proper order of operations, first perform the operations inside the parentheses:

$$
\frac{\frac{3}{8} \div\left(\frac{3}{4}-\frac{1}{3}\right)}{\frac{2}{5}}=\frac{\frac{3}{8} \div\left(\frac{9}{12}-\frac{4}{12}\right)}{\frac{2}{5}}=\frac{\frac{3}{8} \div \frac{5}{12}}{\frac{2}{5}}
$$

All that remains is division. To divide fractions, "flip" them, then multiply:

$$
\frac{\frac{3}{8} \div \frac{5}{12}}{\frac{2}{5}}=\frac{3}{8} \times \frac{12}{5} \times \frac{5}{2}
$$

Finally，cancel／reduce terms to simplify the math when multiplying through：

$$
\begin{gathered}
\frac{3}{8} \times \frac{6}{\not D} \times \frac{1}{\not 又} \times \frac{3}{\not 又} \\
1 \\
1
\end{gathered} \frac{3}{\not 又} \times \frac{\not Q}{1}=\frac{9}{4}=2.25
$$

17．（B）：Start by defining $x=0 . \overline{12}=0.121212 \ldots$ Then you can see that $100 x=$ $12.121212 \ldots=12+x$ ．Solving for x ，you get $100 x-x=12 . \overline{12}-0 . \overline{12}$ ，so $99 x=$ 12．Thus，$x=\frac{12}{99}=\frac{4}{33}$ ．

Alternatively，you could calculate the fraction in each choice using the calculator on the screen and see that only choice（B）produces the desired non－ terminating decimal pattern．

Note that the pattern demonstrated above for non－terminating decimals can be generalized：a repeating decimal of the form $0 . \bar{a}$ will equal $\frac{a}{9}$ ；a repeating decimal of the form ${ }_{0 . \overline{a b}}$ will equal $\frac{a b}{99}$ ；a repeating decimal of the form $0 . \overline{a b c}$ of a decimal，so that（for instance）$a b$ does not stand for the product of a and b ．

18．（C）：The key to solving this problem successfully is to multiply the terms that are grouped next to each other in parentheses first，so that you do not make an error：

$$
\frac{(1)(0.1)+(2)(0.2)+(3)(0.3)+(4)(0.4)}{(1)(0.1)+\left(\frac{1}{2}\right)(0.2)+\left(\frac{1}{3}\right)(0.3)+\left(\frac{1}{4}\right)(0.4)}=\frac{0.1+0.4+0.9+1.6}{0.1+0.1+0.1+0.1}=\frac{3}{0.4}=\frac{30}{4}=7.5
$$

19．（C）：First，solve for the numerator：

$$
\frac{5}{3}-\frac{1}{6}=\frac{10-1}{6}=\frac{9}{6}=\frac{3}{2}
$$

Next, solve for the denominator:

$$
\frac{0.3^{2}}{0.2}=\frac{0.09}{0.2}=\frac{9}{20}
$$

Therefore: $\frac{\frac{5}{3}-\frac{1}{6}}{\frac{0.3^{2}}{0.2}}=\frac{\frac{3}{2}}{\frac{9}{20}}=\frac{10}{3}$
20. (C), (D), (E), and (F): For all packages weighing more than 5 pounds, the shipping cost C is given by $C=\$ 2.80+\$ 0.25 \times(P-5)$, where P is the weight, in pounds, of the package. According to the problem, the cost to ship Package A is greater than $\$ 7$ and less than $\$ 8$. Therefore:

$$
\$ 7<\$ 2.80+\$ 0.25 \times(P-5)<\$ 8
$$

You can subtract $\$ 2.80$ from all three expressions in the compound inequality:

$$
\$ 4.20<\$ 0.25 \times(P-5)<\$ 5.20
$$

Then, you can divide all three expressions by $\$ 0.25$:

$$
\begin{aligned}
& \frac{\$ 4.20}{\$ 0.25}<P-5<\frac{\$ 5.20}{\$ 0.25} \\
& 16.8<P-5<20.8
\end{aligned}
$$

Finally, you can add 5 to all three expressions:

$$
21.8<P<25.8
$$

The package can thus weigh $22,23,24$, or 25 pounds.

