INSTRUCTIONS

1. This question paper contains all objective questions divided into three categories. Each question has four answer options given.
2. Category-I: Carry 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ¼ mark will be deducted.
3. Category-II: Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ mark will be deducted.
4. Category-III: Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and no incorrect answer is marked, then score = 2 x number of correct answers marked + actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is no negative marking for the same and zero mark will be awarded.
5. Questions must be answered on OMR sheet by darkening the appropriate bubble marked A, B, C, or D.
6. Use only Black/Blue ball point pen to mark the answer by complete filling up of the respective bubbles.
7. Mark the answers only in the space provided. Do not make any stray mark on the OMR.
8. Write question booklet number and your roll number carefully in the specified locations of the OMR. Also fill appropriate bubbles.
9. Write your name (in block letter), name of the examination centre and put your full signature in appropriate boxes in the OMR.
10. The OMR is liable to become invalid if there is any mistake in filling the correct bubbles for question booklet number/roll number or if there is any discrepancy in the name/signature of the candidate, name of the examination centre. The OMR may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be sole responsibility of candidate.
11. Candidates are not allowed to carry any written or printed material, calculator, pen, docu-pen, log table, wristwatch, any communication device like mobile phones etc. inside the examination hall. Any candidate found with such items will be reported against & his/her candidature will be summarily cancelled.
12. Rough work must be done on the question paper itself. Additional blank pages are given in the question paper for rough work.
13. Hand over the OMR to the invigilator before leaving the Examination Hall.
14. This paper contains questions in both English and Bengali. Necessary care and precaution were taken while framing the Bengali version. However, if any discrepancy(ies) is/are found between the two versions, the information provided in the English version will stand and will be treated as final.
1. If \(f : S \rightarrow \mathbb{R} \), where \(S \) is the set of all non-singular matrices of order 2 over \(\mathbb{R} \) and \(f \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \), then

(A) \(f \) is bijective mapping.
(B) \(f \) is one-one but not onto.
(C) \(f \) is onto but not one-one.
(D) \(f \) is neither one-one nor onto.

\(f \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \) কে সেখানে।

(A) \(f \) এক্ষেত্র উপরিচ্ছেদ
(B) \(f \) এক্ষেত্র চিহ্নিত কিন্তু উপরিচ্ছেদ নয়
(C) \(f \) উপরিচ্ছেদ কিন্তু এক্ষেত্র নয়
(D) \(f \) এক্ষেত্র-অ নয়, উপরিচ্ছেদও নয়

2. Let the relation \(\rho \) be defined on \(\mathbb{R} \) by \(a \rho b \) holds if and only if \(a - b \) is zero or irrational, then

(A) \(\rho \) is equivalence relation.
(B) \(\rho \) is reflexive & symmetric but is not transitive.
(C) \(\rho \) is reflexive and transitive but is not symmetric.
(D) \(\rho \) is reflexive only.

\(\rho \) এর মাধ্যমে সাংজ্ঞায়িক আছে যে \(a \rho b \) হবে যদি এবং কেবলমাত্র যদি \(a - b \) শূন্য বা অমূল্য হয়। সেখানে,

(A) \(\rho \) সমতুল্যতা সম্ভব
(B) \(\rho \) বস্ম সম্ভব ও প্রতিসম সম্ভব কিন্তু সংক্রমণ নয়
(C) \(\rho \) বস্ম ও সংক্রমণশীল সম্ভব কিন্তু প্রতিসম নয়
(D) \(\rho \) অমূল্যতা বস্ম সম্ভব
3. The unit vector in ZOX plane, making angles 45° and 60° respectively with $\vec{a} = 2\hat{i} + 2\hat{j} - \hat{k}$ and $\vec{b} = \hat{j} - \hat{k}$ is

(A) $\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j}$ (B) $\frac{1}{\sqrt{2}} \hat{i} - \frac{1}{\sqrt{2}} \hat{k}$ (C) $\frac{1}{\sqrt{2}} \hat{i} - \frac{1}{\sqrt{2}} \hat{j}$ (D) $\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{k}$

ZH তালে একক ভেক্টর যথাক্রমে 45° ও 60° কোন উৎপন্ন করে \vec{a} ও \vec{b} এর সঙ্গে যেখানে $\vec{a} = 2\hat{i} + 2\hat{j} - \hat{k}$ এবং $\vec{b} = \hat{j} - \hat{k}$. সেক্ষেত্রে উভয় একক ভেক্টরটি হবে

(A) $\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j}$ (B) $\frac{1}{\sqrt{2}} \hat{i} - \frac{1}{\sqrt{2}} \hat{k}$ (C) $\frac{1}{\sqrt{2}} \hat{i} - \frac{1}{\sqrt{2}} \hat{j}$ (D) $\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{k}$

4. Four persons A, B, C and D throw an unbiased die, turn by turn, in succession till one gets an even number and win the game. What is the probability that A wins if A begins?

(A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{7}{12}$ (D) $\frac{8}{15}$

A, B, C ও D চারজনের একটি পার্শ্বপরিবর্তী হজ্জা পরপর নিঃশেষ করতে এবং যে প্রথম জোড় সংখ্যা নিঃশেষ করতে সে জিতবে, যদি A প্রথম নিঃশেষ করে তবে তার জেতার স্থাননা হবে:

(A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{7}{12}$ (D) $\frac{8}{15}$

5. A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire to have more than 50% chance of hitting it at least once, is

(A) 5 (B) 7 (C) 9 (D) 11

এক বৃহৎ চালকের লক্ষ্য আঘাত করার সম্ভাবনা 10%। লক্ষ্য আঘাত করার আঘাত করার সম্ভাবনা 50% এর বেশি হওয়ার জন্য কমপক্ষে যুদ্ধ চলচ্চিত্র হবে তার সম্ভাব্য হল:

(A) 5 (B) 7 (C) 9 (D) 11
6. \(\cos (2x + 7) = a(2 - \sin x) \) can have a real solution for

(A) all real values of \(a \) \hspace{1cm} (B) \(a \in [2, 6] \)

(C) \(a \in (-\infty, 2) \setminus \{0\} \) \hspace{1cm} (D) \(a \in (0, \infty) \)

\[\cos (2x + 7) = a(2 - \sin x) \] -এর বহিঃসমাধান ধারায়

(A) \(a \)-এর সকল বাস্তব মানের জন্য \hspace{1cm} (B) \(a \in [2, 6] \)-এর জন্য

(C) \(a \in (-\infty, 2) \setminus \{0\} \)-এর জন্য \hspace{1cm} (D) \(a \in (0, \infty) \)-এর জন্য

7. The differential equation of the family of curves \(y = e^x (A \cos x + B \sin x) \) where \(A, B \) are arbitrary constants is

(A) \(\frac{d^2y}{dx^2} - 9x = 13 \) \hspace{1cm} (B) \(\frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0 \)

(C) \(\frac{d^2y}{dx^2} + 3y = 4 \) \hspace{1cm} (D) \(\left(\frac{dy}{dx} \right)^2 + \frac{dy}{dx} - xy = 0 \)

বর্ণরেখা-পরিবার \(y = e^x (A \cos x + B \sin x) \) (\(A, B \) মূল্যায়ন ব্যতিক্রমে) এর অবকল সমীকরণ হবে

(A) \(\frac{d^2y}{dx^2} - 9x = 13 \) \hspace{1cm} (B) \(\frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0 \)

(C) \(\frac{d^2y}{dx^2} + 3y = 4 \) \hspace{1cm} (D) \(\left(\frac{dy}{dx} \right)^2 + \frac{dy}{dx} - xy = 0 \)

8. The equation \(r \cos \left(\theta - \frac{\pi}{3} \right) = 2 \) represents

(A) a circle \hspace{1cm} (B) a parabola \hspace{1cm} (C) an ellipse \hspace{1cm} (D) a straight line

\(r \cos \left(\theta - \frac{\pi}{3} \right) = 2 \) সমীকরণটি গৃহিত করে

(A) একটি বৃত্ত \hspace{1cm} (B) একটি অবিভক্ত \hspace{1cm} (C) একটি উপবৃত্ত \hspace{1cm} (D) একটি সরলরেখা
9. The locus of the centre of the circles which touch both the circles \(x^2 + y^2 = a^2 \) and \(x^2 + y^2 = 4ax \) externally is

(A) a circle \hspace{1cm} (B) a parabola

(C) an ellipse \hspace{1cm} (D) a hyperbola

বৃত্তরূপ \(x^2 + y^2 = a^2 \) এবং \(x^2 + y^2 = 4ax \)-কে বাইরে থেকে স্পর্শ করে এমন বৃত্তসমূহের কেন্দ্রের
সজ্জারপথ হবে

