POST GRADUATE COMMON ENTRANCE TEST - 2015

DATE & TIME	COURSE			SUBJECT		
08-08-2015 10.30 AM TO 12.30 PM	ME / M Offered	.Tech/ M.Arch / by VTU / UVCE /	Courses UBDTCE	ENVIRONMENTAL ENGINEERING		
MAXIMUM MARKS	TOTA	L DURATION MAX		IMUM TIME FOR ANSWERING		
100	150	MINUTES		120 MINUTES		
MENTION YOUR PGCET NO.		QUESTION B SERIAL NU		325059		
		VERSION CODE		A – 3		

DOs:

- Check whether the PGCET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- Ensure whether the circles corresponding to course and the specific branch have been shaded on the OMR answer sheet.
- This question booklet is issued to you by the invigilator after the 2nd bell i.e., after 10.25 am.
- 4. The serial number of this question booklet should be entered on the OMR answer sheet.
- The version code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 6. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED / SPOILED.
- 2. THE 3RD BELL RINGS AT 10.30 AM, TILL THEN;
 - Do not remove the seal / staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- This question booklet contains 75 (items) questions and each question will have one statement and four answers. (Four different options / responses.)
- After the 3rd Bell is rung at 10.30 am, remove the seal / staple stapled on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 120 minutes:
 - Read each question (item) carefully.
 - Choose one correct answer from out of the four available responses (options / choices) given
 under each question / item. In case you feel that there is more than one correct response, mark
 the response which you consider the best. In any case, choose only one response for each item.
 - Completely darken / shade the relevant circle with a blue or black ink ballpoint pen against the question number on the OMR answer sheet.
- 4. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- After the last bell is rung at 12.30 pm, stop marking on the OMR answer sheet and affix your left hand thumb impression on the OMR answer sheet as per the instructions.
- 6. Hand over the **OMR answer sheet** to the room invigilator as it is.
- 7. After separating the top sheet (KEA copy), the invigilator will return the bottom sheet replica (candidate's copy) to you to carry home for self evaluation.
- 8. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.
- Only Non-programmable calculators are allowed.

MARKS	DISTRIBUTION

PART - 1 50 QUESTIONS CARRY ONE MARK EACH (1 TO 50)

PART - 2 25 QUESTIONS CARRY TWO MARKS EACH (51 - 75)

ENVIRONMENTAL ENGINEERING PART - 1

(Each question carries one mark)

 $(50 \times 1 = 50)$

1.	The	oxygen	content	in	air	is	approximately:
----	-----	--------	---------	----	-----	----	----------------

- a. 20 %
- b. 60 %
- c. 40 %
- d. 78 %

2. In the Gaussian Dispersion model for air pollution,
$$\sigma_2$$
 refers to:

- a. VC
- b. Vertical dispersion coefficient
- c. MMD
- d. Horizontal dispersion coefficient

In Bleaching powder, the amount of chlorine present is:

- a. 33 %
- b. 45 %
- c. 70 %
- d. 100 %

4. The color of water is measured on a:

- a. Platinum Cobalt scale
- b. Turbidity scale
- c. CaCo₃ scale
- d. NaNo₃ scale

Point of zero charge' (PZC) of carbon or carbon like sludge can be determined using:

- a. KNO₃ or CaCO₃
- b. KNO3 or NaCl
- NaCl or CaCO₃
- d. Na₂SO₄ or CuSO₄

- 6. Presence of high algal content in water indicates that the water is:
 - a. Alkaline
- b. Acidic
- c. Neutral
- d. Soft

7. TON refers to:

- a. Typical Oxygen Normal
- b. Threshold Odor number
- c. Tonnes of Cane
- d. Tons of Nitrates

8. In a large lake, during stratification, the middle portion is called:

- a. Abyss
- b. Hypolimnion
- c. Epilimnion
- d. Thermocline

9. Schmutzdecke layer is formed in:

- a. RSF
- b. SSF 2
- c. SSF
- d. SDB

Back washing water used in RSF accounts for about:

- a. 4%
- b. 16 %
- c. 12 %
- d. 25 %

11. Normal soil contains oxygen by:

- a. 80 %
- b. 60 %
- c. 100 %
- d. 25 %

12.		le preparing rapid EIA, the radius of nence of the project is:	17.	In ac	dsorption processes (batch), the first ste
	a.	7 - 10 km		a.	Film diffusion
		30 - 50 km	is: a. Film diffusion b. Intraparticle diffusion c. Pore diffusion d. All the above less are matched a contain: 18. The BIS drinking water qual drinking water falls in the real a. 0.5 - 1 mg/L b. 1.0 - 1.5 mg/L c. 2.0 - 2.5 mg/L d. None of the above	Intraparticle diffusion	
		15 - 20 km		c.	Pore diffusion
	d.	70 - 80 km		d.	All the above
13.		n attributes and activities are matched 'Matrix' sheet, the cells contain:	18	The	BIS drinking water quality standards fo
in a. b. c. d. 13. W or a. b. c. d. 14. V a. b. c. d.	a.	Environment			king water falls in the range of:
	b.	Importance only		a.	0.5 - 1 mg/L
	c.	Magnitude only		b.	1.0 - 1.5 mg/L
	d.	Magnitude & Importance		c.	2.0 - 2.5 mg/L
14.	VFC	ds means:		d.	None of the above
	a.	Valued Fluoride Goods			
	b.	Value Function Graphs	19.		causes color problems even at lov
	c.	Volatile Fluorosis Grids		conc	entrations of:
	d.	None of the above		a.	6 mg/L
				b.	> 8 mg/L
15.	NDS	means:		c.	≥ 0.3 mg/L

15.	NDS	means:
-----	-----	--------

- a. Negative Declaration Statement
- Nitrogen Dissolved Sulfur b.
- c. Nickel Doped Sulfur
- d. None of the above

16. The best season data that must be presented in REIA is:

- Rainy a.
- b. Winter
- Summer c.
- d. Fall spring

- 20. In the bacterial growth curve, the second growth phase is the:
 - Lag phase a.

d.

Arithmetic phase b.

 $\leq 2 \text{ mg/L}$

- Stationary phase c.
- d. Log phase

- 21. The design period for water supply projects are for a period of:
 - 10 years a.
 - b. 15 - 20 years
 - 30 40 years c.
 - d. 20 - 30 years
- Imhoff cone is used to determine: 22.
 - Volatile solids a.
 - b. Suspended solids
 - Settleable solids c.
 - d. Total solids
- 23. The solids content in water is determined by:
 - AAS a.
 - b. Gravimetric method
 - **HPLC** c.
 - d. Titrimetric method
- 24. In Population projection forecasting, geometric increase represents:
- $\frac{dp}{dt} \propto P$ b. $\frac{dp}{dt} = K$
- $\frac{dp}{dt} = P$ d. $q\frac{dp}{dt} = t$

- 25. For effective coagulation to occur in water or waste water treatment, the most important water quality parameter is:
 - Alkalinity
 - Chlorides b.
 - Total hardness c.
 - d. Iron
- 26. In an ecosystem, pyramids of energy is:
 - a. Multi directional
 - Unidirectional h
 - c. Inverted
 - None of the above
- 27. Aeration of water is carried out for the removal of:
 - Odor a.
 - Color b.
 - Fluoride c.
 - d. Hardness
- 28. In electrochemical coagulation, for medium strength waste waters, only two steps occur in sludge settling, they are:
 - a. 2 and 3
 - b. 1 and 4
 - 1 and 2 c.
 - d. 1 and 3
- 29. In venturiflumes, the throat width size is:
 - a. 100 cm
- 30 cm
- 40 cm
- 20 cm