Hard Practice Question Set

CAUTION: These problems are very difficult-more difficult than many of the problems you will likely see on the GRE. Consider these "Challenge Problems." Have fun!
1.

$$
x>4
$$

Quantity A

Quantity B

$$
\left[\frac{\frac{\left(x^{2}-9\right)}{3}}{\frac{x+3}{8}}\right]^{-1}
$$

2. Suppose $x_{1}=2 \times 10^{5}, x_{2}=2^{5} \times 5^{5}, y_{1}=200$, and $y_{2}=400 . x_{1}$ and x_{2} represent the value of x in years 1 and 2 , respectively, and y_{1} and y_{2} represent the value of y in years 1 and 2 , respectively.

Quantity_A

Quantity B

The percent decrease in x from year 1 The percent increase in y from year to year 2 to year 2
3.
x is a positive integer.

Quantity_

The units digit of 6^{x}

Quantity B

The units digit of $4^{2 x}$
4. If $x>0$ and the quantities \sqrt{x} and $\frac{\sqrt{x}}{x}$ are reciprocals, which of the following could be true? Indicate all choices that apply.
A \sqrt{x} is greater than $\frac{\sqrt{x}}{x}$
B \sqrt{x} is less than $\frac{\sqrt{x}}{x}$
C. \sqrt{x} is greater than x
5. x is at least 50% greater than 100 , and at most 100% greater than $100 ; y$ is between 20% and 50% of x inclusive. Which of the following are possible
values for y ?
Indicate all such possible values.

| A 10 |
| :--- | :--- |

B 25
(C) 40

D 60
E 90
F 100

G	120
H	170
	1
	200

6. A shopkeeper purchases birdfeeders for $\$ 10$ each and sells them for $\$ 18$ each. If the cost of the feeders increases by 50% for two months in a row, what is the smallest percent increase the shopkeeper can apply to the selling price in order to avoid selling at a loss?

Give your answer in percentage points:

7.

The integers x and $(x-1)$ are not divisible by 4 .

Quantity \mathbf{A}

The value of the tenths digit of $\frac{X}{4}$

Quantity B

The value of the hundredths digit of
8. What is the ones digit of $3^{23}-2^{18}$?

9. In 1990, the annual salaries of clerks in Town Q ranged from $\$ 40,000$ to $\$ 55,000$. In 2000, the salaries of the same group of clerks ranged from
$\$ 70,000$ to $\$ 110,000$. The percent increase in the annual salary of a clerk in Town Q between 1990 and 2000 could be which of the following?

Indicate all that apply.

10. Last year, $\frac{3}{8}$ of the 440 juniors at Central High School took French, $\frac{2}{5}$ took Geography, and $\frac{1}{4}$ took both. Which of the following statements must be true?

Indicate all statements that apply.
A More students took French than Geography.
B More students took both French and Geography than took neither.
C The number of students that took Geography but not French was greater than 50 .
11. Jennifer has 40% more stamps than Peter. However, if she gives 45 of her stamps to Peter, then Peter will have 10% more stamps than Jennifer. How many stamps did Jennifer begin with?
(A) 140
(B) 175
(C) 200
(D) 220
(E) 245
12. A dealer buys a boat at auction and pays 10% below list price. He then sells the boat at a profit of 30% of his cost of the boat. At the same selling price,
what would the dealer's percent profit over his cost have been if he had bought the boat at list price?

Round your answer to the nearest whole percentage point before entering:

13. If $P>0$ and $P \%$ of $3 P$ is $P \%$ less than P, then P equals:
(A) 5
(B) 25
(C) 40
(D) 50
(E) 64
14. To the nearest dollar, how much money needs to be invested in an account that earns 8% interest, compounded quarterly, in order to have $\$ 12,000$ at the end of 3 years?
(A) $\$ 9,462$
(B) $\$ 9,526$
(C) $\$ 9,677$
(D) $\$ 9,804$
(E) $\$ 11,308$
15. At the beginning of each year Jane puts $\$ 2,000$ in an account that earns 6% interest, compounded annually. To the nearest dollar, how much money will Jane have in the account at the end of 4 years if she makes no withdrawals?

