POST GRADUATE COMMON ENTRANCE TEST - 2015

DATE O TIME		COLLDGE		CURTECT		
DATE & TIME		COURSE		SUBJECT		
08-08-2015	ME / M.	Tech/ M.Arch /	Courses	POLYMER SCIENCE &		
10.30 AM TO 12.30 PM	Offered	by VTU / UVCE /	UBDTCE	TECHNOLOGY		
MAXIMUM MARKS	TOTAL DURATION MAX		MAX	MUM TIME FOR ANSWERING		
100	150	MINUTES		120 MINUTES		
MENTION YOUR PGC	ET NO.	QUESTION B SERIAL NU		335009		
		VERSION	CODE	A - 1		

DOs:

- Check whether the PGCET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- Ensure whether the circles corresponding to course and the specific branch have been shaded on the OMR answer sheet.
- 3. This question booklet is issued to you by the invigilator after the 2nd bell i.e., after 10.25 am.
- 4. The serial number of this question booklet should be entered on the OMR answer sheet.
- 5. The version code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 6. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED / SPOILED.
- THE 3RD BELL RINGS AT 10.30 AM, TILL THEN;
 - Do not remove the seal / staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 75 (items) questions and each question will have one statement and four answers. (Four different options / responses.)
- After the 3rd Bell is rung at 10.30 am, remove the seal / staple stapled on the right hand side of this
 question booklet and check that this booklet does not have any unprinted or torn or missing pages or
 items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the
 OMR answer sheet.
- 3. During the subsequent 120 minutes:
 - Read each question (item) carefully.
 - Choose one correct answer from out of the four available responses (options / choices) given
 under each question / item. In case you feel that there is more than one correct response, mark
 the response which you consider the best. In any case, choose only one response for each item.
 - Completely darken / shade the relevant circle with a blue or black ink ballpoint pen against the question number on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 5. After the **last bell is rung at 12.30 pm**, stop marking on the OMR answer sheet and affix your left hand thumb impression on the OMR answer sheet as per the instructions.
- 6. Hand over the **OMR answer sheet** to the room invigilator as it is.
- 7. After separating the top sheet (KEA copy), the invigilator will return the bottom sheet replica (candidate's copy) to you to carry home for self evaluation.
- 8. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.
- 9. Only Non-programmable calculators are allowed.

MARKS DISTRIBUTION								
	PART - 1	50 QUESTIONS CARRY ONE MARK EACH (1 TO 50)						
	PART - 2	25 QUESTIONS CARRY TWO MARKS EACH (51 - 75)						

POLYMER SCIENCE & TECHNOLOGY PART - 1

(Each question carries one mark)

 $(50 \times 1 = 50)$

- 1. In a closed system, there is
 - a. No change of energy of the system
 - Exchange of energy with surroundings and not mass
 - c. Exchange of mass and energy with surroundings
 - d. Exchange of mass with surroundings
- 2. A State function is
 - a. Internal energy
 - b. Free energy
 - c. Pressure
 - d. All of these
- 3. During adiabatic expansion of gas
 - a. Pressure remains constant
 - b. Pressure is increased
 - c. Temperature is decreased
 - d. None of these
- 4. Work of expansion is given by
 - a. $P\Delta V$
- b. ΔPV
- c. $V\Delta P$
- d. None of these
- 5. In an isobaric process
 - a. dp = 0
- b. dq = 0
- c. dv = 0
- $d \cdot dT = 0$

- According to first law of thermodynamics, the total energy of an isolated system
 - a. Increases
 - b. Decreases
 - c. Remains constant
 - d. None of these
- 7. $C_p C_v = R$ is valid for
 - a. Ideal gases
 - b. Real gases
 - c. All gases
 - d. Nobel gases
- 8. Solid and liquid phases of a substance are in equilibrium at
 - a. Melting point
 - b. Freezing point
 - c. Both (a) & (b)
 - d. None of these
- 9. In the reaction, $N_2 + O_2 \rightleftharpoons 2NO$, Increasing pressure will result in
 - a. Shifting of equilibrium towards right
 - b. Shifting the equilibrium towards left
 - c. No change in equilibrium condition
 - d. None of these

