CET (UG) - 2018

Important: Please consult your Admit Card/Roll No. slip before filling your Roll Number on the Test Booklet and Answer Sheet.

Roll No.	(In Figure)	(In Words)	
O.M.R. Ans	wer Sheet Serial No.		
Signature of Candidate:		Signature of Invigilator:	

Subject: Chemistry

Time: 70 Minutes

Number of Questions: 60 Maximum Marks: 120

DO NOT OPEN THE SEAL ON THE BOOKLET UNTIL ASKED TO DO SO.

INSTRUCTIONS:

- 1. Write your Roll No. on the Questions Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.
- Enter the Question Booklet Serial No. on the OMR Answer Sheet. Darken the corresponding bubbles with Black Ball Point/Black Gel Pen.
- 3. Do not make any identification mark on the Answer Sheet or Question Booklet.
- 4. Please check that this Question Booklet contains 60 Questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of Test.
- 5. Each question has four alternative answer (A,B,C,D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point/Black Gel Pen.
- If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Booklet. No marks will be deducted in such cases.
- Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the question given in the Question
- 8. Negative marking will be adopted for evaluation i.e. 1/4th of the marks of the question will be deducted for each wrong answer. A wrong answer means incorrect answer or wrong filling of bubble.
- For calculations, use of simple log tables is permitted. Borrowing of log tables and any other material is not
- For rough work only the blank sheet at the end of the Question Booklet be used.
- 11. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e. not following the instructions completely, shall be of the candidate only.
- 12. After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on duty.
- 13. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so would be expelled from the examination.
- 14. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistant or found giving or receiving assistant or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
- 15. Tele-communication equipment such as Cellular phones, pager, wireless, scanner, camera or any electronic/digital gadget etc., is not permitted inside the examination hall. Use of calculators is not allowed
- 16. The candidates will not be allowed to leave the Examination Hall/Room before the expiry of the allotted time.

		(1	048)			
1.	Which of the foll	owing statements con	tradicts Dalton's ator	mic theory?		
	A) A chemical change involves rearrangement of atoms. B) Atoms form ions by gaining or loosing electrons. C) The number of atoms may change when a substance changes from solid state to gaseous state. D) The total number of atoms during a chemical change remains unaltered.					
2.	Which of the folionic?	lowing compounds o	f elements in group l	IV is expected to be most		
	A) PbCl ₂	B) PbCl ₄	C) CCl ₄	D) SiCl ₄		
3.		among the following isostructural compounds, identify the compound, which has ne highest lattice energy:				
	A) LiF	B) LiCl	C) NaCl	D) MgO		
4.	To which of the following species octet rule is applicable:					
	A) BrF5	B) SF ₆	C)IF ₇	D) CO		
5.	The species which	the central atom us	es sp ² hybrid orbitals	in its bonding is:		
	A) PH ₃	B) NH ₃	C) CH ₃ ⁺	D) SbH ₃		
6.	Which of the follo	owing molecular spec	eies has unpaired elec	tron(s)?		
	A) N ₂	B) F ₂	C) O ₂	D) O ₂ ² ·		
7.	The correct set of	The correct set of quantum numbers for the unpaired electron of chlorine atom is:				
	A) 2 1 0	B) 2 1 1	C) 3 1 1	D) 3 0 0		
8.	The radius of wh hydrogen atom:	ich of the following o	orbit is same as that o	of the first Bohr's orbit of		
	A) $He^{+}(n=2)$	B) Li^{2+} (n = 2)	C) Li^{2+} (n = 3)	D) Be^{3+} (n = 2)		
9.	Which of the follo	owing species have be	and order of 3?			
	1. N ₂	2. NO 3. NO	4. C ₂ ² ·			
	A) 1 and 2	B) 1,2, and 3	C) 1,2 and 4	D) 1,3 and 4		
10.	The correct arra		N ₂ H ₄ , NH ₂ OH and C	CH ₃ NH ₂ in the order of		
	The Control of the Co	A) NH ₃ <n<sub>2H₄< NH₂OH < CH₃NH₂ B) NH₂OH < N₂H₄<nh<sub>3< CH₃NH₂ C) CH₃NH₂<nh<sub>3<n<sub>2H₄< NH₂OH D) N₂H₄< NH₂OH < CH₃NH₂<nh<sub>3</nh<sub></n<sub></nh<sub></nh<sub></n<sub>				
11.	The number of u	npaired electron in N	iCl4 ²⁻ (tetrahedral) ar	e:		
	A) Two	B) Zero	C) One	D) Four		