Round your answer to the nearest whole dollar: \$ \square
16. How many zeros will the decimal equivalent of $\frac{1}{2^{11} 5^{7}}+\frac{1}{2^{7} 5^{11}}$ have after the decimal point prior to the first non-zero digit?
(A) 6
(B) 7
(C) 8
(D) 11
(E) 18
17. Which of the following is 10% less than 2 ?
(A) $\frac{1}{2}+1 \frac{2}{5}$
(B) $\frac{5}{6}+1 \frac{1}{3}$
(C) $1 \frac{2}{3}+\frac{3}{10}$
(D) $2 \frac{1}{6}-\frac{2}{5}$
(E) $2 \frac{1}{2}-\frac{7}{10}$
18. The length of a rectangle is 3 inches, plus or minus an amount no greater than $\frac{1}{2}$ inch, while its width is 2 inches, plus or minus an amount no greater than $\frac{1}{4}$ inch. Which of the following could be the percentage by which the actual area of the rectangle is greater than or less than its nominal area of 6 square inches?

Indicate all that apply.

19. A is the tens digit and B is the units digit of the product $12,345 \times 6,789$. What is the product of A and B ?
(A) 0
(B) 5
(C) 6
(D) 10
(E) 25
20. Which of the following could be the units digit 98^{x}, where x is an integer greater than 1 ?

Indicate all such digits:

Hard Practice Question Solutions

1. (B): In order to evaluate the fraction in Quantity A, simplify as follows:

$$
\left[\frac{\frac{\left(x^{2}-9\right)}{3}}{\frac{x+3}{8}}\right]^{-1}=\frac{\frac{x+3}{8}}{\frac{\left(x^{2}-9\right)}{3}}=\frac{\frac{x+3}{8}}{\frac{(x+3)(x-3)}{3}}=\frac{3(x+3)}{8(x+3)(x-3)}=\frac{3}{8(x-3)}
$$

Since $x>4$, the denominator in Quantity A must be greater than 8 ; since the numerators in Quantity A and Quantity B are the same and the denominator in Quantity A is larger, Quantity B must be greater.

Note the use of the difference of squares special product to factor the $\left(x^{2}-9\right)$ expression in Quantity A. Also note that in simplifying the fraction, make sure
you flip the fraction $\frac{(x+3)(x-3)}{3}$ as you go from division to multiplication.
Finally, notice that any number raised to the power of -1 is equal to its reciprocal.
2. (B): It is fairly easy to see that the value of y exactly doubled between years 1 and 2 , implying a percent increase of 100%. In order to calculate the percentage increase more formally, use the following formula:

$$
\text { Percent change in } y=\frac{y_{2}-y_{1}}{y_{1}}=\frac{400-200}{200}=1=100 \%
$$

At this point, you know that the percent increase in y must be greater than the percent decrease in x, because a 100% decrease in x would imply that $x_{2}=0$, and any decrease greater than 100% would result in x_{2} being negative. Neither of these is true, so Quantity B is greater. Still, it is a worthwhile exercise to actually compute the value of the percent decrease in x :

$$
\begin{aligned}
& \text { Percent change in } x= \\
& \frac{x_{2}-x_{1}}{x_{1}}=\frac{2^{5} \times 5^{5}-2^{1} \times 10^{5}}{2^{1} \times 10^{5}}=\frac{2^{5} \times 5^{5}-2^{1} \times\left(2^{5} \times 5^{5}\right)}{2^{1} \times\left(2^{5} \times 5^{5}\right)}=\frac{\left(2^{5} \times 5^{5}\right) \times\left(1-2^{1}\right)}{2^{1} \times\left(2^{5} \times 5^{5}\right)}=\frac{1-2}{2}=-\frac{1}{2}=-50 \%
\end{aligned}
$$