Space For Rough Work

10.		an ideal gas, enthalpy with rise in sure	15.		ixture of acetone - chloroform can barated by
	a.	Increases		a.	Steam distillation
	b.	Decreases		b.	Azeotropic distillation
	c.	Is independent		c.	Flash distillation
	d.	None of these		d.	None of these
11.	The	value of gas constant R is	1,5	m	
	a.	$1.987 \text{ cal/g mole } ^{0}/C$	16.	Tern	n used in diffusion theory is
	b.	1.987 BTU/lb mole ⁰ R		a.	Velocity
	c.	Both (a) & (b)		b.	Transfer rate across a plane
	d.	None of these		c.	Flux & concentration
				d.	All of these
12.		energy change of mixing two liquid stances is a function of			
	a.	Concentration of the constituents only	17.	Mas	s transfer is a result of
	b.	Quantities of the constituents only		a.	Concentration difference
	c.	Temperature only		b.	Diffusion
	d.	All of these		c.	Both (a) & (b)
				d.	None of these
13.	Tran calle	sfer of heat by molecular collision is			
	a.	Conduction	18.		distillation operation, the reflux ratio
	b.	Convection		a.	Zero & one
	c.	Radiation		b.	Zero & infinity
	d.	All of these			2122
				c.	Minimum & infinity
14.		is transferred by conduction, convection radiation in		d.	One & two
	a.	Boiler furnaces	19.	Polye	ethylene is a polymer obtained by the
	b	Melting of ice		-	merization of

Space For Rough Work

Ethane

Isoprene

a.

b. Ethylene

d. Methylene

Condensation of steam in condenser

c.

d.

None of these

20.	LDPE	E is a Linear	- Ъ.	Branched	25.		usion machine o	can	be	used for	the
	c.	Crosslinked	d.	Thermoset		a.	Thermoplastic		b.	Thermose	et
	· ·	Crossinikeu	u.	Thermoset		c.	Elastomers		d.	All of the	se
21.	polyi			f polymerization of on polymerization	26.	Rota	tional molding				
	a.	Temperature ar	nd ti	me of process		a.	Is also called rote	o mo	oldii	ng	
	b.	Quantity of init	iato	r		b.	Is used to make	plas	stic 1	hollow arti	cles
	c.	Intensity of agi	tato	r		c.	Has moulds usua	lly r	nade	e of alumin	ium
	d.	All of these				d.	All of these				
	7225										
22.	Ther	moset is			27.		xtrusion machine	canı	not 1	be used for	the
	a.	Phenol-formald	ehyd	de resin		prod	uction of				
	b.	Epoxy				a.	Pipes	b.	Bu	ckets	
	c.	Melamine-form	alde	hyde resin		c.	Filaments	d.	All	of these	
	d.	All of these									
23.		trusion blow mol the type of	ding	, the barrel heaters	28.		pose of preheamoforming is to re				in
	a.	Band heater				a.	Heating time				
	b.	Cast heater				b.	Forming time				
	c.	Either (a) or (b)				c.	Clamping time				
	d.	None of these				d.	All of these				
24.	Blow	molding is a pro	cess	to produce	29.	Styr	ene can be polyme	erize	d by	y	
	a.	Hollow articles				a.	Bulk polymeriza	tion			
	b.	Bottles				b.	Solution polyme	riza	tion		
	c.	Both (a) & (b)				c.	Suspension poly	me	rizat	tion	
	d.	None of these				d.	All of these				