12. Which of the fo	ollowing bond angles is n	ot correct for the mo	olecule?
A) BF ₃ is 120°	B) IF ₅ are 120°,90°	C) SF ₆ is 90°	D) NH ₃ is 109.5°
13. Among the follo	owing which one of the fo	ollowing has the high	hest paramagnetism:
A) [Cr(H ₂ O) ₆] ³⁺	B) [Fe(H ₂ O) ₆] ²⁺	C) [Cu(H ₂ O) ₆] ²⁺	D) [Zn(H ₂ O) ₆] ^{2*}
14. Which of the fo	llowing FCC structure c	ontains cations in al	ternate tetrahedral voids?
A) NaCl	B) ZnS	C) Na ₂ O	D) CaF ₂
unit cell. If all			the corners of the cubic es are removed, then the
A) AB ₂	B) A ₂ B	C) A ₄ B ₃	D) A ₃ B ₄
16. Which has max	imum number of atoms	of oxygen?	
A) 10 ml H ₂ O (<i>I</i> C) 12 gm O ₃ (g)		B) 0.1 mole of V ₂ 0 D) 12.044 ×10 ²² m	
17. Vitamin B ₁₂ is t	he coordination compou	nd of:	
A) Mg	B) Fe	C) Co	D) Zn
18. In which of the	following reactions, nitro	ogen is not reduced?	
A) NO ₂ →NO ₂	B) NO ₃ →NO	C) $NO_3 \rightarrow NH_4^+$	D) $NH_4^+ \rightarrow N_2$
19. Borax is used in	preparing:		
A) Soda glass	B) Pyrex glass	C) Opal glass	D) Portland cement
20. The expected sp	oin only magnetic momen	nt for [Fe(CN)6]4- an	d [FeF ₆] ³⁻ respectively are:
A) 1.73 and 1.73 C) 0.0 and 1.73 l		B) 1.73 and 5.92 B D) 0.0 and 5.92 B.	
21. The IUPAC nar	me for the formula given	below is:	
	Br	↑ OH	
A) 6-Bromo-4-e	thyl-2-heptanol	B) 2-Bromo-4-eth	yl-6-heptanol
C) 4-Ethyl-2-bromo-2-heptanol		D) 4-Ethyl-6-bromo-2-heptanol	
22. Which of the fo	llowing species is not a n	ucleophilic reagent?	
A) BF ₃	B) NH ₃	C) CH ₃ OH	D) CH ₃ SH
23. How many mon dimethyl propa		sible in photochemi	cal chlorination of 2, 2 -
A) 1	B) 3	C) 2	D) 4

24. Which of the fo anti Markovinko	llowing alkenes react w ov's product?	ith HBr in the prese	nce of peroxide to give	
A) 3-Hexene	B) 1-Butene	C) 2-Butene	D) 2,3-Dimethyl-2-butene	
25. Reaction of 1-bu	tene with hypochlorous	acid results in forma	tion of:	
A) 1-Chloro-2-bi	utanol	B) 2-Chloro-1-buta	nol	
C) 2,2-Dichloro-1- butanol		D) 1-Chloro-3-butanol		
26. Hydration of 1-b	outyne in presence of H2	SO ₄ & HgSO ₄ results	in formation of:	
A) 2-Butanone	B) 2-Butanol	C) Butane-1,2-diol	D) Butanal	
27. Major product o	of bromination of n- pro	pylbenzene in presen	nce of light is:	
		Br		
A	Br Br	B)		
	^^o		/	
C		(D) Br		
28. The major prod Conc. sulphuric	uct formed by the react acid gives:		propene in presence of	
A) n-Propyl benz	ene	B) iso-Propyl benze	ne	
C) Ethyl benzene	to a security to maintain	D) o-Xylene		
29. Which of the f powder?	ollowing compound giv	ves chloroform on l	neating with bleaching	
A) Ethyl alcohol	B) Methyl alcohol	C) n-Propyl alcoho	D) tertButyl alcohol	
30. Which of the fo	llowing reagent can be ide?	used to distinguish	between chlorobenzene	
A) Br ₂ / CCl ₄	B) KMnO ₄	C) Alcoholic AgNO	D ₃ D) Alcoholic KCN	
31. The best reagent	to achieve the following	transformation is:		
	ÇH ₃ H ₃	СНОН		
	-	On on		
	January III	~		
(A) BH ₃ /H	⊝ ₂ O ₂ / OH B) I. Hg	(OAc) ₂ H ₂ O-THF /	NaBH ₄	
C) H ₂ O / H	D) KMn0	04		

