Sample Question 2019

TEST CODE: QEA

1. Answer the following questions.

(a) Let $f:[0,1]\to [0,1]$ be a twice differentiable convex function. Define

$$g(x) = [f(x)]^2 \ \forall \ x \in [0, 1].$$

Is g convex? Justify your answer. [4 marks]

(b) Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined as

$$f(x) = \frac{|x|}{2x} \ \forall \ x \in \mathbb{R} \setminus \{0\}.$$

Can f(0) be defined in a way such that f is continuous at 0? Justify your answer. [4 marks]

2. Let $f:[0,1] \to [0,1]$ be a strictly increasing function with f(0)=0 and f(1)=1. Define a function $g:[0,1] \to [0,1]$ such that g(f(x))=x for all $x \in [0,1]$.

- (a) Prove that $g'(y) = \frac{1}{f'(g(y))}$. [4 marks]
- (b) Is g strictly increasing? [2 marks]
- (c) If $f(x) = x^2$ for all $x \in [0, 1]$, then find $g'(\frac{1}{2})$. [2 marks]

3. Three courses, A, B, and C are offered to a class of 100 students. The number of students in each course is: A is taken by 50 students, B by 80 students, and C by 40 students. Out of all the students, 20 have taken all the three courses. Every student has taken at least one course.

- (a) How many students have taken exactly two courses? [4 marks]
- (b) How many students have taken exactly one course? [4 marks]

4. Suppose A is any 2×2 matrix with a_{ij} denoting the entry of i-th row and j-th column. Suppose $a_{11}a_{22} = a_{12}a_{21}$.

(a) Prove that one of the eigenvalues of A is zero. [4 marks]

(b) Suppose A is the following matrix. Find all its eigenvalues. [4 marks]

$$A = \left(\begin{array}{cc} 2 & \sqrt{2} \\ \sqrt{2} & 1 \end{array}\right)$$

5. Consider the 3×3 matrix X shown below, where x, α are real numbers.

$$X = \left(\begin{array}{ccc} x & \alpha & 1\\ x & x & 1\\ 6 & 0 & 1 \end{array}\right)$$

- (a) Show that if $x = \alpha$ then X does not have full rank. [2 marks]
- (b) Show that if x = 6 then X does not have full rank. [2 marks]
- (c) Show that if X does not have full rank, then either x=6 or $x=\alpha$. [4 marks]
- 6. Answer the following questions.
 - (a) Consider the following optimization problem:

$$\max_{x \in [0,\beta]} x(1-x),$$

where $\beta \in [0, 1]$. Let x^* be an optimal solution of the above optimization problem. For what values of β will we have $x^* = \beta$? [6 marks]

- (b) A firm is producing two products a and b. The market price (per unit) of a and b are respectively 3 and 2. The firm has resources to produce only 10 units of a and b together. Also, the quantity of a produced cannot exceed double the quantity of b produced. What is the revenue-maximizing production plan (i.e., how many units of a and b) of the firm? [6 marks]
- 7. Consider two random variables: (1) rain level (r), which can be either HIGH or LOW and (2) school attendance (s), which can be either 0 or 1. The joint probability distribution of (r, s) is as follows:

Prob
$$(HIGH,0) = 0.2, Prob (LOW,0) = 0.3,$$

Prob (HIGH,1) =
$$0.35$$
, Prob (LOW,1) = 0.15 .

- (a) Find the marginal distribution of rain level. [4 marks]
- (b) Find the conditional probability of HIGH rain given that attendance is 0. [4 marks]
- (c) Are the two random variables independent? Justify your answer. [4 marks]
- 8. A slip of paper is given to person A, who marks it with either (+) or (-). The probability of her writing (+) is $\frac{1}{3}$. Then, the slip is passed sequentially to B, C, and D. Each of them either changes the sign on the slip with probability $\frac{2}{3}$ or leaves it as it is with probability $\frac{1}{3}$.

- (a) Compute the probability that the final sign is (+) if A wrote (+). [3 marks]
- (b) Compute the probability that the final sign is (+) if A wrote (-). [3 marks]
- (c) Compute the probability that A wrote (+) if the final sign is (+). [6 marks]
- 9. There are n houses on a street numbered h_1, \ldots, h_n . Each house can either be painted BLUE or RED.
 - (a) How many ways can the houses h_1, \ldots, h_n be painted? [2 marks]
 - (b) Suppose $n \geq 4$ and the houses are situated on n points on a circle. There is an additional constraint on painting the houses: exactly two houses need to be painted BLUE and they cannot be next to each other. How many ways can the houses h_1, \ldots, h_n be painted under this new constraint? [5 marks]
 - (c) How will your answer to the previous question change if the houses are located on n points on a line. [5 marks]
- 10. There are n biased coins C_1, C_2, \ldots, C_n . They are tossed sequentially coin C_1 is tossed first, followed by C_2, \ldots , finally C_n . The probability of heads in coin C_k for each $k \in \{1, \ldots, n\}$ is $\frac{1}{2k+1}$. For every k, let P_k be the probability that we have odd number of heads after coins C_1, \ldots, C_k are tossed.
 - (a) Find P_1, P_2, P_3 . [3 marks]
 - (b) For every $k \in \{1, ..., n\}$, write P_k as a function of P_{k-1} . [5 marks]
 - (c) What is the value of P_n ? [4 marks]