

SIR PADAMPAT SINGHANIA UNIVERSITY **UDAIPUR**

Sample Question Paper for M.Tech. (Mechanical Engineering) SPSAT'18

INSTRUCTIONS

The test is 60 minutes	long and consists of	of 40 multiple choice	questions (MCO) add	ing up to 40 marks

Th	e test	is 60 minutes long a	nd co	nsists of 40 mul	tiple c	choice questions (MCQ) adding up to 40 marks.				
1.	An i	An ideal gas as compared to a real gas at very high pressure occupies								
	(a)	More volume			(b)	Less volume				
	(c)	Same volume			(d)	Unpredictable behavior				
2.	Wor	k done in an adiabatio	e proc	ess between a g	iven p	pair of end states depends on				
	(a)	The end states only			(b)	Particular adiabatic process				
	(c)	The value of index	n		(d)	the value of heat transferred				
3.	If va	alue of n is infinitely	large	in a poly tropic	proces	ss PV" = C, then the process is known as consta	nt			
	(a) Y	Volume	(b)	Pressure	(c)	Temperature (d) Enthalpy				
4. The index of compression n tends to reach ratio of						of specific heats y when				
	(a)	Flow is uniform and	l stea	dy	(b)	Process is isentropic				
	(c)	Process is isotherma	al		(d)	Process is isentropic and specific heat does no	t			
	char	nge with temperature								
5.	Wha	at does symbol 'D' im	ply ir	work study						
	(a)	Inspection	(b)	Transport	(c)	Delay temporary storage (d) Permanent storage	ge			
6. The efficiency of Dieseil cycle with decrease in cut off						off				
	(a) I	ncreases			(b)	Decreases				
	(c) I	Remains unaffected			(d)	First increases and then decreases				
7. The ideal efficiency of a Brayton cycle without regeneration with increase ni pressure ratio										
(a) Increase		(b)	Decrease							
	(c) I	Remain unchanged			(d)	Increase/decrease depending on application				
8. LMTD in case of counter flow heat exchanger as compared-to parallel flow heat exchange						mpared-to parallel flow heat exchanger is				
	(a)	Higher	(b)	Lower	(c)	Same				
	(d)	Depends on the area	a of h	eat exchanger	(e)	Depends on temperature conditions.				
9.	In fi	ree convection heat tr	ansfe	r, Nusselt numb	er is fu	unction of				
	(a)	Grashoff no. & Rey	nold	no.	(b)	Grashoff no. & Prandtl no.				
	(c)	Prandtl no. & Reyno	old no).	(d)	Grashoff no., Prandtl no. & Reynold no.				

10.	In a	forced vortex, the ve	locity	of flow everywh	ere w	ithin the fluid is				
	(a) N	M aximum	(b)	Minimum	(c)	Zero	(d)	Non-zero finite		
11.	. A streamline is defined as the line									
	(a) P	arallel to central axis	s flow		(b) P	arallel to outer surf	face of	fpipe		
	(c) C	Of equal velocity in a	flow		(d) A	Along which the pre	essure	drop is uniform		
12.	Tota	l pressure on a 1 m2	gate in	nmersed vertical	ly at a	depth of 2 m below	w the	free water surface will		
	be									
	(a) 1	000 kg	(b)	4000 kg	(c)	2000 kg	(d)	8000 kg		
13.	The	centre of gravity of t	he vol	lume of the liquid	l disp	laced by an immers	sed bo	dy is called		
	(a)	Centre of gravity			(b)	Centre of pressure	2			
	(c)	Metacentre			(d)	Centre of buoyand	cy			
14.	Whi	ch one of the followi	ng sta	tements is not co	rrect					
	(a)	The tangent of the a	angle	of friction is equa	l to c	oefficient of frictio	n			
	(b)	The angle of repose	e is eq	ual to angle of fri	ction					
	(c)	The tangent of the a	angle	of repose is equal	to co	efficient of friction	1			
	(d)	The sine of the angl	le of r	epose is equal to	coeff	icient to friction				
15.	The	elasticity of various	materi	ials is controlled	by its					
	(a)	Ultimate tensile stre	ess		(b)	Proof stress				
	(c)	Stress at yield point			(d)	Stress at elastic lin	nit			
16.	16. Poisson's ratio is defined as the ratio of									
	(a) Longitudinal stress and longitudinal strain									
	(b)	Longitudinal stress	and la	iteral stress						
	(c)	Lateral stress and lo	ngitu	dinal stress						
	(d)	Lateral stress and la	iteral s	strain						
17.	A bo	oiler shell 200 cm dia	ımeter	and plate thickne	ess 1.	5 cm is subjected to	inter	nal pressure of 1.5		
	MN/	m2, then the hoop s	tress v	will be						
	(a)	30 MN/m2	(b)	50 MN/m2	(c)	100 MN/m2 (d) 2	00 MN/m2		
18.	The	torsional rigidity of a	a shaft	is expressed by	the					
	(a)	Maximum torque it	can tr	ansmit						
	(b)	Number of cycles it	unde	rgoes before failu	ire					
	(c)	Elastic limit upto w	hich it	t resists torsion, s	hear a	and bending stresse	S			
	(d) Torque required to produce a twist of one radian per unit length of shaft									