(A) একটি বৃত্ত \hspace{1cm} (B) একটি অধিবৃত্ত

(C) একটি উপবৃত্ত \hspace{1cm} (D) একটি পরাবৃত্ত

10. Let each of the equations \(x^2 + 2xy + ay^2 = 0 \) & \(ax^2 + 2xy + y^2 = 0 \) represent two straight
lines passing through the origin. If they have a common line, then the other two lines are
given by

(A) \(x - y = 0, x - 3y = 0 \) \hspace{1cm} (B) \(x + 3y = 0, 3x + y = 0 \)

(C) \(3x + y = 0, 3x - y = 0 \) \hspace{1cm} (D) \(3x - 2y = 0, x + y = 0 \)

মনে কর \(x^2 + 2xy + ay^2 = 0 \) এবং \(ax^2 + 2xy + y^2 = 0 \) সমীকরণগুলির প্রতিটি সূক্ষ্ণসমূহের সরলরেখা-
যার সৃষ্টি করে। যদি দুটি সমীকরণেই একটি অভিন্ন (সরলরেখা অনুরূপ) থাকে, তবে বিভিন্ন দুটি সরলরেখা
হবে

(A) \(x - y = 0, x - 3y = 0 \) \hspace{1cm} (B) \(x + 3y = 0, 3x + y = 0 \)

(C) \(3x + y = 0, 3x - y = 0 \) \hspace{1cm} (D) \(3x - 2y = 0, x + y = 0 \)

11. A straight line through the origin \(O \) meets the parallel lines \(4x + 2y = 9 \) and
\(2x + y + 6 = 0 \) at \(P \) and \(Q \) respectively. The point \(O \) divides the segment \(PQ \) in the ratio

(A) \(1 : 2 \) \hspace{1cm} (B) \(3 : 4 \)

(C) \(2 : 1 \) \hspace{1cm} (D) \(4 : 3 \)

মূলবিন্দু (O) একটি সরলরেখা সমান্তরাল যুগল \(4x + 2y = 9 \) এবং \(2x + y + 6 = 0 \) কে যথাক্রমে \(P \)
ও \(Q \) বিন্দুতে ছেদ করে। সেক্ষেত্রে \(PQ \) অংশ (O বিন্দুতে যে অনুপাতে বিভক্ত হয় তা হল,

(A) \(1 : 2 \) \hspace{1cm} (B) \(3 : 4 \)

(C) \(2 : 1 \) \hspace{1cm} (D) \(4 : 3 \)
12. Area in the first quadrant between the ellipses \(x^2 + 2y^2 = a^2 \) and \(2x^2 + y^2 = a^2 \) is

(A) \(\frac{a^2}{\sqrt{2}} \tan^{-1} \frac{1}{\sqrt{2}} \)

(B) \(\frac{3a^2}{4} \tan^{-1} \frac{1}{2} \)

(C) \(\frac{5a^2}{2} \sin^{-1} \frac{1}{2} \)

(D) \(\frac{9\pi a^2}{2} \)

উপর্যুক্ত উভয় \(x^2 + 2y^2 = a^2 \) ও \(2x^2 + y^2 = a^2 \) -এর মধ্যাংশ ও প্রথম পাদে অবস্থিত অংশের ক্ষেত্রফল হবে

(A) \(\frac{a^2}{\sqrt{2}} \tan^{-1} \frac{1}{\sqrt{2}} \)

(B) \(\frac{3a^2}{4} \tan^{-1} \frac{1}{2} \)

(C) \(\frac{5a^2}{2} \sin^{-1} \frac{1}{2} \)

(D) \(\frac{9\pi a^2}{2} \)

13. The equation of circle of radius \(\sqrt{17} \) unit, with centre on the positive side of \(x \)-axis and through the point \((0, 1)\) is

(A) \(x^2 + y^2 - 8x - 1 = 0 \)

(B) \(x^2 + y^2 + 8x - 1 = 0 \)

(C) \(x^2 + y^2 - 9y + 1 = 0 \)

(D) \(2x^2 + 2y^2 - 3x + 2y = 4 \)

যে বৃত্ত \((0, 1)\) কেন্দ্রীয়, যার মাধ্যমে \(\sqrt{17} \) একক এবং যার কেন্দ্র \(x \)-অক্ষের ধারালভ দিকের উপরিভাগ, তার

সমীকরণ হল

(A) \(x^2 + y^2 - 8x - 1 = 0 \)

(B) \(x^2 + y^2 + 8x - 1 = 0 \)

(C) \(x^2 + y^2 - 9y + 1 = 0 \)

(D) \(2x^2 + 2y^2 - 3x + 2y = 4 \)

14. The length of the chord of the parabola \(y^2 = 4ax \) \((a > 0)\) which passes through the vertex and makes an acute angle \(\alpha \) with the axis of the parabola is

(A) \(\pm 4a \cot \alpha \cosec \alpha \)

(B) \(4a \cot \alpha \cosec \alpha \)

(C) \(-4a \cot \alpha \cosec \alpha \)

(D) \(4a \cosec^2 \alpha \)

\(y^2 = 4ax \) \((a > 0)\) অধিবৃত্তের একটি জ্যা অধিবৃত্তের শীর্ষকেন্দ্রীয় এবং অধিবৃত্তের অক্ষের সঙ্গে \(\alpha \) সূচক-কোণ উৎপন্ন করে। ত্রিকোণ দৈর্ঘ্য হবে

(A) \(\pm 4a \cot \alpha \cosec \alpha \)

(B) \(4a \cot \alpha \cosec \alpha \)

(C) \(-4a \cot \alpha \cosec \alpha \)

(D) \(4a \cosec^2 \alpha \)
15. A double ordinate PQ of the hyperbola \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) is such that \(\Delta OPQ \) is equilateral. O being the centre of the hyperbola. Then the eccentricity \(e \) satisfies the relation

(A) \(1 < e < \frac{2}{\sqrt{3}} \) \hspace{1cm} (B) \(e = \frac{2}{\sqrt{3}} \) \hspace{1cm} (C) \(e = \frac{\sqrt{3}}{2} \) \hspace{1cm} (D) \(e > \frac{2}{\sqrt{3}} \)

16. If \(B \) and \(B' \) are the ends of minor axis and \(S \) and \(S' \) are the foci of the ellipse \(\frac{x^2}{25} + \frac{y^2}{9} = 1 \), then the area of the rhombus \(SBS'B' \) will be

(A) 12 sq. unit \hspace{1cm} (B) 48 sq. unit \hspace{1cm} (C) 24 sq. unit \hspace{1cm} (D) 36 sq. unit

17. The equation of the latus rectum of a parabola is \(x + y = 8 \) and the equation of the tangent at the vertex is \(x + y = 12 \). Then the length of the latus rectum is

(A) \(4\sqrt{2} \) unit \hspace{1cm} (B) \(2\sqrt{2} \) unit \hspace{1cm} (C) 8 unit \hspace{1cm} (D) \(8\sqrt{2} \) unit

(A) \(4\sqrt{2} \) \hspace{1cm} (B) \(2\sqrt{2} \) \hspace{1cm} (C) 8 \hspace{1cm} (D) \(8\sqrt{2} \)
18. The equation of the plane through the point \((2, -1, -3)\) and parallel to the lines \[
\frac{x - 1}{2} = \frac{y + 2}{3} = \frac{z}{4} \quad \text{and} \quad \frac{x}{2} = \frac{y - 1}{3} = \frac{z - 2}{2},
\]
is

(A) \(8x + 14y + 13z + 37 = 0\) \hspace{1cm} (B) \(8x - 14y - 13z - 37 = 0\)

(C) \(8x - 14y + 13z + 37 = 0\) \hspace{1cm} (D) \(8x - 14y + 13z - 37 = 0\)

\((2, -1, -3)\) বিন্দুর দ্বারা এবং \(\frac{x - 1}{2} = \frac{y + 2}{3} = \frac{z}{4} \) এবং \(\frac{x}{2} = \frac{y - 1}{3} = \frac{z - 2}{2}\) সরলরেখায়ের সমন্তরাল তলের সমীকরণ হল

(A) \(8x + 14y + 13z + 37 = 0\) \hspace{1cm} (B) \(8x - 14y - 13z - 37 = 0\)

(C) \(8x + 14y - 13z + 37 = 0\) \hspace{1cm} (D) \(8x - 14y + 13z - 37 = 0\)

19. The sine of the angle between the straight line \(\frac{x - 2}{3} = \frac{y - 3}{4} = \frac{z - 4}{5}\) and the plane \(2x - 2y + z - 5 = 0\) is

(A) \(\frac{2\sqrt{5}}{5}\) \hspace{1cm} (B) \(\frac{\sqrt{2}}{10}\) \hspace{1cm} (C) \(\frac{4}{5\sqrt{2}}\) \hspace{1cm} (D) \(\frac{\sqrt{5}}{6}\)

\(\frac{x - 2}{3} = \frac{y - 3}{4} = \frac{z - 4}{5}\) সরলরেখা এবং \(2x - 2y + z - 5 = 0\) তলের মধ্যকার কোণের সাইন হবে

(A) \(\frac{2\sqrt{3}}{5}\) \hspace{1cm} (B) \(\frac{\sqrt{2}}{10}\) \hspace{1cm} (C) \(\frac{4}{5\sqrt{2}}\) \hspace{1cm} (D) \(\frac{\sqrt{5}}{6}\)

20. Let \(f(x) = \sin x + \cos ax\) be periodic function. Then

(A) ‘\(a\)’ is any real number. \hspace{1cm} (B) ‘\(a\)’ is any irrational number.