1 1 0		he end of a Gri nally placed is:	t cł	namber, the device	35.	In water distribution systems, the minimum pressure head to be maintained should be:					
	a.	Proportional w	eir			a.	10 - 12 m				
	b.	Venturimeter				b.	6 - 8 m				
	c.	Turbine				c.	12 - 15 m				
	d.	Pump				d.	8 -10 m				
31. V a b c d	Wind	d speeds are mea	asur	ed using an:	36.	Corr	osion in sewer pipes	is n	nainly because		
	a.	Anemometer				a.	CO_2	b.	H ₂ S		
	b.	Barometer				c.	O_2	d.	$C_6H_{12}O_6$		
	c.	HVAS					_				
	d.	Impinger tube			37.	37. A velocity cap in Intakes is designed not allow:					
20	mı.	The common COV				a.	Whales	b.	Sharks		
ŧ	The	acronym CSI me				c.	Fish	d.	Turtles		
	a.	Centrifugal set									
	b.	Central suspen	ded	index	38.	The conversion factor from MLD to m^3/s is:					
	c.	Carbon sludge	inde	x		a.	1.1343	b.	0.11569		
a b c d d d d d d d d d d d d d d d d d d	d.	None of the abo	ve			c.	1.9234	d.	0.011574		
						C.	1.5201	ч.	0.011071		
33.	Mottling of teeth enamel disease is related to the parameter:					Now a days, 'n' value in the velocicalculations for sewer design is taken as:					
	a.	Fluoride	b.	Nitrates		a.	0.023	b.	0.103		
	c.	Arsenic	d.	Phosphorus		c.	0.013	d.	0.333		
34.	The p		for	nitrate in drinking	40.		waste waters become pD:BOD ratios are:	non-	bio degradable		
	a.	≤ 45 mg/L	b.	≥ 60 mg/L		a.	≥ 3.0	b.	≤2.2		

5

c.

d. 1500 mg/L

300 mg/L

c.

d. 7

41.	III IE	ect, aeration is req	uneu s	strictly for:	40.		material that se		
	a.	Ground water				sub	strate is called:		
	b.	Surface water			ł	a.	Sloughing		
	c.	Salt water			-	b.	Terminator		
	d.	All the above				c.	Maceration		
42.	mos	le designing sedin t important param neter is:			47.	d. The	Communition e most updated ve	rsion of	the ASP today
	a.	S.O.R	b.	H.R.T		is:	most apaated ve	101011 01	the fiel today
	c.	S.V.I	d.	D.O		a.	Lagoon	b.	UASB
						c.	RBC	d.	MBR
43.		valve which allows ater in a pipe is ca		lirectional flow		V	#		ir
	a.	Sluice valve			48.		best method to dis tes today is:	pose off	municipal solid
	b.	Reflux valve				a.	Burning in oper	ı	
	c.	Gate valve				b.	Plasma		
	d.	Air valve				c.	SLF		
44.	In a at:	water tank, over flo	ow pipe	es are provided		d.	Complete Incin	eration	
	a.	FSL	b.	MWL	49.		ir pollution, 'Pasqı	ıill Stab	ility Class' is of
	c.	Floor level	d.	NWL		type	s:		
						a.	B - F	b.	A - C
45.		norm, a rural pop 1000 persons, sho				c.	A - D	d.	A - F
	a.	BW (HP)	*		50.	Whe	n the ELR meet	s the D	ALR, one can
	b.	MWS				obta			
	c.	PWS				a.	Pressure	b.	Wind speed
	d.	None of the above	e			c.	MMD	d.	VC

(Each question carries two marks)

