PART : PHYSICS

Ans. (2)

Sol.
K.E. $\Rightarrow K = \frac{p^2}{2m}$

$P = \sqrt{K}$

$P_2 = \frac{K_2}{P_2} \sqrt{4K}$
2. A RLC circuit is in its resonance condition. Its circuit components have value
\[R = 5 \Omega \]
\[L = 2H \]
\[\frac{V_1}{V} = 2 \]
\[\frac{P_2 - P_1}{P_1} = \left(\frac{P_2}{P_1} - 1 \right) \times 100 = 2 - 1 = 100 \]
\[\frac{\Delta P}{P_1} = 100\% \]

3. A wheel rotating with an angular speed of 600 rpm is given an constant angular acceleration of 1800 rpm² for 10 sec. Number of revolutions revolved by wheel is:
\[(1) 125 \]
\[(2) 100 \]
\[(3) 75 \]
\[(4) 50 \]

\[\text{Ans.} (1) \]

4. \[|\vec{P} - \vec{Q}|, |\vec{P} + \vec{Q}| \] Find angle between \(\vec{P} \) & \(\vec{Q} \)
\[(1) 45^\circ \]
\[(2) 90^\circ \]
\[(3) 135^\circ \]
\[(4) 150^\circ \]

\[\text{Ans.} (2) \]

5. A body is moved from rest along straight line by a machine delivering a constant power. Time taken by body to travel a distance \(S \) is proportional to
\[(1) S^{1/2} \]
\[(2) S^{3/2} \]
\[(3) S \]
\[(4) S^4 \]

\[\text{Ans.} (2) \]

Sol. Energy supply = Pt
6. A uniform rod of young’s modulus Y is stretched by two tension T_1 and T_2 such that rods get expanded to length L_1 and L_2 respectively. Find initial length of rod?

\[\frac{L_1 - L_2}{T_1 - T_2} = \frac{L_2 - L_1}{T_2 - T_1} = \frac{L_2 - L_1}{T_2 - T_1} \]

Ans. (3)

7. Time (T), velocity (v) and angular momentum (h) are chosen as fundamental quantities instead of mass, length and time. In terms of these, dimension of mass would be:

(1) $[T^{-1}C^{-2}h]$
(2) $[T^{-1}C^{-2}h]$
(3) $[T^{-1}C^{-2}h]$
(4) $[T^{-1}C^{-2}h]$

Ans. (1)
Find relation between γ (adiabatic constant) and degree of freedom (f)

- $(1) \ f = \frac{2}{\gamma - 1}$
- $(2) \ f = \frac{\gamma}{\gamma - 1}$
- $(3) \ f = \frac{\gamma - 1}{2}$
- $(4) \ f = \frac{\gamma - 1}{\gamma}$

Ans. (1)

Sol.

\[
C_v = \frac{R}{\gamma - 1} f
\]

\[
\Rightarrow \gamma = \frac{C_v(\gamma - 1)}{R} + 1 = \frac{2}{f}
\]

\[
f = \frac{2}{\gamma - 1}
\]

Two identical drops of Hg coalesce to form a bigger drop. Find ratio of surface energy of bigger drop to smaller drop.

- $(1) \ 2^{1/2}$
- $(2) \ 3^{6/5}$
- $(3) \ 2^{1/3}$
- $(4) \ 5^{9/3}$

Ans. (3)

Sol.

\[
\frac{2\pi R_1^2}{3} \quad \frac{2\pi R_2^2}{3}
\]

\[
R \sim 2^{1/3}
\]

Now,

\[
\frac{U_{bigger}}{U_{smaller}} = \frac{S \times 4\pi R^2}{S \times 4\pi r^2} = \frac{R^2}{r^2} = 2^{2/3}
\]

Ans. (3)

Sol.

\[
PV = nRT
\]

Therefore, PV vs T graph is straight line.
11. For a body in pure rolling, its rotational kinetic energy is 1/2 times of its translation kinetic energy. They body should be?

(1) solid cylinder (2) Ring (3) solid sphere (4) Hollow sphere

Ans. (1)

Sol. Given:

\[\frac{1}{2} I \omega^2 = \frac{1}{2} \frac{1}{2} m v^2 \]

as \(v = R \omega \) (pure rolling)

Thus, solid cylinder.

12. Magnetic susceptibility of material is 499 & \(\chi_m = 4 \times 10^{-7} \). SI unit then find \(\mu \).

(1) 500 (2) 400 (3) 300 (4) 200

Ans. (1)

Sol. \(\mu = 1 + \chi \)

\[= 1 + 499 = 500 \]

13. A plane electromagnetic wave travels in free space. Electric field is \(\vec{E} = \vec{E}_0 \hat{j} \) and magnetic field is \(\vec{B} = \vec{B}_0 \hat{k} \). What is the unit vector along the direction of propagation of electromagnetic wave?

