(A) 3.	(B) 5.	(C) 12.	(D) 14.
		nial such that $P(1)$ = then the other root	
(A) $\frac{8}{5}$.	(B) 1.	(C) 0.	(D) $\frac{4}{5}$.
		$(5,3,2)^t$ where Z^t is the following matrix	
$ \begin{array}{c} (A) & \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} $	$ \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} $	(B)	$ \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) $
$ (C) \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} $	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$	(D)	$ \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) $
		e at the instance who	
(A) $\frac{1}{4\pi}$.	(B) $\frac{1}{4}$.	(C) $\frac{1}{\pi}$.	(D) 1.
lines $x = -\frac{\pi}{2}$ at If the area of t	and $x = \frac{\pi}{2}$ is separa	s, the curve $y = \cos x$ ated into two parts be $\leq x \leq k$ is three time qual to	by the line $x = k$.
(A) $\frac{\pi}{6}$.	(B) $\frac{\pi}{4}$.	(C) $\frac{\pi}{3}$.	(D) $\arcsin(1/4)$.

1. A set A has 17 elements and another set B has 38 elements. The number of elements of the set $A \cup B$ is 52. Then the number of elements

in the set A - B is

- 6. Let f and g be two real-valued differentiable functions defined for all real x. Assume that f'(x) > g'(x) for all x. Then the graph of y = f(x) and the graph of y = g(x)
 - (A) intersect exactly once.
 - (B) intersect no more than once.
 - (C) do not intersect.
 - (D) have a common tangent at each point of intersection.
- 7. Consider the function

$$F(x) = \begin{cases} -1, & \text{if } x \le 0\\ 1, & \text{if } x > 0. \end{cases}$$

Then the function $g(x) = \int_{-2}^{x} F(t)dt$

- (A) is discontinuous for some value of x.
- (B) is continuous everywhere, but not differentiable at some point.
- (C) is differentiable everywhere and g'(x) = F(x).
- (D) is differentiable everywhere but $g'(x) \neq F(x)$.
- 8. Let A be the set of all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying

$$f(x) - f(y) = x - y$$
; $x, y \in \mathbb{R}$.

Then

- (A) $A = \{ f(x) = mx + c \mid m, c \in \mathbb{R} \}.$
- (B) $A = \{ f(x) = x + c \mid c \in \mathbb{R} \}.$
- (C) $A = \{f(x) = mx \mid m > 0\}.$
- (D) $A = \{f(x) = mx + c \mid m = \pm 1, c > 0\}.$
- 9. Two runners, A and B, are running along a circular track in opposite directions. They start from a common point P. If A completes 3 laps in every 5 minutes and B completes 5 laps in every 3 minutes, then they will meet again at P, for the first time, exactly after
 - (A) 3 minutes. (B) 5 minutes. (C) 8 minutes. (D) 15 minutes.

	(B) $x + \frac{20}{x} + \sqrt{x^2 + \frac{400}{x^2}}$.					
	(C) $\sqrt{x^2 + \frac{400}{x^2}}$.					
	(D) $x + \frac{20}{x} + \sqrt{x^2}$	$+\frac{100}{x^2}$.				
11.	. If $3x^2 + 2xy + y^2 = 2$, then the value of $\frac{dy}{dx}$ at $x = 1$ is					
	(A) -2. (B) 0.	(C) 4 .	(D) not defined.		
12.	2. The sum of the series $7 + 77 + 777 + \cdots$ up to 10 terms, is					
	(A) $\frac{700}{81}(10^9 - 1)$.		(B) $\frac{350}{9}(10^9 - 1)$.			
	(C) $\frac{350}{9}(10^7 - 1)$			(D) $\frac{700}{9}(10^7 - 1)$.		
13.	13. A ray of light passing through the point $(1, 2)$ is reflected on the x-axis at a point P and the reflected ray passes through the point $(5, 3)$. The distance of P from the origin is					
	(A) $\frac{13}{5}$.	(B) $\frac{5}{13}$.	(C) $\frac{7}{13}$.	(D) $\frac{19}{13}$.		
14.	4. Suppose the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of $(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}})^n$ is $\sqrt{6} : 1$. Then the value of n is					
	(A) 9.	(B) 11.	(C) 10.	(D) 7.		
15.	5. The number of real roots of the equation $(x-17)^3 + (x-23)^3 = 0$ is					
	(A) 3.	(B) 2.	(C) 1.	(D) 0.		
16.	16. Let F be the point $(3, -2)$ and G be the point $(3, k)$. How many different squares can be formed with FG as a side if k can take any value in $\{5, 6,, 40\}$?					
	(A) 35	(B) 36	(C) 70	(D) 72		
	3					

10. A garden is to be constructed in the shape of a right angled triangle. It must have an area of 10 square metres. If the length of one of the sides containing the right angle is x metres, then its perimeter (in metre) is

given by

(A) $\sqrt{x^2 + \frac{100}{x^2}}$.

