1. N molecules each of mass m and v velocity collides with a wall of a container a	ınd
then absorbed, the pressure applied on the wall is :	

(1) mNV^2 (2) $\frac{\text{mNV}^2}{3}$ (3) 2 mNV^2 (4) $\frac{\text{mNV}^2}{2}$

2. The law of far a day is obtained by conservation of:

(1) Charge

(2) Energy

(3) Energy and magnetic field (4) Magnetic field

3. There is a q charge placed in the centre of a cube, then the emergent flux is:

(1) <u>q</u> 6∈0 $(2) \underline{q} \qquad (3) \underline{q} \qquad (4) \underline{q}$

 $8 \in 0$ $2 \in 0$

 $\in \Omega$

4. Two thin lenses are put close to each other, focal length of the combination is:

(1) less than the small focal length

(2) more than the bigger focal length

(3) equal to the arithmetical average of the focal length

(4) equal to the geometrical average of the focal length

5. A car is moving on a horizontal circular path with 10 m/s constant speed. A rigid body is suspended from ceiling of car with a 1 m. long light rod, the angle between rod and path is:

 $(1) 60^{0}$

 $(2) 45^0$

(3) 30^0 (4) zero

6. Two sources of E_1 and E_2 emf r_1 and r_2 internal, resistances, are connected in the parallel combination, the emf of the combination is:

(1) $\underline{E_1E_2}_{E_1+E_2}$ (2) $\underline{E_2r_1 + E_1r_2}_{r_1+r_2}$ (3) $\underline{E_1r_1 + E_2r_2}_{r_1+r_2}$ (4) $\underline{E_1 + E_2}_{2}$

7. In a AC circuit R=0 $\Omega\Omega X_L=8\Omega\Omega$ and $X_C=6\Omega\Omega$ hase difference between voltage and current is: $(1) 11^0$ $(2) 45^0$ $(3) 37^0(4) 12^0$

8. Relative permeability of a medium is $\mu\mu$ and relative permittivity is $\in \subseteq$ then the velocity of an electro magnetic wave is:

9. Ration of pressure is :		o soap bubbles	is 2:1 then	the ratio of their excess
(1) 2 : 1	(2) 4:1	(3) 1:4	(4) 1: 2	
10. Ratio of	sound velocit	ies is H ₂ and O	will be:	
(1) 32 : 1	(2) 1 : 4	(3) 16:1	(4) 4 : 1	
11. In which (1) em waves (2) longitudi (3) stationary (4) transvers	s onal waves y waves	the energy is n	ot propagat	ed:
displacemen	$\mathbf{nt} \mathbf{is} \mathbf{x} = \mathbf{t}^3 \mathbf{whe}$	ere x in meter a	ınd t in time	lation between time and work done in first two seconds
(1) 1.6 J	(2) 16 J	(3) 160 J	(4) 1600 J	
frictionless to whole chain (1) MgL 18	table and one on table, is : (2) MgL 9	third part is vo	(4) MgL 3	ird part of chain is on a pended, work done to pull the doubled then:
(1) photo ele(2) kinetic er(3) kinetic er	ectric current where of the entergy of electrons.	vill become is time	mes vill be increa nes	sed and current will be 2 times
	rage speed of		_	st half distance with 60 kmph 40 kmph
_		ing with same v neir centripetal		the circular paths of r ₁ and r ₂
(1) <u>r</u> 2_ r ₁	$(2)\sqrt{\frac{\underline{r_2}}{r_1}}$	(3)	$\frac{\mathbf{r}_1}{\mathbf{r}_2}$ (4)	

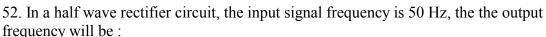
17. No. of electrons in the $_{\rm 92}$ U $^{\rm 235}$ nucleus is :

