1. The init	$\lim_{x\to 0} \frac{\mathrm{c}}{-}$	$\frac{\cos x - \sec x}{x^2(x+1)}$	
is equal to		,	
(A) 0.	(B) −1.	(C) $\frac{1}{2}$.	(D) 1.
2. The locus of a	a point having equal	distances from	
	3x - 2y = 5 a	nd 3x + 2y = 5, is	5
(A) one circle(B) only one(C) two poss(D) none of the	straight line. ible straight lines.		
3. The bounded	area formed by $\left x\right $ -	+ y = 2018 is	
(A) 4×2018^2	(B) 3×2018	(C) 2×2018	8^2 . (D) 2018^2 .
4. The point on	the curve $4y + 2x^2$	=0 nearest to $(0,-$	$(\frac{1}{2})$ is
(A) $(0,0)$.	(B) $(\frac{1}{2}, -\frac{1}{8})$.	(C) $(1, -\frac{1}{2})$.	(D) none of these.
5. If $Z_n = \cos \frac{\pi}{2^n}$	$\frac{\pi}{n} + i\sin\frac{\pi}{2^n}$, then the	e product $Z_1Z_2Z_3\cdots$	\cdot to ∞ is equal to
(A) −1.	(B) 0.	(C) 1.	(D) e.
6. The values of	\boldsymbol{x} which satisfy the	inequality	
	$ x^2 - 9x + 1 $	$4 > x^2 - 9x + 14$	
		(C) $x < 7$.	
		(C) 2×2^n .	

1. The limit

10.	The function $f(x) =$	$x^3 - 6x^2 + 24x$, $x \in$	$\in R$, attains	
	` '			
11.	The area of the bound the line $y=4$ is	ded region enclosed by (B) $\frac{3}{2}$.		
	(A) $\frac{31}{6}$.	(D) $\frac{1}{2}$.	(C) $\frac{1}{2}$.	(D) $\frac{33}{2}$.
12.	The value of the integral	gral		
		$\int_0^2 \sqrt{y^2 + 1 - 2y} dy$	$\stackrel{-}{y} dy$	
	is			
	(A) 0.	(B) $\frac{1}{2}$.	(C) 1.	(D) -1 .
13.	The sum of the seque	ence $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \cdots$ up	to the n^{th} term is	
	(A) $n+1+2^{-n}$.		(B) $n-1$	$+2^{-n}$.
	(C) $n+1-2^{-n}$.		(D) $n-1-$	-2^{-n} .
14.	The area (in square the curves $y^2=x$ and		the first quadrant bo	unded by
	(A) $\frac{1}{6}$.	(B) $\frac{1}{3}$.	(C) $\frac{2}{3}$.	(D) 1.

8. If $3p^2=5p+2$ and $3q^2=5q+2,$ for $p\neq q,$ then the quadratic equation whose roots are p^2 and q^2 is

(A) $9x^2 + 13x + 4 = 0$. (B) $9x^2 - 13x + 4 = 0$.

(C) $9x^2 - 37x + 4 = 0$. (D) $9x^2 + 37x + 4 = 0$.

 $iz^3 + z^2 - z + i = 0$, where $i = \sqrt{-1}$,

(D) 1.

(B) $\sqrt{2}$. (C) 2.

9. If z is a complex number such that

then the value of $\left|z\right|$ is

(A) $\frac{1}{2}$.

	act integers in the co	o arithmetic progressi llection of first 500 te	
(A) 903.	(B) 902.	(C) 901.	(D) 900.
16. Let $f:\mathbb{Z} \to \mathbb{Z}$ b	e the function define	ed by	
	$f(n) = \begin{cases} \frac{n}{2}, \\ \frac{n-1}{2}, \end{cases}$	$\begin{array}{l} \text{if } n \text{ is even} \\ , \text{if } n \text{ is odd.} \end{array}$	
Then			
(A) f is bijective	ve.		
(B) f is surject	ive, but not injective	2.	
(C) f is injective	ve, but not surjective	2.	
(D) none of the	above.		

and (0,12) is the minimum among the sums of distances from all other elements of S. The number of such points P in the set S is

17. Let $S = \{(x,y) : x,y \in N\}$. Consider all points $P \in S$ having the property that sum of distances from the point P to the points (8,0)