32. Which of the fo	ollowing ether cannot be p	orepared by Williams	on's ether synthesis?	
A) Methyl phenyl ether		B) Diethyl ether		
C) tertButylmethyl ether		D) Diphenyl ether		
33. Reaction of ph formation of:	enol with phthalic anhy	dride in presence of	conc. H ₂ SO ₄ results in	
A) Phenylsalicy	vlate B) Diphenyl ether	C) Phenolphthalein	D) Salicylic acid	
34. The reagent wi	th which both acetaldehy	de and acetone reacts	is:	
A) Fehling's re	agent B) Tollen's reagent	C) Hinsberg reagent	D) I ₂ / NaOH	
35. Which of the fo	ollowing compound does	not give benzoic acid	on hydrolysis?	
A) C ₆ H ₅ CN	B) C ₆ H ₅ COCI	C) C ₆ H ₅ COOCH ₃	D) C ₆ H ₅ CH ₂ Cl	
36. Reduction of n	itrobenzene with Zn -NH	4CI results in formation	on of:	
A) Aniline		B) Nitrosobenzene		
C) Azobenzene		D) Phenylhydroxyl a	mine	
37. The acid-base sulphanilic acid	indicator methylorang l with:	e is prepared by c	oupling of diazotized	
A) 2-Naphthol		B) N-Methyaniline		
C) N,N-Dimethy	yl aniline	D) Aniline		
38. The hormone w	which regulates the metab	oolism of glucose is:		
A) Cartisone	B) Insulin	C) Progesterone	D) Oxytocine	
39. Natural rubber	is a polymer of:			
A) Ethylene	B) Styrene	C) Isoprene	D) Vinyl chloride	
40. 2-Acetoxy benz	coic acid is used as:			
A) Antiseptic	B) Antipyretic	C) Antidepressent	D) Antimalerial	
41. For a second or	rder reaction, the correct	plot of t _{1/2} vs 1/ [A] ₀ is	· Name and A	
	11 3/11			
	t _{1/2}	tua		
	A)	(B)		
		0.000		
	·1/ [A] ₀	1/[A] ₀		
	1			
	tiatua	Di		
	0	D)		

1/[A]₀

(4)