(C) ‘\(a\)’ is rational number. \hspace{1cm} (D) \(a = 0\)

দেওয়া আছে যে \(f(x) = \sin x + \cos ax\) পর্যায়ক্রমী অনুপাদক। সেক্ষেত্রে

(A) ‘\(a\)’ যেকোনো ক্রান্তীয় সংখ্যা \hspace{1cm} (B) ‘\(a\)’ যেকোনো অমূল্য সংখ্যা

(C) ‘\(a\)’ মূল্যীয় সংখ্যা \hspace{1cm} (D) \(a = 0\)
21. The domain of \(f(x) = \sqrt{\left(\frac{1}{\sqrt{x}} - \sqrt{x+1} \right)} \) is

(A) \(x > -1 \) \hspace{1cm} (B) \((-1, \infty) \setminus \{0\} \) \hspace{1cm} (C) \(\left[0, \frac{\sqrt{5}-1}{2} \right] \) \hspace{1cm} (D) \(\left[\frac{1-\sqrt{5}}{2}, 0 \right) \)

\[f(x) = \sqrt{\left(\frac{1}{\sqrt{x}} - \sqrt{x+1} \right)} \] is an improper integral.

(A) \(x > -1 \) \hspace{1cm} (B) \((-1, \infty) \setminus \{0\} \) \hspace{1cm} (C) \(\left[0, \frac{\sqrt{5}-1}{2} \right] \) \hspace{1cm} (D) \(\left[\frac{1-\sqrt{5}}{2}, 0 \right) \)

22. Let \(y = f(x) = 2x^2 - 3x + 2 \). The differential of \(y \) when \(x \) changes from 2 to 1.99 is

(A) 0.01 \hspace{1cm} (B) 0.18 \hspace{1cm} (C) -0.05 \hspace{1cm} (D) 0.07

মনে কর যে \(y = f(x) = 2x^2 - 3x + 2 \) এর \(x \) এর মান 2 থেকে 1.99 পরিবর্তিত হলে \(y \)-এর অন্তরকল হবে

(A) 0.01 \hspace{1cm} (B) 0.18 \hspace{1cm} (C) -0.05 \hspace{1cm} (D) 0.07

23. If \(\lim_{x \to 0} \left(\frac{1+cx}{1-cx} \right)^{\frac{1}{x}} = 4 \), then \(\lim_{x \to 0} \left(\frac{1+2cx}{1-2cx} \right)^{\frac{1}{x}} \) is

(A) 2 \hspace{1cm} (B) 4 \hspace{1cm} (C) 16 \hspace{1cm} (D) 64

যদি \(\lim_{x \to 0} \left(\frac{1+cx}{1-cx} \right)^{\frac{1}{x}} = 4 \) হয়, তবে \(\lim_{x \to 0} \left(\frac{1+2cx}{1-2cx} \right)^{\frac{1}{x}} \) হবে

(A) 2 \hspace{1cm} (B) 4 \hspace{1cm} (C) 16 \hspace{1cm} (D) 64
24. Let \(f: \mathbb{R} \rightarrow \mathbb{R} \) be twice continuously differentiable (or \(f'' \) exists and is continuous) such that \(f(0) = f(1) = f'(0) = 0 \). Then

\[\begin{align*}
(A) & \quad f''(c) = 0 \text{ for some } c \in \mathbb{R} \\
(B) & \quad \text{there is no point for which } f''(x) = 0 \\
(C) & \quad \text{at all points } f''(x) > 0 \\
(D) & \quad \text{at all points } f''(x) < 0
\end{align*} \]

মনে কর \(f: \mathbb{R} \rightarrow \mathbb{R} \) দিশায় সত্ত্বা অবকলসমূহ বিষিষ্ট অপেক্ষক (অথবা \(f'' \)-এর অভিজত্ত আছে ও সত্তত)
এরপক্ষে \(f(0) = f(1) = f'(0) = 0 \) সেক্ষেত্রে

\[\begin{align*}
(A) & \quad c \in \mathbb{R} \text{ -এর অভিজত্ত আছে যার জন্য } f''(c) = 0 \text{ হবে} \\
(B) & \quad \text{এরনে কোন বিন্দু নেই যার জন্য } f''(x) = 0 \\
(C) & \quad \text{সব বিন্দুতেই } f''(x) > 0 \\
(D) & \quad \text{সব বিন্দুতেই } f''(x) < 0
\end{align*} \]

25. Let \(f(x) = x^{13} + x^{11} + x^9 + x^7 + x^5 + x^3 + x + 12 \). Then

\[\begin{align*}
(A) & \quad \text{f(x) has 13 non-zero real roots.} \\
(B) & \quad \text{f(x) has exactly one real root.} \\
(C) & \quad \text{f(x) has exactly one pair of imaginary roots.} \\
(D) & \quad \text{f(x) has no real root.}
\end{align*} \]

মনে কর \(f(x) = x^{13} + x^{11} + x^9 + x^7 + x^5 + x^3 + x + 12 \) সেক্ষেত্রে

\[\begin{align*}
(A) & \quad \text{f(x) -এর 13 টি অনুপস্থ বিন্দুব বীজ থাকবে} \\
(B) & \quad \text{f(x) -এর তিন একটি বিন্দুব বীজ থাকবে} \\
(C) & \quad \text{f(x) -এর তিন একটি সম্পূর্ণ কালান্তরক বীজ থাকবে} \\
(D) & \quad \text{f(x) -এর কোন বিন্দুব বীজ থাকবে না}
\end{align*} \]
26. Let \(\cos^{-1}\left(\frac{x}{b}\right) = \log \left(\frac{x}{n}\right)^n \). Then

(A) \(x^2y_2 + xy_1 + n^2y = 0 \)
(B) \(xy_2 - xy_1 + 2n^2y = 0 \)

(C) \(x^2y_2 + 3xy_1 - n^2y = 0 \)
(D) \(xy_2 + 5xy_1 - 3y = 0 \)

(Here \(y_2 = \frac{d^2y}{dx^2}, y_1 = \frac{dy}{dx} \))

27. Let \(\phi(x) = f(x) + f(1-x) \) and \(f''(x) < 0 \) in \([0, 1]\), then

(A) \(\phi \) is monotonic increasing in \(\left[0, \frac{1}{2}\right]\) and monotonic decreasing in \(\left[\frac{1}{2}, 1\right]\)

(B) \(\phi \) is monotonic increasing in \(\left[\frac{1}{2}, 1\right]\) and monotonic decreasing in \(\left[0, \frac{1}{2}\right]\)

(C) \(\phi \) is neither increasing nor decreasing in any sub-interval of \([0, 1]\)

(D) \(\phi \) is increasing in \([0, 1]\)

(Here \(f(x) \) and \(f(1-x) \) are given and \(f''(x) < 0 \).)
28. \[\int \frac{f(x) \varphi'(x) + \varphi(x) f'(x)}{(f(x) \varphi(x) + 1) \sqrt{f(x) \varphi(x) - 1}} \, dx = \]

(A) \(\sin^{-1} \sqrt{\frac{f(x)}{\varphi(x)}} + c \) \hspace{1cm} (B) \(\cos^{-1} \sqrt{(f(x))^2 - (\varphi(x))^2} + c \)

(C) \(\sqrt{2} \tan^{-1} \sqrt{\frac{f(x) \varphi(x) - 1}{2}} + c \) \hspace{1cm} (D) \(\sqrt{2} \tan^{-1} \sqrt{\frac{f(x) \varphi(x) + 1}{2}} + c \)

Where \(c \) is the constant of integration.