This is a 50% decrease (notice that the negative percent change implies a decrease, but you are trying to measure the positive decrease, so Quantity A is actually 50%, not -50%).
3. (C): To evaluate the two quantities, it is not necessary to determine a value for the exponential expressions above, or even for x. The number 6 raised to any integer value will produce a units digit of 6 , as the units digit will always be determined by the product $6 \times 6=\mathbf{3 6}$. You can see this pattern by trying the first few exponents of 6 (or any other number ending in 6) on your on-screen calculator. Simply continue to multiply each result by 6 . The first few results are as follows:

$$
\begin{array}{lr}
6^{1}= & \underline{\mathbf{6}} \\
6^{2}= & 3 \underline{\mathbf{6}} \\
6^{3}= & 21 \underline{\mathbf{6}}
\end{array}
$$

$$
6^{4}=1,29 \underline{\mathbf{6}}
$$

Note that $4^{2 x}$ will always produce a units digit of 6 , as well. The units digits of successive powers of 4 follow a two-step pattern, as you can see by testing the first few exponents of 4 (or any integer with a units digit of 4) on the calculator:

$$
\begin{aligned}
& 4^{1}=\underline{4} \\
& 4^{2}=1 \underline{\mathbf{6}} \\
& 4^{3}=6 \underline{4} \\
& 4^{4}=25 \underline{\mathbf{6}}
\end{aligned}
$$

Note that odd exponents of 4 always end in 4, and even exponents of 4 always end in 6 . Since $2 x$ must be even, $4^{2 x}$ will have a units digit of 6 . Thus, the two quantities are equal.
4. (A), (B), and (C): The GRE entices test-takers to make unwarranted assumptions. Here, it is important that you not assume that x is an integer. If it were, then choice (A) is the only possibility. For example, $\sqrt{4}>\frac{\sqrt{4}}{4}$ and no integer would result in choices (B) or (C) being correct. However, x could be a fraction and then the other choices (choices (B) and (C)) are possible. For
example, $\sqrt{\frac{1}{4}}<\frac{\sqrt{\frac{1}{4}}}{\frac{1}{4}}$, because $\sqrt{\frac{1}{4}}=\frac{1}{2}$ and $\frac{\sqrt{\frac{1}{4}}}{\frac{1}{4}}=\frac{\frac{1}{2}}{\frac{1}{4}}=2$. Furthermore,
$\sqrt{\frac{1}{4}}>\frac{1}{4}$. Thus, both choices (B) and (C) are possible.
Picking numbers such as the above is the best approach, but again, the key is not to assume beyond the exact words given in the question stem.
5. (C), (D), (E), and (F): The information in the question can be translated as follows:

$$
\begin{aligned}
& \frac{150}{100} \times(100) \leq x \leq \frac{200}{100} \times(100) \\
& 0.2 x \leq y \leq 0.5 x
\end{aligned}
$$

Note that in the first inequality, you are looking at a percent increase, which is equal to x plus the decimal equivalent of the percent change. In the second inequality, y is a percentage $o f x$, so multiply x by the given percentages.

From the first inequality, you can determine that x is between 150 and 200. Now you just need to find the possible range for y. It can be anywhere from 20% to 50% of any number in the range for x. The smallest possible value for y is 20% of the smallest number (150), and the largest possible value is 50% of the largest number (200). Thus, $0.2 \times 150 \leq y \leq 0.5 \times 200$, or $30 \leq y \leq 100$. Of the numbers listed, $40,60,90$, and 100 fall within this range.
6. 25: In order to avoid selling at a loss, the shopkeeper must increase the selling price of the birdfeeders to match their cost. To determine the percent increase required, you must first find the required selling price by calculating the new cost of the birdfeeders. Then you must express this dollar increase as a percentage of the original selling price of $\$ 18$ by applying the following formula, where P_{N} and P_{O} represent the new and original prices, respectively:

$$
\text { percent change in price }=\frac{P_{N}-P_{O}}{P_{O}} \times 100
$$

The cost of the birdfeeders (\$10) increased by 50% twice in a row. You can express this as $\$ 10 \times(1+50 \%) \times(1+50 \%)=\$ 10 \times 1.5 \times 1.5$, which equals $\$ 22.50$. (Note that two successive 50% increases are not the same as a single increase of 100% !)