1/[A]₀

42. Sodium metal What is radius	crystallizes in body c of the sodium atom(in	entred cubic lattice A)?	with cell edge a = 4.29 Å.		
A) 1.85	B) 18.6	C) 1.5	D) equal to cell edge ler		
3. The molar con molar ionic co	ductivity at infinite di nducti vity of Al ³⁺ ion g	lution of Al ₂ (SO ₄) ₃ is that λ^0 (SO ₄ ²⁻) =	s 858 S cm ² moΓ ¹ . Calculate 160 S cm ² moΓ ¹ :		
A) 160 S cm ² n	noΓ ¹ B) 189 S cm ² mo	l ⁻¹ C) 698 S cm ² r	nol-1 D) 1018 S cm ² mol-1		
4. Which of the correct in Van	following given pair of der Waals equations?	funits of a and b	(van der Waals constant) is		
A) atm L2 mol	2 and L mol-1	B) atm L mol ⁻²	B) atm L mol ⁻² and L		
C) atm L2 mol		D) atmL ⁻² mol	² and L		
5. Match the pro	cess given in column I	with its description	in column II:		
Col	umn I		Column II		
1. Isobaric pro			p) process in which driving force is very		
2. Isothermal	process		different than opposing force q) process in which no heat enters or		
3. Adibatic pro	ocess	leaves the	leaves the system		
to a contract the first		r) process in which temperature of the			
4. Irreversible process		system remain constant s) A process in which pressure of the			
	-	system is k			
Correct match	is:				
A) 1-p, 2-q, 3-	-r, 4- s	B) 1-r, 2-s, 3-c	ı, 4-p		
C) 1-s, 2-r, 3-q	, 4-p	D) 1- s, 2-p 3-r	, 4-q		
6. Which of the f	ollowing has highest p	H?			
A) 0.1 M NaO	H B) 0.01 M NaO	H C) 0.1 M HCI	D) 0.1 M CH ₃ COOH		
7. Raoult's Law	describes:	redem dutt men			
A) How the pa B) How the pa C) How the pa	rtial pressure of a solver rtial pressure of solvent rtial pressure of a gas va- lubility of a gas varies w	vapor varies with so ries with temperatur	lute concentration		
8. In a galvanie c	ell, which one of the fo	llowing statements	is not correct:		
A) Anode is negatively charged B) Cathode is positively charged		positively charged			
and the same of the same of	akes place at anode	D) Reduction t	D) Reduction takes place at cathode		
9. For a first ord M is found to	ler reaction A→ B, the be 2 x 10 ⁻⁵ mol L ⁻¹ s ⁻¹ . The	e reaction rate at re he half-life period of	actant concentration of 0.01 f the reaction is (in seconds):		
A) 34.5	B) 2	C) 300	D) 346.5		
	TOWN YOU'V				

50. Arrhemus equation	13.		
A) $k = A e^{-E\alpha/RT}$	B) $k = e^{-Ea/RT}$	C) $k = Ae^{\varepsilon a/RT}$	D) $k = e^{Ee \cdot RT}$
51. Isotonic solution ha	ve equal:		
A) Vapour pressure	B) Osmotic pressure	C) Boiling point	D) Freezing point
52. The unit cell with d	imensions $\alpha = \beta = \gamma =$	90^0 , $a = b \neq c$ is:	
A) Cubic	B) Triclinic	C) Hexagonal	D) Tetragonal
53. Soap essentially for	m a colloidal solution	in water and remove	the greasy matter by:
A) Coagulation	B) Emulsification	C) Adsorption	D) Absorption
54. Cassiterite is an ore	of:		
A) Pb	B) Zn	C) Sn	D) Mn
55. The presence of experiment:	electric charge on t	he colloidal particle	is indicated by the
A) Osmosis	B) Electrolysis	C) Dialysis	D) Electrophoresis
56. Which of the follow	ing is not extensive p	roperty?	
A) Surface tension	B) Heat capacity	C) Internal energy	D) Entropy
57. Free energy change	is related to enthalpy	and entropy change	s as:
A) $\Delta G + T\Delta S = \Delta H$		B) $\Delta G = T\Delta S - \Delta H$	
C) $\Delta G = \Delta S - T\Delta H$		D) $\Delta G + \Delta H = -T\Delta S$	No. of Late
58. A system absorbs surroundings. Calc	701 J of heat and ulate the change in in	d does work equiva ternal energy for the	lent to 394 J on its process:
A) 307 J	B) 1095 J	C) 0	D) 394
59. A, B and C are idea rate of diffusion of	al gases. Their molecu these gases follow the	ılar masses are 2, 4 a order:	nd 28 respectively. The
A) C > A > B	B) C > B > A	C) C = A = B	D) A > B> C
60. In AgBr, there can	occur:		
A) Only Schottky de	efect	B) Only Frenkel def	ect
C) Both Schottky an	d Frenkel defect	D) Metal deficient o	nly

X-X-X