Space For Rough Work

30.	Tere	phthalic acid is	a mo	onomer for	36.	Thermal decomposition of AIBN yields			3N yields
	a.	Nylon	b.	Polyacetal	5	a.	со	b.	CO_2
	c.	PET	d.	PC		c.	N_2	d.	NO
31.		n pressure pro- lyst in the manu		uses oxygen as ure of	37.	Exa	ample for free radical	le for free radical initiator	
	a.	LDPE	b.	HDPE		a.	Benzoyl peroxide		
	c.	LLDPE	d.	XLPE		b.	NaOH		
32.	The	polymer SBS rep	orese	ents		c.	TiCl ₄		
	a.	Block copolyme	er			d.	Nitrobenzene		
	b.	Graft copolyme	r						
	c.	Blend			38.	Ol-	-tt t - tt		
	d.	Random copolymer				Chain carrier in cationic polymerization is			
						a.	Carbonium ion		
33.	Living polymers can be produced by					b.	Carbanion		*
	a.	Anionic polymerization				c.	Hydroxyl group		
	b.	Cationic polym	eriza	ation		d.	None of these		
	c.	Addition polymerization				a.	None of these		
	d.	Free radical po	lym	erization	i)				
					39.	EPDM is an example for			
34.		ch of the followi mers?	ng a	are water resistive		a.	Blend		
	a.	PTFE	b.	HDPE		b.	Alloy		
	c.	Iso PP	d.	All of these		c.	Copolymer		
35.	Pear	l or bead type po	lyme	erization is nothing		d.	None of these		
	a.	Addition polym	eriza	ition	40	Whi	ab of the following	io o	n overmule for
	b.	Suspension po	lyme	erization	40.		ch of the following eropolymer?	is a	n example for
	c.	Solution polym	eriza	ation		a.	PVC	b.	PET
	d.	Condensation 1	polyr	nerization		c.	PMMA	d.	PP
-								ě	Talkan A Talka
				Space For	Kough	ı wor	K		

41.	Polyr	ner is nothing but	46.	Polyu	arethane can be produced by
	a.	Oligomer		a.	Ring opening polymerization
	b.	Macromolecule		b.	Polyaddition polymerization
	c.	Subpolymer		c.	Condensation polymerization
	d.	None of these		d.	Solution polymerization
			47.	Later	x polymer product is obtained from
42.	PP is	an example for		a.	Solution polymerization
	a.	Tacticity		b.	Bulk polymerization
	b.	Geometric isomerism		c.	Emulsion polymerization
	c.	Conformation		d.	Melt polymerization
	d.	All of these			
			48.	Capr	rolactum is the monomer for
43.	Reau	nirements for geometric isomerisms is		a.	PU
	a.	Asymmetric carbon atom		b.	Nylon 6
	b.	Symmetric carbon atom		c.	PC
		Carbon-carbon double bond		d.	Nylon 66
	c.		j K		
	d.	Carbon-carbon single bond	49.	Stereoregular polymers are produced	
				a.	Co-ordination polymerization
44.	Cope	olymer is a		b.	Vinyl polymerization
	a.	Physical mixture of polymers		c.	Condensation polymerization
	b.	Chemical mixtures of polymers		d.	None of these
	C.	Both (a) & (b)			
	d.	None of these	50.	Kine is ec	ematic similarity is obtained when there
				a.	Liquid motion
45.	Read	ction between diol and diol yields		b.	Solid suspension

Space For Rough Work

c.

d.

Mass transfer

Surface behaviour

Polyester

None of these

Polyether

Polyol

a.

c.

51. Advantages of emulsion polymerization is 55. Which of the following statements is true for addition polymerization? Control of temperature & viscosity a. Elemental composition of reactant and a. High molecular weight obtained b. product are same Homogeneity of the polymer b. Is a single step polymerization c. c. Polymerization occurs without All of these d. by products All of these d. 52. Nylon is a Thermoplastic polymer a. 56. Which of the following belongs to thermoplastic, thermoset and elastomer Condensed polymer b. family? c. Polyamide PP, epoxy and PF a. d. All of these b. PMMA, PP and NR PP, epoxy and NR c. d. PP, NR and epoxy Vulcanization of rubber is carried out to 53. increase Strength a. 57. Which of the following contain nitrogen element? b. Weight of polymer Nylon b. PAN a. Oxidation resistance c. NBR d. All of these c. d. All of these 58. Example for ring opening polymerization Which of the following statement is true with 54. reference to thermoset? I. **Epoxy** II. Caprolactum They cannot be remoldable/recyclable a. III. Vinyl chloride IV. Styrene b. They do not possess T_m and not a. Both (I) & (II) soluble Both (I) & (III) b.