(1) 143

(2) 235 (3) 92

(4) zero

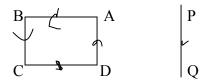
18. The wavelength of photon and electron is λ_{ph} and λ_{e} and energy (E) of the two is same then: (1) the difference can be obtain if E is given (2) $\lambda e > \lambda ph$ (3) λph . λe (4) $\lambda ph = \lambda e$	
19. A lift is moving with acceleration a in upward direction then the force applied by mass m on the floor of lift will be :	
(1) ma (2) m(g-a) (3) m(g+a) (4) mg	
20. Two cars of m_1 and m_2 mass are moving in the circular paths of r_1 and r_2 radius, their speed is such that they travels one cycle in the same time, the ratio of their angular velocities is : (1) $m_1r_1:m_2r_2$ (2) 1:1 (3) $r_1:r_2$ (4) $m_1:m_2$	
21. A ring of mass M, radius r is moving with angular velocity w, if another two bodies each of mass m is placed on its diameter, the resultant angular velocity will be:	
(1) $\frac{\text{w}(M + 2\text{m})}{\text{M}}$ (2) $\frac{\text{w}(M - 2\text{m})}{\text{(M + 2\text{m})}}$ (3) $\frac{\text{wM}}{\text{(m+m)}}$ (4) $\frac{\text{wM}}{\text{(M+2m)}}$	
22. The wavelength of 1 ke V photon 1.25 x 10^{-9} m the frequency of Me V photon will be: (1) 1.24×10^{23} (2) 2.4×10^{23} (3) 2.4×10^{23} (4) 1.24×10^{15}	
23. Size of nucleusis of the order of : (1) 10^{-13} cm (2) 10^{-10} cm. (3) 10^{-8} cm. (4) 10^{-15} cm.	
24. If MI, angular acceleration and torque of body is I, ∞ and τ , it is revolving with ω angular velocity then:	
(1) $\tau = \underline{\alpha}$ (2) $M = \underline{1}$ (3) $\tau = I\alpha$ (4) $\tau = I\omega$	
 25. In a uniform circular motion: (1) both acceleration and speed changes (2) both acceleration and speed are constant (3) both acceleration and velocity are constant (4) both acceleration and velocity changes 	
26. Ratio of average kinetic evergies of $\mathbf{H_2}$ and $\mathbf{O_2}$ at a given temp. is : (1) 1 : 1	
 27. To make the working of a machine, free of magnetism, the cover of this machine must be of: (1) non magnetic substance (2) diamagnetic substance (3) paramagnetic substance (4) ferro magnetic substance 	


28. $\lambda_\alpha,\lambda_\beta$ and λ_r are the wavelengths of k $_\alpha$, k_β and k_r lines of X-ray spectrum then :				
$(1) \lambda_{\beta} > \lambda_{a} > \lambda_{r} (2) \lambda_{\alpha} < \lambda_{B} < \lambda_{r} (3) \lambda_{\alpha} > \lambda_{\beta} > \lambda_{r} (4) \lambda_{\alpha} = \lambda_{\beta} = \lambda_{r}$				
29. Angular momentum of electron of H atom is proportional to : (1) $\frac{1}{r}$ (2) $\frac{1}{\sqrt{r}}$ (3) $\sqrt[3]{r}$ (4) r^2				
30. MI, rotational kinetic energy and angular momentum of a body is I, E and L then : $ \\$				
(1) $E = L^2$ (2) $E^2 = 2I$ (3) $E = 2IL$ (4) $L = E^2$ 2I				
31. In a diode value, the state of saturation can be obtained easily by: (1) high plate voltage and high filament (2) low filament current and high plate voltage (3) low plate voltage and high plate tem (4) high filament current and high plate voltage				
32. A magnet is dropped in a long coppertube vertically, the acceleration of magnet: (1) equal to g (2) less than g (3) zero (4) greater than g				
33. Joule-second is unit of: (1) rotational power (2) angular momentum (3) rotational energy (4) torgue				
34. A 3 coulomb charge enerts 3000 N force in a uniform electrical field, the distance between two points is 1 cm. potential difference will be : (1) 9000 V (2) 1000 V (3) 90 V (4) 10 V				
35. 1000 drops, each v volt, are combined to form a big drop, then the potential of the drop will be how many times: (1) 1 (2) 10 (3) 100 (4) 1000				
36. A plane is revolviing around the earth with 100 km./hr. speed at a earth, the changes in the velocity as it travels half circle is :				
(1) $100 \sqrt{2 \text{ kmph}}$ (2) 150 kmph (3) 200 kmph (4) zero				

37. 3×10^7 kg. water is initially constant and it is displaced 3 m. by applying 5×10^4 N force. Velocity of water will be (if resistance of water is zero):

(1) 50 m/sec. (2) 0 1 m/sec. (3) 60 m/sec. (4) 1.5 m/sec.

volt emf is us	ed, the current	drawn from the	cell is:	and $G = 20 \Omega$. If a cell of 1.5 (4) 0.125 amp
then the Lissa	es of same frequijou's figure wii (2) an ellipse	ll be :		if the phase difference is $\pi/2$
the r of mixtu				are mixed in equal ratio then
	of e.m. waves in (2) 1.87			. then the dielectric constant is:
42. After emi (1) A – 4, Z –	ssion of a β-par -2 (2) A,	ticle, the nucle Z-1 (3) A,	us: Z-2 (4) A	+ 2, Z
m radius circ	n a proton is 9.6 ular path, the en (2) 12.02	ergy of proton	in Mev.	ng in a 1T magnetic field in 0.5
44. If $\frac{d^2\omega}{dx^2}$	$+ \alpha x = 0$ then t	the angular free	quency will be:	
(1) $\sqrt{\alpha}$	$(2) \alpha^2$	(3) α	(4) zero	
(1) therories of(2) photo elect(3) theory of	etric effect			
	turation current	the ratio of pla	ite currents at 4	00 v and 200 v plate voltage
is: (1) <u>1</u>	(2) 2	$(3)\ 2\sqrt[4]{2}$	(4) $\frac{\sqrt{2}}{4}$	
47. If $I = I_0 \text{ si}$	n (ω t - π /2) and (2) $\underline{E_0}\underline{I_0}$	$E = E_0 \sin \omega t$	then the power	loss is:
pressure is 0.4	p. of an ideal ga 4%, the initial to (2) 200°K	emp. of the gas	is:	ased 1 ^o C, the increase in
	s 40° . The ratio			, amplification factor of each en used with $4k\Omega$ load
(1) 10		(3) 4/3	(4) 16/3	


50. Relation between displacement x as be:	nd time t is $x = 2 - 5t + 6t^2$, the initial velocity will
(1)-3 m/sec. (2) 12 m/sec. (3) 2 m/s	ec. $(4) - 5$ m/sec.
S .	cm. it is dipped in water. The refractive indices of and 1.33 resp., now the focal length will be:

(3) 24.24 cm. (4) 16 cm.