19.	19. Shear stress induced in a shaft subjected to torsion will be							
	(a)	(a) Maximum at periphery and zero at center		(b)	Maximum at center			
	(c)	Uniform throughout			(d)	Average value in	center	•
20.	The	velocity of any point	in m	echanism relative	to ar	ny other point on the	e mec	hanism on velocity
	poly	gon is represented by	the l	ine				
	(a)	Joining the correspo	nding	g points	(b)	Perpendicular to li	ine as	per (a)
	(c)	Not possible to deter	rmine	e with these data	(d)	At 45° to line as p	er (a)	
21.	Low	er pairs are those who	ich ha	ave				
	(a)	Point or line contact	betw	een the two elem	ents	when in motion		
	(b)	Surface contact bety	veen	the two elements	wher	n in motion		
	(c)	Elements of pairs no	t -he	ld together mecha	anical	ly		
	(d)	Two elements that p	ermi	t relative motion				
22.	. A p	antograph is a mecha	nism	with				
	(a) I	Lower pairs	(b) I	Higher pairs	(c) I	Rolling pairs (d) Tu	rning pairs
23.	Klei	n's construction is use	eful to	o determine				
	(a)	Velocity of various	parts		(b)	Acceleration of va	arious	parts
(c) Displacement of various parts			(d)	Angular acceleration of various parts				
24.	If p	= bearing pressure on	proj	ected bearing are	a, z =	absolute viscosity	of lub	oricant, and $N = $ speed of
	jour	nal, then the bearing	chara	cteristic number	is giv	en by		
	(a) Z	ZN/p	(b)	p/ZN	(c)	Z/pN	(d)	N/Zp
25.	. If tw	o springs are in paral	lel th	en their overall s	tiffne	ss will be		
	(a) F	Half	(b)	Same	(c)	Double	(d)	Unpredictable
26.	The	piston rod of a steam	engi	ne is usually com	nected	d to the cross head b	oy me	ans of
		Bolted joint	(b)	Knuckle joint	(c)	Cotter joint	(d)	Universal joint
27.	Babl	bit metal is a						
	(a)	Lead base alloy	(b)	Tin base alloy	(c)	Copper base alloy	(d)	(a) & (b)
28.	The	machinability of stee	l is ir	ncreased by				
	(a)	Silicon & sulphur			(b)	Phosphorous, lead		•
	(c)	Sulphur, graphite &			(d)	Phosphorous & al	umini	um
29. The hardness of steel increases if it contains								
	` ′	Austenite	(b)	Martensite	(c)	Pearlite	(d)	Cementite
30.	30. Pick up the correct statement. Dummy activity on a PERT/CPM chart means, it							
	(a)	Consumes time, but			(b)	Consumes resource		t no time
	(c)	Consumes neither ti	me no	or resources	(d)	Is a dangling even	ıt	

31.	31. Queing theory is associated with								
	(a)	Sales		(b)	Inspection time				
	(c)	Waiting time (d)	Production time	e (e) I	nventory				
	32.	In A-B-C control policy,	maximum attenti	ion is	given to				
	(a)	Those items which consu	ime money	(b)	Those items which	are n	ot readily available		
	(c)	Those items which are in	more demand	(d)	Those items which	cons	ume more money		
33.	33. Jigs and fixtures are								
	(a)	Machining tools (b)	Precision tools	(c)	Both (a) & (b) (d	d) N	lone of the above		
34.	Seve	eral machine tools can be	controlled by a ce	ntral (computer in				
	(a)	NC (Numerical Control)	machine tool						
	(b)	CNC (Computer Numer	ical Control) macl	hine to	ool				
	(c)	DNC (Direct Numerical	Control) machine	tool					
	(d)	CCNC (Central-Comput	er Numerical Cor	itrol)	machine tool				
35.	35. Which of the following materials is/are used for Electrical Discharge Machining (EDM) process?								
	(a)	Brass (b)	Copper	(c)	Graphite	(d)	All of the above		
36.	36. In which process the material is removed due to the action of abrasive grains?								
	(a)	Electro-Chemical Grindi	ng (ECG)	(b)	Ultrasonic Machin	ing (U	USM)		
	(c)	Laser Beam Machining	(LBM)	(d)	Electrical Discharg	ge Ma	achining (EDM)		
37.	Whi	ch type of chips form whi	le machining of b	rittle	materials?				
	(a)	Continuous chipsq		(b)	Discontinuous chip	ps			
	(c)	Built-up chips		(d)	All of the above w	ith so	ome proportion		
38.	Too	ol life in orthogonal cuttin	g is						
	(a)	More than the tool life in	oblique cutting	(b)	Less than the tool	life in	oblique cutting		
	(c)	Equal to the tool life in o	blique cutting	(d)	Cannot say				
39.	Calo	culate the power required	for machining of	a wor	k piece on lathe hav	ing e	fficiency of 85% on full		
	load, when tangential force required is 1200 N and cutting speed 195 m/min.								
	(a)	4.59 Kw (b)	275.29 W	(c)	3.315 kW	(d)	Insufficient data		
40.	The	process of bevelling sharp	ends of a work p	iece i	is called as	_			
	(a)	Knurling (b)	Grooving	(c)	Facing	(d)	Chamfering		