29. The value of \[\sum_{n=1}^{10} \int_{-2n-1}^{-2n} \sin^2 x \, dx + \sum_{n=1}^{2n+1} \int_{2n}^{2n+1} \sin^2 x \, dx \] is equal to

(A) 27 \hspace{1cm} (B) 54 \hspace{1cm} (C) -54 \hspace{1cm} (D) 0

\[\sum_{n=1}^{10} \int_{-2n-1}^{-2n} \sin^2 x \, dx + \sum_{n=1}^{2n+1} \int_{2n}^{2n+1} \sin^2 x \, dx \] এর মান হলো

(A) 27 \hspace{1cm} (B) 54 \hspace{1cm} (C) -54 \hspace{1cm} (D) 0

30. \[\int_{0}^{2} x^2 \, dx \] is equal to

(A) 1 \hspace{1cm} (B) \(5 - \sqrt{2} - \sqrt{3} \) \hspace{1cm} (C) \(3 + \sqrt{2} \) \hspace{1cm} (D) \(8/3 \)

\[\int_{0}^{2} x^2 \, dx \] এর মান হলো

(A) 1 \hspace{1cm} (B) \(5 - \sqrt{2} - \sqrt{3} \) \hspace{1cm} (C) \(3 - \sqrt{2} \) \hspace{1cm} (D) \(8/3 \)

31. If the tangent to the curve \(y^2 = x^3 \) at \((m^2, m^3) \) is also a normal to the curve at \((M^2, M^3) \), then the value of \(mM \) is

(A) \(\frac{1}{9} \) \hspace{1cm} (B) \(\frac{2}{9} \) \hspace{1cm} (C) \(\frac{1}{3} \) \hspace{1cm} (D) \(\frac{4}{9} \)

ক্রেরকা \(y^2 = x^3 \) -এর \((m^2, m^3) \) বিন্দুতে অবিচ্ছিন্ন স্পর্শকটি ঐ ক্রেরকের \((M^2, M^3) \) বিন্দুতে অভিলম্বযী।

লেখকের \(mM \) এর মান হলো

(A) \(\frac{1}{9} \) \hspace{1cm} (B) \(\frac{2}{9} \) \hspace{1cm} (C) \(\frac{1}{3} \) \hspace{1cm} (D) \(\frac{4}{9} \)
32. If \(x^2 + y^2 = a^2 \), then \[
\int_0^a \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx = \]

(A) \(2\pi a \) \hspace{1cm} (B) \(\pi a \) \hspace{1cm} (C) \(\frac{1}{2} \pi a \) \hspace{1cm} (D) \(\frac{1}{4} \pi a \)

यदि \(x^2 + y^2 = a^2 \) है, \(\text{तब} \)
\[
\int_0^a \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx = \]

(A) \(2\pi a \) \hspace{1cm} (B) \(\pi a \) \hspace{1cm} (C) \(\frac{1}{2} \pi a \) \hspace{1cm} (D) \(\frac{1}{4} \pi a \)

33. Let \(f \) be a continuous function in \([0, 1]\), then \[
\lim_{n \to \infty} \sum_{j=0}^{n} \frac{1}{n} f\left(\frac{j}{n} \right) \]

(A) \(\frac{1}{2} \int_0^1 f(x) \, dx \) \hspace{1cm} (B) \(\frac{1}{2} \int_0^1 f(x) \, dx \) \hspace{1cm} (C) \(\frac{1}{2} \int_0^1 f(x) \, dx \) \hspace{1cm} (D) \(\frac{1}{2} \int_0^1 f(x) \, dx \)

यदि \(f \) \([0, 1] \)-ए स्तप अनुप्रवक्क है, \(\text{तब} \)
\[
\lim_{n \to \infty} \sum_{j=0}^{n} \frac{1}{n} f\left(\frac{j}{n} \right) \]

(A) \(\frac{1}{2} \int_0^1 f(x) \, dx \) \hspace{1cm} (B) \(\frac{1}{2} \int_0^1 f(x) \, dx \) \hspace{1cm} (C) \(\frac{1}{2} \int_0^1 f(x) \, dx \) \hspace{1cm} (D) \(\frac{1}{2} \int_0^1 f(x) \, dx \)

34. Let \(f \) be a differentiable function with \(\lim \limits_{x \to \infty} f(x) = 0 \). If \(y' + yf'(x) - f(x)f'(x) = 0 \),
\[
\lim_{x \to \infty} y(x) = 0, \text{ then (where } y' = \frac{dy}{dx} \text{)}
\]

(A) \(y + 1 = e^{f(x)} + f(x) \) \hspace{1cm} (B) \(y - 1 = e^{f(x)} + f(x) \)

(C) \(y + 1 = e^{-f(x)} + f(x) \) \hspace{1cm} (D) \(y - 1 = e^{-f(x)} + f(x) \)

यदि \(y' + yf'(x) - f(x)f'(x) = 0 \), \(\lim \limits_{x \to \infty} f(x) = 0 \) \(\text{यदि } y' + yf'(x) - f(x)f'(x) = 0 \).
\[
\lim_{x \to \infty} y(x) = 0 \text{ है, तब } (\text{ये खाक्षण } y' = \frac{dy}{dx}) \]

(A) \(y + 1 = e^{f(x)} + f(x) \) \hspace{1cm} (B) \(y - 1 = e^{f(x)} + f(x) \)

(C) \(y + 1 = e^{-f(x)} + f(x) \) \hspace{1cm} (D) \(y - 1 = e^{-f(x)} + f(x) \)
35. If $x \sin \left(\frac{y}{x} \right) \, dy = \left[y \sin \left(\frac{y}{x} \right) - x \right] \, dx, \ x > 0$ and $y(1) = \frac{\pi}{2}$ then the value of $\cos \left(\frac{y}{x} \right)$ is

(A) 1 (B) $\log x$ (C) e (D) 0

যদি $x \sin \left(\frac{y}{x} \right) \, dy = \left[y \sin \left(\frac{y}{x} \right) - x \right] \, dx, \ x > 0$ এবং $y(1) = \frac{\pi}{2}$ হয়, তবে $\cos \left(\frac{y}{x} \right)$-এর মান হবে

(A) 1 (B) $\log x$ (C) e (D) 0

36. Let $f(x) = 1 - \sqrt{x^2}$ where the square root is to be taken positive, then

(A) f has no extrema at $x = 0$
(B) f has minima at $x = 0$
(C) f has maxima at $x = 0$
(D) f' exists at 0

দেওয়া আছে $f(x) = 1 - \sqrt{x^2}$, যেখানে বর্গমূলটি ধনাত্মক হিসাবে নেওয়া হয়েছে। সেক্ষেত্রে

(A) $f(x)$-এর $x = 0$ বিন্দুতে চরম/অবম মান নেই
(B) $x = 0$ বিন্দুতে $f(x)$-এর অবম মান আছে
(C) $x = 0$ বিন্দুতে $f(x)$-এর চরম মান আছে
(D) 0 বিন্দুতে f'-এর অস্তিত্ব আছে

37. If the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$ [$a > 0$] attains its maximum and minimum at p and q respectively such that $p^2 = q$, then a is equal to

(A) 2 (B) $\frac{1}{2}$ (C) $\frac{1}{4}$ (D) 3

যদি অন্তর্ভুক্ত $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$ [$a > 0$]. যথাক্রমে p ও q বিন্দুতে সর্বোচ্চ ও সর্বনিম্ন মান পরিগ্রহ করে এবং $p^2 = q$ হয়, তবে a-র মান হবে

(A) 2 (B) $\frac{1}{2}$ (C) $\frac{1}{4}$ (D) 3
38. If a and b are arbitrary positive real numbers, then the least possible value of \(\frac{6a}{5b} + \frac{10b}{3a} \) is

(A) 4 \hspace{1cm} (B) \(\frac{6}{5} \) \hspace{1cm} (C) \(\frac{10}{3} \) \hspace{1cm} (D) \(\frac{68}{15} \)

a এবং b যদৃহ্ব ধনাত্মক সংখ্যা হলে \(\frac{6a}{5b} + \frac{10b}{3a} \) রাশির সম্পূর্ণরতম মান হল

(A) 4 \hspace{1cm} (B) \(\frac{6}{5} \) \hspace{1cm} (C) \(\frac{10}{3} \) \hspace{1cm} (D) \(\frac{68}{15} \)

39. If \(2 \log (x + 1) - \log (x^2 - 1) = \log 2 \), then \(x = \)

(A) only 3 \hspace{1cm} (B) \(-1\) and 3 \hspace{1cm} (C') only -1 \hspace{1cm} (D) 1 and 3