(1) 25 Hz (2) 50 Hz (3) 200 Hz (4) 100 Hz

53. In the following circuit:

(2) 18 cm.

(1) the loop will be displaced along the length of wire

(2) PQ unchanged

(1) 64 cm.

- (3) the loop will repell the wire
- (4) wire will attract the loop
- 54. In a triode the ratio of small change in plate voltage and small changes in grid voltage is, if plate current is constant:
- (1) DC plate resistance
- (2) mutual conductance
- (3) AC plate resistance
- (4) amplification factor
- 55. Two particles accelerated with same voltage eneters in a uniform magnetic field perpendicularly, the radii of the circular paths is R₁ and R₂, the charge on particles is same the ratio of \underline{m}_1 is:

$$(1) \quad \underbrace{\begin{bmatrix} \underline{R_2} \\ R_1 \end{bmatrix}}^2 \qquad \qquad (2) \quad \underline{R_2} \\ \qquad \qquad R_1 \qquad \qquad (3) \quad \underline{R_1} \\ \qquad \qquad R_2 \qquad \qquad (4) \underbrace{\begin{bmatrix} \underline{R_1} \\ R_2 \end{bmatrix}}^2$$

- 56. Light Velocity in diamond is ($\mu = 2.0$)
- (1) 60 x 10¹⁰ cm/sec. (2) 2 x 10¹⁰ cm/sec. (3) 3 x 10¹⁰ cm/sec.
- (4) 1.5×10^{10} cm/sec.
- 57. If Arsenic is dopped to silicon then its conductivity:
- (1) becomes zero
- (2) unchanged
- (3) increases
- (4) decreases

the plates, the	n the potent	tial at each o	conder	nser is:		um of k constant is put between
$(1) \qquad \frac{v}{k+2}$	_ (2)	$\frac{2}{3}v$	(3) <u>k</u>	$\frac{2v}{x+2}$	(+)	<u>sv</u> k+2
wave velocity (1) 1.5 m/sec.	is: (2) 3 m/se locity at the ocity will b	c. (3) 0.5 e surface of e:	m/sec earth i	c. (4) 1 r is 11 km/	n/sec. /sec.,	if radius of earth is doubled then
61. Kinetic en momentum is (1) 1 : 16	:					same, the ratio of their
62. A body tal cool from 60 ⁰ (1) 40 minute	C to 30^0 C,	if room ter	np. is	20^{0} C :		fow much time it will take to 20 minute
63. AC voltagis: (1) 1.83						= 800 mH, peak value of current
64. Two charges is stationary a (1) $\frac{kq^2}{r^2}$	nd other is	rotated arou	nd, w	ork done	is on	n each other. If one of the charge e circle is :
65. Peak value	e of AC cur	rent is $4\sqrt{2}$, RMS	S current	is:	
(1) 2√2	(2) 8	(3) 4 v	' 2	(4) 4		
66. A monoate pressure will to (1) 32 times	he ·	compressed $\frac{40}{3}$ times				adiabatically ($r = 5/3$), the (4) 24 times
	,	3				(4) <u>24</u> times <u>5</u>
67. A condens the plates of c (1) Q constant (2) Q constant (3) Q increase (4) None	ondenser, that V and U of t V increase	hen correct decreases s U decreas	statem es	•	oved,	a dielectric plate is put between
68. The MI of circumference				⁄II wrt. A	and ax	is passing through its

58. Two condensers of c and 2c capacity are connected in parallel and these are charged

current is pas		s, force per un	nce between the wires is 1 m. If 1 amp. it length between the wires is: $0^{-7}(4)$ None
theory of gase			d absolute temp. T of an ideal gas as kineti
	elength in a gl	ass is 6000Å a	and refractive index is 1.5, the wavelength
of light is : (1) 12000 Å	(2) 4000 Å	(3) 9000 Å	(4) 6000 Å
If A is loaded The frequence	l with wax then y of B will be:	2 beats/sec. a	ear to each other produces 4 beats per second reproduced. If the frequency of A is 256 H (4) 250
	e to rotate a dip (2) – 2 PE		
	de may be used (2) os		mplifier (4) voltage regulator
line of Balme	gth of first line er series will be (2) 4860 Å	:	ries is 6561 Å then the wavelength of second (4) 2430 Å