18. The value of $1-\cos 20^\circ$ is approximately equal to

- $\begin{array}{ll} \text{(A)} & \frac{\pi^2}{2\times 9^2}. \\ \text{(B)} & \frac{\pi^3}{6\times 9^3}. \\ \text{(C)} & \frac{20^2}{2!} \frac{20^4}{4!}. \\ \text{(D)} & \frac{\pi}{9} \frac{\pi^3}{6\times 9^3}. \end{array}$

19. Let

$$f(x) = \begin{cases} x \sin \frac{\pi}{x}, & \text{if } x > 0\\ 0, & \text{if } x = 0. \end{cases}$$

Then f'(x) vanishes

- (A) at no point in (0,1).
- (B) exactly at one point in (0,1).
- (C) at finitely many points in (0,1).
- (D) at infinitely many points in (0,1).

(A) abc.	(B) $efgh$.	(C) 1.	(D) 0.
	be two non-empty set V be two non-emphents is true?		
(B) $f^{-1}(U \cup V)$	$f(V) = f^{-1}(U) \cap f^{-1}(V)$ is a proper subset $f(V)$ is a proper subset $f(V)$ and $f(V)$ is a proper subset $f(V)$ and $f(V)$ is a proper subset $f(V)$ and $f(V)$ is a proper subset $f(V)$ is a	of $f^{-1}(U) \cup f^{-1}(V)$	
23. The greatest variable $(x \sin \theta + \frac{\cos \theta}{x})$	alue of the term ind 12 is	ependent of x in th	ne expansion of
(A) $^{12}C_6$.	(B) $\frac{^{12}C_6}{2}$.	(C) $\frac{^{12}C_6}{32}$.	(D) $\frac{^{12}C_6}{64}$.
	the height and radius hen its surface area v		-
(A) 1:1.	(B) 2:1.	(C) 3:1.	(D) 8:1.

(B) (-1,0]. (C) $(1,\infty)$.

 $\begin{vmatrix} a-3b & a+b & a+5b & e \\ a-2b & a+2b & a+6b & f \\ a-b & a+3b & a+7b & g \\ a & a+4b & a+8b & h \end{vmatrix}$

(D) [0,1).

has a unique solution for all values of k lying in

20. The system of equations

(A) (-1,1).

is

21. The value of the determinant

	(B) if and only if X and Y are similar to each oth (C) if X and Y are orthogonal.	er.
	$(D) \ \ if \ and \ only \ if \ X \ and \ Y \ commute.$	
27.	There are 25 books of which there are two pairs of b at random on a shelf satisfying the following conditional pair remain together, but no two books from different the number of such arrangements is	ions: books from each
	(A) $21! \times 24$.	(B) 22! × 44.
	(C) $22! \times 88$.	(D) $23! \times 84$.
28.	Let x,y,z be three distinct positive real numbers su Which one of the following statements necessarily h	
	(A) $xyz > \frac{1}{27}$. (B) $xy + yz + zx > \frac{1}{3}$. (C) $(1-x)(1-y)(1-z) > \frac{8}{27}$. (D) None of the above.	
29.	Let A be an $m \times n$ $(m \le n)$ matrix and B be a non-zero determinant. Which one of the following hold?	
	$\begin{array}{l} {\rm (A) \ rank of } AB = {\rm rank of } A. \\ {\rm (B) \ rank of } AB < {\rm rank of } A. \end{array}$	
	(C) rank of $AB < m$.	
	(D) None of the above.	

25. Consider a chess board of 8×8 squares. Then the number of ways 8 pawns can be arranged so that no two pawns are in the same line (row as

26. Let X and Y be two symmetric matrices of the same order. Then, the

(D) none of these.

(B) 8. (C) $8 \times 8!$.

well as column) is

 $\mathsf{matrix}\ XY\ \mathsf{is\ also\ symmetric}$

(A) if the inverses of both X and Y exist.

(A) 1.

30	In a competition, a school awarded medals to students in different cate-
50.	•
	gories: 36 medals in dance, 12 medals in drama, and 18 medals in music.
	If these medals went to a total of 45 students and only 4 students got
	medals in all three categories, the number of students who received medals
	in exactly two categories is

(A) 25. (B) 13. (C) 12. (D) 10.