Space For Rough Work

c. d. Both (I) & (IV)

Both (II) & (III)

c.

d.

Both (a) & (b)

None of these

59.	Example	for	symmetrical	polymer	pair
-----	---------	-----	-------------	---------	------

- a. PS & HDPE
- b. HDPE & PTFE
- c. PP & PTFE
- d. None of these

60. Barometers are used to measure

- a. Flow rate
- b. Temperature
- c. Viscosity
- d. Pressure

- a. 2 & 4
- b. 4 & 4
- c. 2 & 2
- d. 4 & 2

- a. Get minimum difference in melt temperature
- b. Permit materials and colors to be blended
- c. Deliver a more uniform melt to the mold
- d. All of these

63. Advantage of blow molding as compared to injection molding is

- a. Possibility of re-entrant curves (irregular)
- b. Low stresses and favourable cost factor
- c. Possibility of variable wall thickness
- d. All of these

- 64. In an injection molded article, the shrinkage cannot be minimized by
 - a. Decreasing temperature
 - b. Increasing pressure
 - c. A longer cycle
 - d. Keeping the mold cool

65. HDPE water storage tank is an example of

- a. Extrusion process
- b. Injection molding
- c. Rotational molding
- d. Thermoforming

- a. m^2/s
- b. m/s
- c. $mole/(m^2. s)$ d.
 - . None of these

67. 1 g mol of ammonia contains

- a. 6.02×10^{23} atoms of hydrogen
- b. 3 g mol of hydrogen
- c. 2×10^{23} molecules of ammonia
- d. None of these

Space For Rough Work

- 68. For an ideal gas the relation between the enthalpy change (ΔH) and internal energy
 - (ΔE) at constant temperature is given by
 - a. $\Delta H = \Delta E + PV$
 - b. $\Delta H = \Delta E + \Delta n$, RT
 - c. $\Delta G = \Delta H + T \Delta S$
 - d. $\Delta H = \Delta E + P \Delta T$

where P,V,T & S are pressure, volume, temperature and entropy respectively and n is the number of moles.

- 69. In Vander Wall's equation $P = \frac{RT}{v-b} \frac{a}{v^2}$ the constants a and b are zero for
 - a. Ideal gases
 - b. Real gases
 - c. Liquid
 - d. None of these
- 70. In p v diagram of isotherms as given by equation of state, for the isotherm $T > T_c$, with increasing v, pressure decreases
 - a. Rapidly
- b. Monotonically
- c. Slowly
- d. None of these
- 71. Intensive properties are the properties whose magnitude
 - a. Depends on the quantity of material involved
 - Does not depend on the quantity of material involved
 - c. Depends on the path followed
 - d. None of these

- 72. If the degree of polymerization of polybutadiene is 1000, the molecular weight of polybutadiene is
 - a. 5400
- b. 54000
- c. 10800
- d. 42000
- 73. A high Reynolds number
 - a. Power number tends to be independent of impeller Reynolds number
 - b. Power number is dependent on the geometry of the impeller
 - c. Both (a) & (b)
 - d. All of these
- 74. Laminar flow region exists during agitation, when Reynold's number is
 - a. Less than 10
 - b. More than 50
 - c. More than 1000
 - d. More than 2500
- 75. Newton's law of Viscosity states that
 - a. Shear stress is directly proportional to the velocity
 - b. Shear stress is directly proportional to velocity gradient
 - Shear stress is directly proportional to shear strain
 - d. Shear stress is directly proportional to the viscosity

Space For Rough Work

ALT