যদি \(2 \log (x + 1) - \log (x^2 - 1) = \log 2 \), তবে \(x = \)

(A) 3 একক \hspace{1cm} (B) \(-1\) এবং 3 \hspace{1cm} (C) 3 একক -1 \hspace{1cm} (D) 1 এবং 3

40. The number of complex numbers \(p \) such that \(| p | = 1 \) and imaginary part of \(p^4 \) is 0, is

(A) 4 \hspace{1cm} (B) 2 \hspace{1cm} (C) 8 \hspace{1cm} (D) infinitely many

| p | = 1 এবং \(p^4 \)-এর অঙ্কিত অংশ (i-এর শতাংশের সম্ভাব্য সংখ্যা জটিল রাশি \(p \)-এর সংখ্যা হল

(A) 4 \hspace{1cm} (B) 2 \hspace{1cm} (C) 8 \hspace{1cm} (D) অসংখ্য

41. The equation \(z \bar{z} + (2 - 3i) z + (2 + 3i) \bar{z} + 4 = 0 \) represents a circle of radius

(A) 2 unit \hspace{1cm} (B) 3 unit \hspace{1cm} (C) 4 unit \hspace{1cm} (D) 6 unit

\(z \bar{z} + (2 - 3i) z + (2 + 3i) \bar{z} + 4 = 0 \) সমীকরণটি যে বৃত্ত সৃষ্টি করে, তার ব্যাসার্ধ হল

(A) 2 একক \hspace{1cm} (B) 3 একক \hspace{1cm} (C) 4 একক \hspace{1cm} (D) 6 একক
42. The expression \(ax^2 + bx + c\) (where \(a\), \(b\) and \(c\) are real) has the same sign as that of \(a\) for all \(x\) if

- (A) \(b^2 - 4ac > 0\)
- (B) \(b^2 - 4ac \neq 0\)
- (C) \(b^2 - 4ac \leq 0\)
- (D) \(b\) and \(c\) have the same sign as that of \(a\)

Given \(ax^2 + bx + c\) (where \(a\), \(b\) and \(c\) are real), the roots \(\alpha\) and \(\beta\) follow the sign of \(a\) as follows:

- (A) \(\alpha^2 + \beta^2 > 0\)
- (B) \(\alpha^2 + \beta^2 \neq 0\)
- (C) \(\alpha^2 + \beta^2 \leq 0\)
- (D) \(\alpha\) and \(\beta\) have the same sign as that of \(a\)

43. In a 12-storied building, 3 persons enter a lift cabin. It is known that they will leave the lift at different floors. In how many ways can they do so if the lift does not stop at the second floor?

- (A) 36
- (B) 120
- (C) 240
- (D) 720

Each floor can be reached by choosing any combination of lift stops, except for the second floor. The total number of ways is calculated based on the number of floors and the condition of not stopping at the second floor.

- (A) 36
- (B) 120
- (C) 240
- (D) 720

44. If the total number of \(m\)-element subsets of the set \(A = \{a_1, a_2, \ldots, a_n\}\) is \(k\) times the number of \(m\) element subsets containing \(a_1\), then \(n\) is

- (A) \((m - 1)k\)
- (B) \(mk\)
- (C) \((m + 1)k\)
- (D) \((m + 2)k\)

The subset of \(A\) containing \(a_1\) is one specific subset among the \(m\)-element subsets. The relationship between the total number of subsets and the number of subsets containing \(a_1\) is given by the condition in the problem.

- (A) \((m - 1)k\)
- (B) \(mk\)
- (C) \((m + 1)k\)
- (D) \((m + 2)k\)

45. Let \(I(n) = n^5, J(n) = 1.3.5 \ldots (2n - 1)\) for all \((n > 1), n \in \mathbb{N}\), then

- (A) \(I(n) > J(n)\)
- (B) \(I(n) < J(n)\)
- (C) \(I(n) = J(n)\)
- (D) \(I(n) = \frac{1}{2} J(n)\)

For all \(n > 1\), the values of \(I(n)\) and \(J(n)\) are compared to determine the relation between them.

- (A) \(I(n) > J(n)\)
- (B) \(I(n) < J(n)\)
- (C) \(I(n) = J(n)\)
- (D) \(I(n) = \frac{1}{2} J(n)\)
46. If \(c_0, c_1, c_2, \ldots, c_{15} \) are the Binomial co-efficients in the expansion of \((1 + x)^{15} \), then the value of
\[
\frac{c_1}{c_0} + 2 \frac{c_2}{c_1} + 3 \frac{c_3}{c_2} + \ldots + 15 \frac{c_{15}}{c_{14}}
\]
(A) 1240 (B) 120 (C) 124 (D) 140

\((1 + x)^{15}\) এর বিপ্লবিতে \(c_0, c_1, c_2, \ldots, c_{15} \) দিয়া সহগ হলে
\[
\frac{c_1}{c_0} + 2 \frac{c_2}{c_1} + 3 \frac{c_3}{c_2} + \ldots + 15 \frac{c_{15}}{c_{14}}
\]
-এর মান হবে
(A) 1240 (B) 120 (C) 124 (D) 140

47. Let \(A = \begin{pmatrix} 3-t & 1 & 0 \\ -1 & 3-t & 1 \\ 0 & -1 & 0 \end{pmatrix} \) and \(\det A = 5 \), then

(A) \(t = 1 \) (B) \(t = 2 \) (C) \(t = -1 \) (D) \(t = -2 \)

মনে কর \(A = \begin{pmatrix} 3-t & 1 & 0 \\ -1 & 3-t & 1 \\ 0 & -1 & 0 \end{pmatrix} \) এবং \(\det A = 5 \), সেক্ষেত্রে

(A) \(t = 1 \) (B) \(t = 2 \) (C) \(t = -1 \) (D) \(t = -2 \)

48. Let \(A = \begin{pmatrix} 12 & 24 & 5 \\ x & 6 & 2 \\ -1 & -2 & 3 \end{pmatrix} \). The value of \(x \) for which the matrix \(A \) is not invertible is

(A) 6 (B) 12 (C) 3 (D) 2

মনে কর \(A = \begin{pmatrix} 12 & 24 & 5 \\ x & 6 & 2 \\ -1 & -2 & 3 \end{pmatrix} \). \(A \)-এর বিপরীত মাত্রিকার অতিক্রম না-খালনে \(x \)-এর মান হবে

(A) 6 (B) 12 (C) 3 (D) 2
Let \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) be a 2 \(\times \) 2 real matrix with \(\det A = 1 \). If the equation \(\det (A - \lambda I_2) = 0 \) has imaginary roots (\(I_2 \) be the Identity matrix of order 2), then

(A) \((a + d)^2 < 4\)
(B) \((a + d)^2 = 4\)

(C) \((a + d)^2 > 4\)
(D) \((a + d)^2 = 16\)

If \(\begin{vmatrix} a^2 & bc & c^2 + ac \\ a^2 + ab & b^2 & ca \\ ab & b^2 + bc & c^2 \end{vmatrix} = k a^2 b^2 c^2 \), then \(k = \)

(A) 2
(B) 4

(C) 2
(D) 4

If \(\begin{vmatrix} a^2 & bc & c^2 + ac \\ a^2 + ab & b^2 & ca \\ ab & b^2 + bc & c^2 \end{vmatrix} = k a^2 b^2 c^2 \) हले \(k = \)

(A) 2
(B) 2

(C) 4
(D) 4
Category-II (Q : 51 to 65)

Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ mark will be deducted.

একটি উত্তর সঠিক নহে তাহলে 2 নম্বর পার্থে। ভুল উত্তর দিলে অথবা যেকোন একাধিক উত্তর দিলে ½ নম্বর কাটা যাবে।

51. Let \(f(x) = \sqrt{x^2 - 3x + 2} \) and \(g(x) = \sqrt{x} \) be two given functions. If \(S \) be the domain of \(f \circ g \) and \(T \) be the domain of \(g \circ f \), then

(A) \(S = T \)
(B) \(S \cap T = \emptyset \)
(C) \(S \cap T \) is a singleton,
(D) \(S \cap T \) is an interval.