- 51. In designing settling tanks, of circular type, the vertical settling velocity should be:
 - a. $> v_n$
- $< v_n$
- c. $= v_n$
- None of the above d.
- 52. In 'Value functions' the X-axis and Y-axis are:
 - a. **Environmental Quality and Parameter**
 - b. Parameter and Environmental quality
 - Subjectivity and TON c.
 - d. None of the above
- 53. The best style to design and lay a waste water treatment facility is:
 - Linear style a.
 - b. Campus style
 - Random style c.
 - d. Compact style
- 54. Soluble colloidal particles that remain after electrochemical coagulation of waste water can be easily removed by:
 - a. Adding alum
 - b. Adding Sulfur
 - c. Adding Polymer aid
 - d. Adding salts of iron

- 55. The pivot of the rotating arm of the Trickling filter unit is placed on:
 - Solid carbon
 - b. Liquid nitrogen
 - Liquid oxygen C.
 - d. Mercury liquid
- 56. Recent advances in membranes show that the material used for membranes is:
 - **PVDF** a.
 - b. Ceramic
 - **PVC** c.
 - d. Clay
- 57 In sludge settling in a column, Type IV refers to:
 - a. Compression settling
 - b. Hindered settling
 - c. Zone settling
 - d. All of the above
- 58. All waste water (domestic/industrial) treatment facilities must be designed for:
 - Average flow a.
 - b. Maximum flow
 - Minimum flow C.
 - d. All the above

59		te water coming out from kitchens and hing clothes are referred to:	63.		comprehensive EIA, the radius of nence of the project on the environment
	a.	Grey water		a.	100 km
	b.	Black water		b.	25 km
	c.	Pink water		c.	10 km
	d.	Dark water		d.	500 km
60.		sanitary land fills, the layer of material ed at the bottom of it is made of:	64.	To o	btain EIUs, in EIA, one has to multiply by:
	a.	Rubber		a.	PIUs
	b.	Polymer		b.	mg/L
	c.	Metal grids		c.	%
	d.	Bentonite clay		d.	meq/L
61.	Solid	l waste Abhiyan in India focusses on:	65.		rever Igneous rocks are encountered,
	a.	Reactive approach			can expect:
	b.	Continuous reactive approach		a.	Hard water
	c.	Proactive approach		b.	Soft water
	d.	P2		c.	Brackish water
				d.	Cold water
62.		air pollution episodes have occurred in season:	66. H		s aluminum in water causes a disease
	a.	Summer		a.	Leprosy
	b.	Rainy		b.	Inflammation
	c.	Winter		c.	Dysentry
	d.	All the above		d.	Dementia

67.	In L	angmuir Isothe	erm, q_e r	efers to:	12		exceed:	engtn	to wid	ith rauo sn	oui
	a.	X/M	b.	M/X		a.	11 .		b.	15	
	c.	X/n	d.	n/X		c.	45		d.	20	
68.	In w	ater mains, air	valves are	e provided at:							
	a.	Near pumps			73.		chloride conte) for
	b.	Pipe junction	s			pub	lic supplies she	ould n	ot exc	ceed:	
	c.	Highest point	s			a.	100 mg/L	b.	150	mg/L	
	d.	Low points				c.	250 mg/L	d.	290	mg/L	
69.	is:	last phase the	populatior	growth curve	74.		most impor				
	a.	Lag phase					tment are:	_			
	b.	Survival phas			P	a.	Chlorides an	d Alka	alinity	7	
	c.	Endogenous p	hase			b.	Alkalinity an	d Sulj	phate	s	
	d.	Log phase				c.	Sulphates an	ıd Nitr	rates		
70.	Schi	stosomiasis is	caused by			d.	Nitrates and	Phosp	hates	3	
	a.	Bacteria									
	b.	Crustaceans									
	c.	Virus			75.		e beginning of ement, the kir				ater
	d.	Protozoans				a.	Wave corrosi	on			
71. (one of	the following is	s an algici	de:		b.	Pitting corros	sion			
	a.	Alum	b. CuS			c.	Edge corrosio	n			
	c.	Al_2SO_3	d. NaNe	o_3		d.	None of the a	bove			