Now you can plug the new price into the percent increase formula:

$$
\text { percent change in price }=\frac{P_{N}-P_{o}}{P_{o}} \times 100=\frac{\$ 22.50-\$ 18}{\$ 18} \times 100=\frac{4.5}{18} \times 100=25
$$

7. (A): The integers $(x-1)$ and x are consecutive numbers, both of which are not multiples of 4 . Thus, they could be 1 and 2,2 and 3,5 and 6 , or 6 and 7 , etc. Test these numbers in a systematic way:

$x-1$	x	$\frac{x}{4}$	Quantity A tenths digit of $\frac{x}{4}$		Quantity B hundredths digit of $\frac{x}{4}$
1	2	$\frac{2}{4}=\frac{1}{2}=0.50$	5	$>$	0
2	3	$\frac{3}{4}=0.75$	7	$>$	5
5	6	$\frac{6}{4}=\frac{3}{2}=1.50$	5	$>$	0
6	7	$\frac{7}{4}=1.75$	7	$>$	5
9	10	$\frac{10}{4}=\frac{5}{2}=2.50$	5	$>$	0
10	11	$\frac{11}{4}=2.75$	7	$>$	5

A pattern is emerging. Greater possible x values will only change the digits of $\frac{x}{4}$ left of the decimal, which don't affect either Quantity A or Quantity B. Thus, Quantity \mathbf{A} is always greater.
8. 3: Last digit (or units digit) problems should be approached in a standard way, which is to avoid lengthy calculation and instead look for patterns in the last digit as a number is raised to successive powers. Even the raising to successive powers can be streamlined by limiting the calculation to the last digit and ignoring the rest of the digits. For powers of 3, the process goes as follows:

\boldsymbol{k}	${\text { Last digit of } \mathbf{3}^{\boldsymbol{k}}}^{1}$
1	3
2	9
3	7 (because $9 \times 3=2 \underline{\mathbf{I}})$
4	1 (because $7 \times 3=2 \underline{\mathbf{1}})$
5	3

Note that the last digit of 3^{k} will repeat from this point onward; it will continually cycle through 3-9-7-1, in that order. That is, every power of 3 that has a multiple of 4 as the exponent will have its last digit equal to 1 . This means that 3^{24} will end in a 1 . Therefore, 3^{23} will end in a 7 .

You can proceed similarly for powers of 2:

\boldsymbol{k}	Last digit of 2 $^{\boldsymbol{k}}$
1	2
2	4
3	8
4	6 (because $8 \times 2=1 \underline{\mathbf{6}})$
5	2 (because $6 \times 2=1 \underline{\mathbf{2}})$

Again, note that there is a cycle: every power of 2 that has a multiple of 4 as the exponent will have its last digit equal to 6 . This means that 2^{20} will end in $6,2^{19}$ will end in an 8 , and 2^{18} will end in 4 . Finally, then, $3^{23}-2^{18}$ will end in $7-4$, or 3 .
9. (B), (C), and (D): In order to answer this question, you need to determine the possible extremes in the percent salary increase. The least possible increase would be from the highest 1990 salary to the lowest 2000 salary:

$$
\text { Minimum percent increase }=\frac{\$ 70,000-\$ 55,000}{\$ 55,000}=\frac{\$ 15,000}{\$ 55,000}=\frac{3}{11} \approx 27.3 \%
$$

The greatest possible increase, meanwhile, would be from the lowest 1990 salary to the highest 2000 salary:

$$
\text { Maximum percent increase }=\frac{\$ 110,000-\$ 40,000}{\$ 40,000}=\frac{\$ 70,000}{\$ 40,000}=\frac{7}{4}=175 \%
$$

Percent increases that fall between these two extremes, inclusive, are possible.
10. (C): For the first two statements you need only to work with fractions.

Answer choice (A) will be true if $\frac{3}{8}$ is greater than $\frac{2}{5}$. You can quickly compare
the two by cross-multiplying the numerators and denominators, and writing the results next to the numerators. Whichever product is greater will indicate which fraction is greater: $\frac{3}{8}$ versus $\frac{2}{5}$ is the same as 0.375 versus 0.4 , so $\frac{3}{8}$ is less than $\frac{2}{5}$. Choice (A) is therefore incorrect.

As for choice (B), the fraction of students who took French, Geography, or both can be determined by adding the individual fractions for each and then subtracting the fraction that represents the overlap (to eliminate the doublecounting of the students who are in both classes). This gives
$\frac{3}{8}+\frac{2}{5}-\frac{1}{4}=\frac{3 \times 5+2 \times 8-1 \times 10}{40}=\frac{21}{40}$ as the fraction of students who took either class or both. Therefore, the fraction of students who took neither French nor Geography must equal $1-\frac{21}{40}$, or $\frac{19}{40}$. This is greater than $\frac{1}{4}$, which is the fraction of students who took both. Thus, choice (B) is also incorrect.