ঢেকে করুন \(f(x) = \sqrt{x^2 - 3x + 2} \) এবং \(g(x) = \sqrt{x} \) দুটি প্রদত্ত অন্তর্ভুক্ত। যদি \(f \circ g \) এর সংজ্ঞার অন্তর্ভুক্ত \(S \) ও \(g \circ f \) এর সংজ্ঞার অন্তর্ভুক্ত \(T \) হয়, তবে

(A) \(S = T \)
(B) \(S \cap T = \emptyset \)
(C) \(S \cap T \) একটি সদস্য বিশিষ্ট সেট
(D) \(S \cap T \) একটি অন্তর্ভুক্ত

52. Let \(\rho_1 \) and \(\rho_2 \) be two equivalence relations defined on a non-void set \(S \). Then

(A) both \(\rho_1 \cap \rho_2 \) and \(\rho_1 \cup \rho_2 \) are equivalence relations.
(B) \(\rho_1 \cap \rho_2 \) is equivalence relation but \(\rho_1 \cup \rho_2 \) is not so.
(C) \(\rho_1 \cup \rho_2 \) is equivalence relation but \(\rho_1 \cap \rho_2 \) is not so.
(D) neither \(\rho_1 \cap \rho_2 \) nor \(\rho_1 \cup \rho_2 \) is equivalence relation.

ঢেকে করুন \(S \) এ দুটি সমতুল্যতা সম্ভব \(\rho_1 \) ও \(\rho_2 \) সংজ্ঞায়িত আছে। সেক্ষেত্রে

(A) \(\rho_1 \cap \rho_2 \) ও \(\rho_1 \cup \rho_2 \) উভয়ই সমতুল্যতা সম্ভব
(B) \(\rho_1 \cap \rho_2 \) সমতুল্যতা সম্ভব কিন্তু \(\rho_1 \cup \rho_2 \) নয়
(C) \(\rho_1 \cup \rho_2 \) সমতুল্যতা সম্ভব কিন্তু \(\rho_1 \cap \rho_2 \) নয়
(D) \(\rho_1 \cap \rho_2 \) ও \(\rho_1 \cup \rho_2 \) -এর কোনটিই সমতুল্যতা সম্ভব নয়
53. Consider the curve \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \). The portion of the tangent at any point of the curve intercepted between the point of contact and the directrix subtends at the corresponding focus an angle of

(A) \(\frac{\pi}{4} \) \hspace{1cm} (B) \(\frac{\pi}{3} \) \hspace{1cm} (C) \(\frac{\pi}{2} \) \hspace{1cm} (D) \(\frac{\pi}{6} \)

\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) বক্ররেখাটি বিকেনা কর | ঐ বক্ররেখার উপরিষ্ঠ থেকোনে বিচ্ছিন্নতে অক্ষ স্পর্শকের
স্পর্শকলীন উদিত সংগ্রিঢ় নৈতিক যে কোণ উৎপন্ন করে সেটি হল

(A) \(\frac{\pi}{4} \) \hspace{1cm} (B) \(\frac{\pi}{3} \) \hspace{1cm} (C) \(\frac{\pi}{2} \) \hspace{1cm} (D) \(\frac{\pi}{6} \)

54. A line cuts the x-axis at A (7, 0) and the y-axis at B (0, -5). A variable line PQ is drawn perpendicular to AB cutting the x-axis at P (a, 0) and the y-axis at Q (0, b). If AQ and BP intersect at R, the locus of R is

(A) \(x^2 + y^2 + 7x + 5y = 0 \) \hspace{1cm} (B) \(x^2 + y^2 + 7x - 5y = 0 \)

(C) \(x^2 + y^2 - 7x + 5y = 0 \) \hspace{1cm} (D) \(x^2 + y^2 - 7x - 5y = 0 \)

একটি সরলরেখা x-অক্ষকে A (7, 0) বিচ্ছিন্ন ও y-অক্ষকে B (0, -5) বিচ্ছিন্নতে ছেদ করে। AB-এর
উপর লম্ব সংগ্রিঢ় সরলরেখা PQ, x-অক্ষকে P (a, 0) বিচ্ছিন্ন ও y-অক্ষকে Q (0, b) বিচ্ছিন্নতে ছেদ
করে। যদি AQ ও BP পরস্পরকে R বিচ্ছিন্নতে ছেদ করে, তবে R-এর সংগ্রিঢ় হবে

(A) \(x^2 + y^2 + 7x + 5y = 0 \) \hspace{1cm} (B) \(x^2 + y^2 + 7x - 5y = 0 \)

(C) \(x^2 + y^2 - 7x + 5y = 0 \) \hspace{1cm} (D) \(x^2 + y^2 - 7x - 5y = 0 \)

55. Let \(0 < \alpha < \beta < 1 \). Then \(\lim_{n \to \infty} \sum_{k=1}^{n} \int_{1/(k+\beta)}^{1/(k+\alpha)} \frac{dx}{1+x} \)

(A) \(\log_{e} \frac{\beta}{\alpha} \) \hspace{1cm} (B) \(\log_{e} \frac{1+\beta}{1+\alpha} \) \hspace{1cm} (C) \(\log_{e} \frac{1+\alpha}{1+\beta} \) \hspace{1cm} (D) \(\infty \)

মনে কর \(0 < \alpha < \beta < 1 \), তখন \(\lim_{n \to \infty} \sum_{k=1}^{n} \int_{1/(k+\beta)}^{1/(k+\alpha)} \frac{dx}{1+x} \)

(A) \(\log_{e} \frac{\beta}{\alpha} \) \hspace{1cm} (B) \(\log_{e} \frac{1+\beta}{1+\alpha} \) \hspace{1cm} (C) \(\log_{e} \frac{1+\alpha}{1+\beta} \) \hspace{1cm} (D) \(\infty \)
56. \(\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right) \)

(A) Does not exist (B) 1 (C) \(\frac{1}{2} \) (D) 0

\(\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right) \)

(A) অস্তিত্বপূর্ণ (B) 1 (C) \(\frac{1}{2} \) (D) 0

57. Let \(y = \frac{1}{1+x+\ln x} \). Then

(A) \(x \frac{dy}{dx} + y = x \) (B) \(x \frac{dy}{dx} - y(y \ln x - 1) \)

(C) \(x^2 \frac{dy}{dx} = y^2 + 1 - x^2 \) (D) \(x \left(\frac{dy}{dx} \right)^2 = y - x \)

মনে করি \(y = \frac{1}{1+x+\ln x} \)। সেক্ষেত্রে

(A) \(x \frac{dy}{dx} + y = x \) (B) \(x \frac{dy}{dx} = y(y \ln x - 1) \)

(C) \(x^2 \frac{dy}{dx} = y^2 + 1 - x^2 \) (D) \(x \left(\frac{dy}{dx} \right)^2 = y - x \)
58. Consider the curve \(y = be^{-x/a} \) where \(a \) and \(b \) are non-zero real numbers. Then

(A) \(\frac{x}{a} + \frac{y}{b} = 1 \) is tangent to the curve at \((0, 0)\).

(B) \(\frac{x}{a} + \frac{y}{b} = 1 \) is tangent to the curve where the curve crosses the axis of \(y \).

(C) \(\frac{x}{a} + \frac{y}{b} = 1 \) is tangent to the curve at \((a, 0)\).

(D) \(\frac{x}{a} + \frac{y}{b} = 1 \) is tangent to the curve at \((2a, 0)\).

বক্ররেখা \(y = be^{-x/a} \) বিরেচনা কর, যেখানে \(a \) ও \(b \) অ-শূন্য বাতক সংখ্যা। সূক্ষ্মতে

(A) \(\frac{x}{a} + \frac{y}{b} = 1 \), মূলকিন্তু বক্ররেখার স্পর্শিক

(B) \(\frac{x}{a} + \frac{y}{b} = 1 \), বক্ররেখা যে বিন্দুতে \(y-অক্ষকে ছেদ করে সেই বিন্দুতে স্পর্শিক

(C) \(\frac{x}{a} + \frac{y}{b} = 1, (a, 0) \) বিন্দুতে বক্ররেখার স্পর্শিক

(D) \(\frac{x}{a} + \frac{y}{b} = 1, (2a, 0) \) বিন্দুতে বক্ররেখার স্পর্শিক

59. The area of the region \(\{(x, y) : x^2 + y^2 \leq 1 \leq x + y \} \) is

(A) \(\frac{\pi^2}{2} \) (B) \(\frac{\pi}{4} \) (C) \(\frac{\pi}{4} - \frac{1}{2} \) (D) \(\frac{\pi^2}{3} \)

\(\{(x, y) : x^2 + y^2 \leq 1 \leq x + y \} \) অঞ্চলের ক্ষেত্রফল হবে

(A) \(\frac{\pi^2}{2} \) (B) \(\frac{\pi}{4} \) (C) \(\frac{\pi}{4} - \frac{1}{2} \) (D) \(\frac{\pi^2}{3} \)
60. In open interval \(\left(0, \frac{\pi}{2} \right) \),
(A) \(\cos x + x \sin x < 1 \)
(B) \(\cos x + x \sin x > 1 \)
(C) no specific order relation can be ascertained between \(\cos x + x \sin x \) and 1
(D) \(\cos x + x \sin x < \frac{1}{2} \)

