MATHEMATICS

1. The line passing through the points $\mathrm{A}(1,-2,-3)$ and $\mathrm{B}(4,-5,-6)$ intersects the plane $z=1$ at the point
A) $\left(\frac{7}{3},-\frac{10}{3}, 1\right)$
B) $\left(-\frac{7}{3},-\frac{10}{3}, 1\right)$
C) $(-3,2,1)$
D) $(-3,6,1)$
2. A box contains 8 items of which 2 are defective. A person draws 3 items from the box. Determine the expected number of defective items.
A) 0.75
B) 0.3
C) 0.2
D) 0.1
3. If $a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta, c=\cos \gamma+i \sin \gamma$ and $a+b+c=0$, the value of $a^{-1}+b^{-1}+c^{-1}$ is
A) 1
B) 0
C) -1
D) 2
4. The value of λ for which the system of equations $x+y-2 z=0,2 x-3 y+z=0 . x-5 y+4 z=\lambda$ is consistent is
A) 1
B) -1
C) 0
D) 2
5. Suppose \vec{a} and \vec{b} are vectors such that $\vec{a} \times \vec{b}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{a}+\vec{b}=\hat{i}-\hat{j}+\hat{k}$. The least value of is $|\vec{a}|$
A) $\frac{1}{\sqrt{2}}$
B) 2
C) $\sqrt{2}$
D) $\sqrt{2}-1$
6. A general solution to $y^{\prime \prime}-\sqrt{5} y=0$ is
A) $y=c_{1} e^{\sqrt{5} t}+c_{2} t$
B) $y=c_{1} \cos \sqrt{5} t+c_{2} \sin \sqrt{5} t$
C) $y=c_{1} e^{\sqrt{5} t}+c_{2} t e^{\sqrt{5} t}$
D) $y=c_{1} e^{\sqrt[4]{5} t}+c_{2} e^{-\sqrt[4]{5} t}$
7. In a binary communication channel, the probability that a transmitted zero is received as zero is 0.95 and the probability that a transmitted one is received as one is 0.90 . If the probability that a zero is transmitted is 0.4 , then the probability that a one was transmitted, given that a one was received is
A) $\frac{17}{28}$
B) $\frac{27}{37}$
C) $\frac{29}{37}$
D) $\frac{27}{28}$
8. If $(\vec{a}, \vec{b}, \vec{c})$ are three vectors such that if $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \overrightarrow{\mathrm{c}}=\vec{a}$, then
A) If \vec{a}, \vec{b} and \vec{c} are pair-wise perpendicular
B) $|\vec{a}|=|\vec{b}|=\mid \vec{c}) \mid=1$
C) $|\vec{a}|=|\vec{b}|=|\vec{c}| \neq 1$
D) $|\vec{a}| \neq|\vec{b}| \neq \mid \vec{c}) \mid$
9. If $[\times]$ denotes the greatest integer $\leq x$, then the value of the integral $\int_{4}^{10} \frac{\left[x^{2}\right] d x}{\left[x^{2}-28 x+196\right]+[x]^{2}}$ is
A) 0
B) 1
C) 3
D) 4
10. The proposition $\mathrm{p} \wedge(\mathrm{P} \vee \mathrm{q})$ is
A) a tautology
B) a contradiction
C) logically equivalent to $\mathrm{p} \wedge \mathrm{q}$
D) logically equivalent to $\mathrm{p} \vee \mathrm{q}$