Finally, to check choice (C), you first need to compute the fraction of students who took only Geography and then multiply by 440 to determine the actual number of such students. The fraction of students who took Geography but not French is found by subtracting the overlap from the fraction of students who took Geography: $\frac{2}{5}-\frac{1}{4}=\frac{2 \times 4-1 \times 5}{20}=\frac{3}{20}$. The number of such students is given by $440 \times \frac{3}{20}=3 \times \frac{440}{20}=3 \times 22=66$.

Therefore, choice (C) is correct.
11. (E): You can make a table to summarize what you know about the "Before" and "After" states. Even though the problem asks for Jennifer's number of stamps, it actually is more convenient to let Peter's number of stamps be your unknown, because you are told how Jennifer's number of stamps relates to Peter's: "Jennifer has 40% more than Peter." Let P denote the number of stamps that Peter has before the transfer of 45 stamps. You then have:

	Before	After
Peter	P	$P+45$

Jennifer	$1.4 P$	$1.4 P-45$

Note in the table that 40% more than P translates to:
$P+\frac{40}{100} P=P+0.4 P=1.4 P$. The "After" column is filled out by accounting for the transfer of 45 stamps.

At this point, you can invoke the second given fact, namely that Peter will have 10% more stamps than Jennifer in the "After" state. Just as " 40% more than" translated to a coefficient of 1.4 , " 10% more than" will translate to a coefficient of 1.1. Thus, you can equate Peter's "After" total with $1.1 \times$ Jennifer's "After" total:

$$
P+45=1.1(1.4 P-45)=1.54 P-49.5
$$

Collecting terms yields:

$$
94.5=1.54 P-P=0.54 P
$$

This is a calculation best done using the calculator:
$P=\frac{94.5}{0.54}=\frac{9,450}{54}=\frac{1,050}{6}=175$. 嗐品 Remember, however, that the question asked you for how many stamps Jennifer has at the beginning. This is also best computed with the calculator: $1.4 \times 175=245$.
12. 17: Assume that the list price of the boat is $\$ 100$. The dealer buys the boat for $\$ 90$. He then sells it for $\$ 90+\frac{30}{100} \times \$ 90=1.3 \times \$ 90=\$ 117$. From this, you can see that the dealer would have made a profit of $\$ 17$ if he had bought the boat at list price. His profit would then have been 17% over the list price, which would be entered as the whole number 17. (Note that choosing $\$ 100$ as the list price makes the calculation of the profit very convenient-a profit of $\$ 17$ is the same as a profit of 17%.)
13. (B): The problem statement can be translated verbatim. "Percent" means divide by 100 , "of" means multiply, and " $P \%$ less than P " means subtract $P \%$ of P from P :

$$
\frac{P}{100}(3 P)=P-\frac{P}{100} \times P=\left(1-\frac{P}{100}\right) P
$$

The equation can be simplified by multiplying both sides by 100 . This eliminates the fractions and results in:

$$
3 P^{2}=(100-P) P=100 P-P^{2}
$$

Collecting the squared terms on the left and dividing by P (which is allowed because P is not 0), you obtain:

$$
\begin{aligned}
& 4 P^{2}=100 P \\
& 4 P=100 \\
& P=25
\end{aligned}
$$

14. (A): The compound interest formula can be used to calculate the future value F resulting from an initial principal of P plus interest accruing at a rate of r, compounded quarterly for n years. This formula is given by $F=P\left(1+\frac{r}{4}\right)^{4 n}$, where r is to be expressed as the decimal equivalent of the interest rate.
(Note the use of 4 in the formula to represent the quarterly compounding, that is, 4 times per year.)

In this problem, $r=0.08$ and $n=3$, so $\$ 12,000=P \times(1.02)^{12}$, or $P=\frac{\$ 12,000}{1.02^{12}}$.