\(\left(0, \frac{\pi}{2} \right) \) সমান্তরালে,
(A) \(\cos x + x \sin x < 1 \)
(B) \(\cos x + x \sin x > 1 \)
(C) \(\cos x + x \sin x \) ও 1-এর মধ্যে কোন সুনির্দিষ্ট ক্রম সম্ভব নেই
(D) \(\cos x + x \sin x < \frac{1}{2} \)

61. If the line \(y = x \) is a tangent to the parabola \(y = ax^2 + bx + c \) at the point \((1, 1)\) and the curve passes through \((-1, 0)\), then

(A) \(a = b = 1, c = 3 \)
(B) \(a = b = \frac{1}{2}, c = 0 \)

(C) \(a = c = \frac{1}{4}, b = \frac{1}{2} \)
(D) \(a = 0, b = c = \frac{1}{2} \)

সরলীনে \(y = x \) অধিবৃত \(y = ax^2 + bx + c \)-কে \((1, 1)\) বিন্দুতে স্পর্শ করে এবং বর্ণালীটি \((1, 0)\) বিন্দুগামী। সেক্ষেত্রে

(A) \(a = b = -1, c = 3 \)
(B) \(a = b = \frac{1}{2}, c = 0 \)

(C) \(a = c = \frac{1}{4}, b = \frac{1}{2} \)
(D) \(a = 0, b = c = \frac{1}{2} \)

62. If the vectors \(\vec{a} = \hat{i} + a_1 \hat{j} + a_2 \hat{k}, \vec{b} = \hat{i} + b_1 \hat{j} + b_2 \hat{k} \) and \(\vec{c} = \hat{i} + c_1 \hat{j} + c_2 \hat{k} \) are three non-coplanar vectors and

\[
\begin{vmatrix}
 a & a^2 & 1 + a^3 \\
 b & b^2 & 1 + b^3 \\
 c & c^2 & 1 + c^3 \\
\end{vmatrix} = 0,
\]

then the value of abc is

(A) 1
(B) 0
(C) -1
(D) 2

যদি \(\vec{a} = \hat{i} + a_1 \hat{j} + a_2 \hat{k}, \vec{b} = \hat{i} + b_1 \hat{j} + b_2 \hat{k} \) এবং \(\vec{c} = \hat{i} + c_1 \hat{j} + c_2 \hat{k} \) সমতলীয় ভেক্টর না হয়,

\[
\begin{vmatrix}
 a & a^2 & 1 + a^3 \\
 b & b^2 & 1 + b^3 \\
 c & c^2 & 1 + c^3 \\
\end{vmatrix} = 0
\]

এবং \(\vec{a} = \hat{i} + a_1 \hat{j} + a_2 \hat{k}, \vec{b} = \hat{i} + b_1 \hat{j} + b_2 \hat{k} \) এবং \(\vec{c} = \hat{i} + c_1 \hat{j} + c_2 \hat{k} \) সমতলীয় ভেক্টর না হয়, তবে abc-এর মান হবে

(A) 1
(B) 0
(C) -1
(D) 2
63. Let z_1 and z_2 be two imaginary roots of $z^2 + pz + q = 0$, where p and q are real. The points z_1, z_2 and origin form an equilateral triangle if

(A) $p^2 > 3q$
(B) $p^2 < 3q$
(C) $p^2 = 3q$
(D) $p^2 = q$

$z^2 + pz + q = 0$ সমীকরণের দুটি কাম্পার্নিক বীজ হল z_1 ও z_2. p ও q ঋতুব z_1. z_2 ও মূলবিন্দু একটি সমবাহ ত্রিভুজ গঠন করে যদি

(A) $p^2 > 3q$
(B) $p^2 < 3q$
(C) $p^2 = 3q$
(D) $p^2 = q$

64. If $P(x) = ax^2 + bx + c$ and $Q(x) = -ax^2 + dx + c$, where $ac \neq 0$ [a, b, c, d are all real]. then $P(x)Q(x) = 0$ has

(A) at least two real roots
(B) two real roots
(C) four real roots
(D) no real root

যদি $P(x) = ax^2 + bx + c$ এবং $Q(x) = ax^2 + dx + c$, $ac \neq 0$ হয় [a, b, c, d ঋতুব], তাহলে $P(x)Q(x) = 0$ এর

(A) কমপক্ষে দুটি বাত্তব বীজ থাকবে
(B) দুটি বাত্তব বীজ থাকবে
(C) চারটি বাত্তব বীজ থাকবে
(D) কোন বাত্তব বীজ থাকবে না

65. Let $A = \{x \in \mathbb{R} : -1 \leq x \leq 1\}$ & $f : A \to \Lambda$ be a mapping defined by $f(x) = x|x|$. Then f is

(A) injective but not surjective
(B) surjective but not injective
(C) neither injective nor surjective
(D) bijective

মনে কর $A = \{x \in \mathbb{R} : -1 \leq x \leq 1\}$ ও $f : A \to \Lambda$ একটি চিত্রণ এভাবে সংজ্ঞায়িত আছে যে $f(x) = x|x|$. তাহলে f

(A) একৈক চিত্রণ কিছু উপবচিত্রণ নয়
(B) উপবচিত্রণ কিছু একৈক চিত্রণ নয়
(C) একৈক চিত্রণও নয় উপবচিত্রণও নয়
(D) একৈক চিত্রণ ও উপবচিত্রণ
M-2020

Category-III (Q : 66 to 75)

Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and no incorrect answer is marked, then score = 2 × number of correct answers marked + actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is no negative marking for the same and zero marks will be awarded.

এক বা একাধিক উত্তর সঠিক। সব কাটি সঠিক উত্তর দিয়ে ২ নম্বর পাবে। যদি কোনো ভুল উত্তর না থাকে এবং সঠিক উত্তরও সব কাটি না থাকে তাহলে পাবে 2 × যে কাটি সঠিক উত্তর দেওয়া হয়েছে তার সংখ্যা = আসলে যে কাটি উত্তর সঠিক তার সংখ্যা। যদি কোনো ভুল উত্তর দেওয়া হয় বা একাধিক উত্তরের মধ্যে একটিও ভুল থাকে তাহলে উত্তরটি ভুল ধরে নেওয়া হবে। কিন্তু সে ক্ষেত্রে কোনো নম্বর কাটি যাবে না, অর্থাৎ শূণ্য নম্বর পাবে।

66. A and B are independent events. The probability that both A and B occur is $\frac{1}{20}$ and the probability that neither of them occurs is $\frac{3}{5}$. The probability of occurrence of A is

(A) $\frac{1}{2}$
(B) $\frac{1}{10}$

(C) $\frac{1}{4}$
(D) $\frac{1}{5}$

A ও B দুইটি ঘটনা পরস্পর নির্ভরশীল নয়। A ও B উভয়ের একসঙ্গে ঘটার সম্ভাব্যতা $\frac{1}{20}$ এবং কোনওটি না ঘটার সম্ভাব্যতা $\frac{3}{5}$। A ঘটার সম্ভাব্যতা হবে

(A) $\frac{1}{2}$
(B) $\frac{1}{10}$

(C) $\frac{1}{4}$
(D) $\frac{1}{5}$
67. The equation of the straight line passing through the point \((4, 3)\) and making intercepts on the co-ordinate axes whose sum is \(-1\) is

(A) \(\frac{x}{2} - \frac{y}{3} = 1\)
(B) \(\frac{x}{-2} + \frac{y}{1} = 1\)

(C) \(\frac{x}{3} + \frac{y}{2} = 1\)
(D) \(\frac{x}{1} - \frac{y}{2} = 1\)

(4, 3) বিন্দুপাতী একটি সরলরেখার ছানার অক্ষয়ের ছেদিতাংশের সমষ্টি হল \(-1\). সরলরেখাটির সমীকরণ হবে

(A) \(\frac{x}{2} - \frac{y}{3} = 1\)
(B) \(\frac{x}{-2} + \frac{y}{1} = 1\)

(C) \(\frac{x}{3} + \frac{y}{2} = 1\)
(D) \(\frac{x}{1} - \frac{y}{2} = 1\)

68. Consider a tangent to the ellipse \(\frac{x^2}{2} + \frac{y^2}{4} = 1\) at any point. The locus of the midpoint of the portion intercepted between the axes is

(A) \(\frac{x^2}{2} + \frac{y^2}{4} = 1\)
(B) \(\frac{x^2}{4} + \frac{y^2}{2} = 1\)