17	The interval in what tonically increasing		$x) = \log_{10}(x^2 - 2x - $	3) is mono-
	(A) $(-\infty, -1)$.	(B) $(-\infty, 1)$.	(C) $(1,\infty)$.	(D) $(3, \infty)$.
18	_		with base, perpendence ectively. Then $(a^3 +$	
	(A) is always grea(B) is always less	_		
	(C) is always equ (D) can be greated a, b and c .		an c^3 , depending on	the value of
19	Consider the func		$+\cos x$ for all real x	. Then the
	(A) 1.	(B) 2.	(C) $\sqrt{2}$.	(D) $\frac{\sqrt{3}+1}{2}$.
20	Let $f(x) = x - a $ real constants. Th		, where a and b are	two distinct
	(A) differentiable		1 7	
		at every points exc s at $x = a$ and $x = b$	ept x = a and x = b. $b.$	•
		able for all x between		
21	. The minimum value	$ext{ue of } f(x,y) = x^2 + $	$2y^2 - 4x + 6y + 10,$	$x, y \in \mathbb{R}$, is
	(A) $\frac{3}{2}$.	(B) 10.	(C) $-\frac{3}{2}$.	(D) $\frac{37}{2}$.
22	Let F be a function	on defined by $F(x)$:	$=\int_0^x \frac{t^2}{(1+t^3)^2} dt$. Then	$\lim_{x \to \infty} F(x)$
	(A) is $\frac{1}{3}$.	B) is $\frac{2}{3}$. (C)	is 1. (D) doe	es not exist.
23	The balls are bein	g counted one by or	e are red and the res ne to find how many ng, 49 out of first 5	are red and
			nd to be red. It turns Then the maximum	
	(A) 150.	(B) 210.	(C) 300.	(D) 420.
		4		

24. The values of k for which the system of equations

$$x + y + z = kx$$

$$x + y + z = ky$$

$$x + y + z = kz$$

has non-trivial solutions are

- (A) 0, 3.

- (B) 0, -3. (C) -3, 3. (D) -3, 3, 0.
- 25. The equation $x^2 + 4xy + y^2 2x + 2y + 6 = 0$ represents
 - (A) pair of intersecting straight lines.
 - (B) circle.
 - (C) ellipse.
 - (D) hyperbola.
- 26. The sum of two numbers is 20. The numbers for which the product of one and the cube of the other is maximum are
 - (A) 5, 15.
- (B) 10, 10.
- (C) 4, 16.
- (D) 8, 12.

- 27. The equation $x^4 + 2x^2 + 3x 1 = 0$ has
 - (A) one real positive, one real negative and two complex roots.
 - (B) two real positive and two complex roots.
 - (C) two real negative and two complex roots.
 - (D) no real roots.
- 28. Let M be a non-zero $n \times n$ matrix with real entries such that $M^t = -M$, where M^t denotes the transpose of M. Which of the following statements is true?
 - (A) The rank of M < n implies n is even.
 - (B) The rank of M < n implies n is odd.
 - (C) The rank of M = n implies n is even.
 - (D) The rank of M = n implies n is odd.

29.	Let $F: \mathbb{R} \to \mathbb{R}$ be an even function and is differentiable 4 times.	Let
	F_n be its Maclaurin series upto n^{th} order for $n=1,2,3,4$. Then	

- (A) F_1, F_2, F_3, F_4 are all even.
- (B) F_1, F_3 are even, but not necessarily F_2, F_4 .
- (C) F_2, F_4 are even, but not necessarily F_1, F_3 .
- (D) F_1 must be odd.
- 30. Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by f(x) = |x-1| + |x-2| + |x-3|. The value of $\int_1^3 f(x) dx$ is
 - (A) 5. (B) $\frac{5}{2}$. (C) 7. (D) $\frac{7}{2}$.