Using the calculator, you can obtain 1.02^{12} most efficiently by using the shortcut " $x=$ " for squaring a number. First square 1.02 and then multiply it by 1.02 again to get 1.02^{3}. Then square 1.02^{3} to get 1.02^{6}; then square that number to get $1.02^{12}: 1.02 \times=\times 1.02=\times=\times=$ yields ≈ 1.26824. Making sure to clear the memory first by pressing $M C$ if needed, store this number in the calculator's memory via M^{+}, and finally divide $\$ 12,000$ by the number in memory to arrive at an approximate answer of $P=\$ 9,462$.
15. \$9,274: The compound interest formula yields the final value of principal P plus interest at a rate of r, compounded annually for n years. The formula is $F=$ $P(1+r)^{n}$, where r is expressed as the decimal equivalent of the annual percentage interest rate. In this case, $r=0.06$.

The first year's investment will compound 4 times, and result in a final value of $\$ 2,000 \times 1.06^{4}$.
The second year's investment will compound 3 times, and result in a final value of $\$ 2,000 \times 1.06^{3}$.
The third year's investment will compound twice, and result in a final value of $\$ 2,000 \times 1.06^{2}$.
The fourth year's investment will compound once, and result in a final value of $\$ 2,000 \times 1.06$.

Thus, the total accumulation at the end of the fourth year will equal:

$$
\$ 2,000 \times\left(1.06^{4}+1.06^{3}+1.06^{2}+1.06\right) \approx \$ 2,000 \times 4.63709 \approx \$ 9,274
$$

16. (C): First, you can factor out the common terms in the denominators:

$$
\frac{1}{2^{115^{7}}}+\frac{1}{2^{7} 5^{11}}=\frac{1}{2^{7} 5^{7}}\left(\frac{1}{2^{4}}+\frac{1}{5^{4}}\right)=\frac{1}{(2 \times 5)^{7}}\left(\frac{1}{16}+\frac{1}{625}\right)=\frac{1}{10^{7}}(0.0625+0.0016)=\frac{1}{10^{7}}(0.0641)
$$

The $\frac{1}{10^{7}}$ is significant, as it affects the number of decimal places before whatever number it is multiplied with. For example, $\frac{1}{10^{7}} \times 3=0.0000003$ has 6 zeros after the decimal point prior to the first non-zero digit. Likewise, $\frac{1}{10^{7}} \times 0.3=0.00000003$ has 7 zeros after the decimal point prior to the first nonzero digit. In addition, $\frac{1}{10^{7}}(0.0641)=0.00000000641$ has 8 zeros after the decimal point prior to the first non-zero digit— 7 from the $\frac{1}{10^{7}}$ and 1 from 0.0641 itself.
17. (E): 10% less than 2 means $(1-10 \%)=90 \%$ of 2 . (It does not mean $2-$ 0.1 .) Thus, you are looking for the expression whose value is 0.9×2, or 1.8 .

You can do the calculations using simple decimal representations of the various fractions. In some cases, these will be exact; in other cases, they will be approximate. The advantage of this approach is that it avoids the effort involved in doing fraction arithmetic via common denominators. You get:
(A) $\frac{1}{2}+1 \frac{2}{5}=0.5+1.4=1.9$ (Exact, incorrect)
(B) $\frac{5}{6}+1 \frac{1}{3} \approx 0.8+1.3=2.1$ (Approximate but an underestimate, therefore incorrect)
(C) $1 \frac{2}{3}+\frac{3}{10} \approx 1.6+0.3=1.9$ (Approximate but an underestimate, therefore incorrect)
(D) $2 \frac{1}{6}-\frac{2}{5} \approx 2.2-0.4=1.8$ (Approximate but an overestimate, therefore incorrect)
(E) $2 \frac{1}{2}-\frac{7}{10}=2.5-0.7=1.8$ (Exact, correct)
18. (B), (C), and (D): The largest allowable area of the rectangle is given by:

$$
\left(3+\frac{1}{2}\right)\left(2+\frac{1}{4}\right)=\left(\frac{7}{2}\right)\left(\frac{9}{4}\right)=\frac{63}{8} \text { or } 7 \frac{7}{8} \text { square inches }
$$

The percent difference between this area and 6 square inches is equal to $\frac{7 \frac{7}{8}-6}{6}=31.25 \%$. Thus, choices (C) and (D) are possible.