(C) \(\frac{1}{3x^2} + \frac{1}{4y^2} = 1\)
(D) \(\frac{1}{2x^2} + \frac{1}{4y^2} = 1\)

উপর্যুক্ত \(\frac{x^2}{2} + \frac{y^2}{4} = 1\) এর উপরিবিন্দু ধেয়েক বিন্দুতে স্পর্শক বিলক্স কর। অক্ষয়ের মধ্যে ঐ স্পর্শকের ছেদিতাংশের মধ্যবিন্দুর সঞ্চারপথ হবে

(A) \(\frac{x^2}{2} + \frac{y^2}{4} = 1\)
(B) \(\frac{x^2}{4} + \frac{y^2}{2} = 1\)

(C) \(\frac{1}{3x^2} + \frac{1}{4y^2} = 1\)
(D) \(\frac{1}{2x^2} + \frac{1}{4y^2} = 1\)
69. Let \(y = \frac{x^2}{(x+1)^2 (x+2)} \). Then \(\frac{d^2 y}{dx^2} \) is

(A) \(2 \left[\frac{3}{(x+1)^2} - \frac{3}{(x+2)^2} + \frac{4}{(x+1)^3} \right] \)

(B) \(3 \left[\frac{2}{(x+1)^3} + \frac{4}{(x+1)^2} - \frac{5}{(x+2)^3} \right] \)

(C) \(\frac{6}{(x+1)^3} - \frac{4}{(x+1)^2} + \frac{3}{(x+1)^3} \)

(D) \(\frac{7}{(x+1)^3} - \frac{3}{(x+1)^2} + \frac{2}{(x+1)^3} \)

70. Let \(f(x) = \frac{1}{3}x \sin x - (1 - \cos x) \). The smallest positive integer \(k \) such that \(\lim_{x \to 0} \frac{f(x)}{x^k} \neq 0 \) is

(A) 4 \hspace{1cm} (B) 3 \hspace{1cm} (C) 2 \hspace{1cm} (D) 1

দেওয়া আছে \(f(x) = \frac{1}{3}x \sin x - (1 - \cos x) \). \(\lim_{x \to 0} \frac{f(x)}{x^k} \neq 0 \) হলে \(k \)-এর সর্বনিম্ন পৌর্ণমিক ধারনক্রম

মান হবে

(A) 4 \hspace{1cm} (B) 3 \hspace{1cm} (C) 2 \hspace{1cm} (D) 1
71. Tangent is drawn at any point \(P(x, y) \) on a curve, which passes through \((1, 1)\). The tangent cuts X-axis and Y-axis at A and B respectively. If \(AP : BP = 3 : 1 \), then

(A) the differential equation of the curve is \(3x \frac{dy}{dx} + y = 0 \)

(B) the differential equation of the curve is \(3x \frac{dy}{dx} - y = 0 \)

(C) the curve passes through \(\left(\frac{1}{8}, 2 \right) \)

(D) the normal at \((1, 1)\) is \(x + 3y = 4 \)

72. The area of the figure bounded by the parabola \(x = -2y^2, x = 1 - 3y^2 \) is

(A) \(\frac{1}{3} \) square unit
(B) \(\frac{4}{3} \) square unit
(C) 1 square unit
(D) 2 square unit

\(x = -2y^2 \) and \(x = 1 - 3y^2 \) intersect each other at \((\frac{1}{2}, \pm \sqrt{\frac{3}{2}}) \)
73. A particle is projected vertically upwards. If it has to stay above the ground for 12 seconds, then
(A) velocity of projection is 192 ft/sec
(B) greatest height attained is 600 ft
(C) velocity of projection is 196 ft/sec
(D) greatest height attained is 576 ft

একটি বস্তুকে উপরের অভিমুখে প্রক্ষিপ্ত হল। কণাটি ভূমির উপরে 12 সেকেন্ডে অতিবাহিত করলে
(A) প্রক্ষেপের গতিরেখা হবে 192 ft/sec
(B) সর্বোচ্চ অর্ধেক উচ্চতা হবে 600 ft
(C) প্রক্ষেপের গতিরেখা হবে 196 ft/sec
(D) সর্বোচ্চ অর্ধেক উচ্চতা হবে 576 ft

74. The equation \(\frac{(\log_3 x)^2 - \frac{9}{2} \log_3 x + 5}{x} = 3 \sqrt{3} \) has
(A) at least one real root
(B) exactly one real root
(C) exactly one irrational root
(D) complex roots

(\(\log_3 x \)) একটি কমপক্ষে একটি কমপক্ষে বীজ থাকবে
(B) ঠিক একটি বীজ থাকবে
(C) ঠিক একটি অমূলদ বীজ থাকবে
(D) বীজগুলি কমপক্ষে হবে

75. In a certain test, there are \(n \) questions. In this test \(2^{n-3} \) students gave wrong answers to at least \(i \) questions, where \(i = 1, 2, \ldots, n \). If the total number of wrong answers given is 2047, then \(n \) is equal to
(A) 10
(B) 11
(C) 12
(D) 13

একটি পরীক্ষায় \(n \) সংখ্যক প্রশ্ন প্রদত্ত। ঐ পরীক্ষায় \(2^{n-3} \) সংখ্যক পড়াই কমপক্ষে \(i \) সংখ্যক প্রশ্ন (\(i = 1, 2, \ldots, n \)) অতি উদ্ভুত হয়। যদি অতি উদ্ভুত সমূহের সংখ্যা 2047 হয়, তবে \(n \) হবে
(A) 10
(B) 11
(C) 12
(D) 13

A 30
ম-২০২০

সাপ্তাহিক নংরঃ ১০০

নির্দেশাবলী

১. এই প্রশ্নের তিনটি ক্যাটেরগরি অবজেকিক প্রশ্ন আছে এবং প্রতিটি প্রশ্নের চারটি সঠিক উত্তর দেওয়া আছে।

২. Category-I : একটি উত্তর সঠিক। সঠিক উত্তর দিলে ১ নং নম্বর কোটা যাবে।

৩. Category-II : একটি উত্তর সঠিক। সঠিক উত্তর দিলে ২ নং নম্বর কোটা যাবে।

৪. Category-III : একটি উত্তর সঠিক। সঠিক উত্তর দিলে ৩ নং নম্বর কোটা যাবে।

৫. OMR পত্রে A, B, C, D চিহ্নিত সঠিক দৃষ্টি ভাটার কথা উত্তর দিতে হবে।

৬. OMR পত্র উত্তর নিয়ে অথবা কোন বন্ধ পৃষ্ঠপোষক ব্যবহার করবে।

৭. OMR পত্রে সিনিট হলার অথবা কোন দাগ দেয়া হয় না।

৮. OMR পত্রে সিনিট হলার সম্পর্কে প্রশ্নাতে উত্তর দেয়া এবং প্রয়োজনীয় ঘরগুলো পূর্ণ করবে।

৯. OMR পত্রে সিনিট হলার নাম ও পরীক্ষা কেন্দ্রের নাম লিখতে হবে এবং নামের সম্পূর্ণ সম্পর্কে লিখতে হবে।

১০. প্রশ্নাতে নথি নথি তুলো নিয়ন্ত্রণ করে পরীক্ষার্থীর নাম, পরীক্ষা কেন্দ্রের নাম ও যাতে কেনের তুলো তাকবিক উত্তর পুরুষ রাখতে হবে এবং পুরুষ তোলো তাকবিক উত্তর পরীক্ষার্থীর নাম নিয়ন্ত্রণ করে।

১১. সময়ের অতিরিক্ত বিন্যাসে, ক্যান্ডেল, লপ্টের, স্লাইডার, পেনিসবাথ, ফ্র্যাক্স ও কোন ধরনের তালিকা পরীক্ষার কথা আর দেওয়া যাবে না।

১২. OMR পত্রে সিনিট হলার নাম ও পরীক্ষা কেন্দ্রের নাম তোলো করে না।

১৩. পরীক্ষা কক্ষ চালু আর OMR পত্রে অবশ্যই পরিপূর্ণ করতে হবে।

১৪. এই প্রশ্নাতে ইংরেজি ও বাংলা উভয় ভাষায়ই প্রশ্ন দেওয়া আছে। বাংলা মাধ্যমে প্রশ্ন তৈরীর সময় প্রয়োগীতি সরবরাহ ও সত্যি অনুসরন করা হয়েছে। তাই সব দুটি যদি কোন অপরিমেয় লক্ষ্য করা যায়, সেক্ষেত্রে ইংরেজি মাধ্যমে দেওয়া প্রশ্ন উপাদান ও চুরি বলে বিবেচিত হবে।