Meanwhile, the smallest allowable area of the rectangle is given by:

$$
\left(3-\frac{1}{2}\right)\left(2-\frac{1}{4}\right)=\left(\frac{5}{2}\right)\left(\frac{7}{4}\right)=\frac{35}{8} \text { or } 4 \frac{3}{8} \text { square inches }
$$

The percent difference between this area and 6 square inches is equal to $4 \frac{3}{8}-6$
$\frac{\frac{4}{8}-6}{6} \approx-27.1 \%$.

Thus, choice (B) is possible, while choice (A) is
not.
19. (A): In order to determine the value of B, the ones (units) digit of the product, you need only look at the product of the units digits of $12,34 \underline{\mathbf{5}}$ and 6,789: $5 \times 9=4 \underline{\mathbf{5}}$, so $B=\mathbf{5}$.

To determine the value of A, the tens digit, you need to look at the product of the tens $a n d$ ones digits of $12,3 \underline{45} \times 6,7 \underline{89}: 45 \times 89=4, \underline{0} \underline{5}$, so $A=0$.

Therefore, $A B=0 \times 5=0$.
20. (C), (E), (G), and (I): Whenever a question asks for the value of the ones (units) digit result of multiplication, you only need to calculate the product of the units digits of the original numbers. For example, $49 \times 143=7,007$, but you can find the units digit of the product by taking $9 \times 3=2 \underline{1}$.

Thus, to find the possible units digits of 98^{x}, you only need to observe the units digits of successive powers of 8^{x} :

\boldsymbol{x}	Units digit $\mathbf{o f} \mathbf{8}^{\boldsymbol{x}}$
1	8
2	$4(8 \times 8=6 \underline{\mathbf{4}})$
3	$2(4 \times 8=3 \underline{\mathbf{2}})$
4	$6(2 \times 8=\mathbf{1} \underline{\mathbf{6}})$
5	$8(6 \times 8=4 \underline{\mathbf{8}})$

The pattern of $8,2,4,6$ will repeat every four successive powers, and the units digit of 98^{x} can only ever be $2,4,6$, or 8 .

Notice also that you can use Primes \& Divisibility and Odd/Even concepts to eliminate all but the correct choices. All odd digits can be eliminated (since 98
is an even number, 98 to any power will be an even number and thus end in an even digit), as can 0 (any integer ending in 0 is divisible by 10 , which means that the integer has both a 2 and a 5 in its prime factorization; the prime factorization of 98 is $2 \times 7 \times 7$, so 98 raised to any power will never have a 5 in its prime factorization and thus cannot be divisible by 10).

STUDY ANYWHERE!
 WITH MANHATTAN PREP'S GRE FLASH CARDS

With our flashcards you can study both math and verbal concepts on the go!

Both our 500 Essential Words and a 500
Advanced Words cards go above and beyond providing abstract, out-of-context definitions. Complete with definitions. example sentences, pronunciations, and related words, this two-volume set comprises the most comprehensive vocabulary study tool on the market.

Our GRE Math Flash Cards provide practical exposure to the basic math concepts tested on the GRE.

Designed to be user-friendly for all students, these cards include easy-to-follow
explanations of math concepts that promise to enhance comprehension and build fundamental skills.

500 Math Flash Cards

[^2]

NEED MORE THAN BOOKS ALONE?

TRY OUR GUIDED SELF-STUDY PROGRAM!

With over 27 hours of recorded video lessons, Guided Self-Study is a perfect fit for self-motivated individuals who want full access to all of Manhattan Prep's materials.

[^3]Check it out at manhattanprep.com/gre/gre-self-study.cfm

[^0]: For any technical issues, email techsupportemanhattanprepcom or call 800-576-4628.

[^1]: Strategy Tip: On "Select One or More Answer Choices," write A B C on your paper and mark each choice with a check, an X, or a symbol such as \sim if you're not sure. This should keep you from crossing out all three choices and having to go back (at least one of the choices must be correct). For example, say that on a different question you had marked

[^2]: 1 mer

[^3]: Armed with our syllabus and online resources suite, you can get more out of your books. This program is a great fit for students operating under a tight deadline or rigid schedule who may not have the time to take a live prep course.