(1) \(\hat{j} \) (2) \(\hat{k} \) (3) \(\hat{z} \) (4) \(\hat{i} \)

Ans. (3)

Unit vector in direction \(\vec{E} \times \vec{B} \)

\[\vec{E} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \vec{E}_0 \hat{j} & \vec{0} & \vec{B}_0 \hat{k} \\ \vec{0} & \vec{E}_0 \hat{j} & \vec{0} \end{vmatrix} = (\vec{E}_0 \vec{B}_0 \sin 90) \hat{i} + \hat{j}

\[j = k \]

14. Two satellites of mass \(M_a \) and \(M_b \) are revolving around a planet of mass \(M \) in radius \(R_a \) and \(R_b \) respectively. Then?

(1) \(T_a > T_b \) if \(R_a > R_b \)

(2) \(T_a > T_b \) if \(M_a > M_b \)

(3) \(T_a > T_b \) if \(M_a > M_b \)

(4) \(T_a > T_b \) if \(R_a < R_b \)

Ans. (1)

Sol.

\[T \propto \frac{1}{R^{3/2}} \]

\[\frac{T_a}{T_b} \propto \left(\frac{R_b}{R_a} \right)^{3/2} \]
15. If N_0 active nuclei becomes $\frac{N_0}{16}$ in 80 days. Find half-life of nuclei?

Sol.

$$N_0 = \frac{N_0}{2} \quad N_4 = \frac{N_0}{4} \quad N_8 = \frac{N_0}{8} \quad N_{16} = \frac{N_0}{16}$$

$$4 \times t_{1/2} = 80 \text{ days}$$

$$t_{1/2} = 20 \text{ days}$$

16. A satellite is revolving around a planet in an orbit of radius R. Suddenly radius of orbit becomes $1.02 \times R$. Then what will be its change in time period of revolution?

Ans. 3

Sol.

As $T \propto R^{3/2}$

$$T_1 = kR_1^{3/2}$$

$$T_2 = kR_2^{3/2}$$

$$\frac{\Delta T}{T} = \frac{3}{2} \times \frac{\Delta R}{R} = 3\%$$

17. A person walks up a stationary escalator in the time t_1. If he remains stationary on the escalator, then it can take him up in time t_2. Determine the time it would take to walk up on the moving escalator?

Ans. (1)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

To Know more: SMS RESO to 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

This solution was download from Resonance JEE (MAIN) 2021 Solution portal PAGE # 6

Sol. Suppose length of escalator = L

Speed of man wrt escalator = $\frac{L}{t_1}$

Speed of escalator = $\frac{L}{t_2}$

Speed of man wrt ground when escalator is moving $= \frac{L}{t_1} + \frac{L}{t_2}$

Time taken by the man to walk on the moving escalator $= \frac{L}{t_1} + \frac{L}{t_2} + \frac{t_1 t_2}{t_1 + t_2}$

18. For given graph between decay rate & time. Find half-life (where $R =$ decay rate)

(1) $\frac{10}{3} \ln 2$

(2) $\frac{20}{3} \ln 2$

(3) $\frac{3}{20} \ln 2$

(4) $\frac{20}{3} \ln 2$

Ans. (2)
Sol.
\[R = R_{\text{max}}^{1/3} \]
\[\ln R = \ln R_0 - \lambda t \]
\[\text{slope} = -\lambda = -\frac{6}{40} \]
\[\lambda = \frac{3}{20} \]
\[t_{1/2} = \frac{\ln 2}{\lambda} = \frac{\ln 2}{3} - 20 = \frac{20}{3} - \ln 2 \]

time period of oscillation?

1. \(2\pi \sqrt{\frac{x_2^2 + x_1^2}{v_1^2 + v_2^2}}\)
2. \(2\pi \sqrt{\frac{x_2^2 - x_1^2}{v_1^2 + v_2^2}}\)
3. \(2\pi \sqrt{\frac{x_2^2 + x_1^2}{v_1^2 - v_2^2}}\)
4. \(2\pi \sqrt{\frac{x_2^2 + x_1^2}{v_1^2 + v_2^2}}\)

Ans. (3)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IP/A, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | Fax No.: +91-022-213617222
To Know more: Sms RESO at 56677 | Website: www.resonance.ac.in | Email: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029
Toll Free: 1800 258 5555 | 7340010333 | Facebook.com/ResonanceAcademy | Twitter.com/ResonanceAcademy | Facebook.com/Resonance | www.youtube.com/Resonance | www.youtube.com/resonance

© Resonance Eduventures Limited | Toll-Free 1800-258-5555 | (0744) 2777777, 2777700 | contact@resonance.ac.in | CIN - U80302RJ2007PLC024029

Sol.

\[v = 0 \sqrt{A^2 - x^2} \]

\[v_1 = \omega \sqrt{A^2 - x_1^2} \]

\[v_2 = \omega \sqrt{A^2 - x_2^2} \]

\[(\frac{v_1}{\omega})^2 - (\frac{v_2}{\omega})^2 = x_2^2 - x_1^2 \]

\[\phi = \frac{v_2^2 - v_1^2}{x_2^2 - x_1^2} \]

\[\phi = \frac{v_2^2 - v_1^2}{x_2^2 - x_1^2} \]

\[T = 2\pi \sqrt{\frac{x_2^2 - x_1^2}{v_1^2 + v_2^2}} \]

Ans. (3)

Sol.

KE = \(h\nu - W\)

\[eV = \frac{h\nu}{\lambda} - W \]

For first case

\[e(3V_0) = \frac{h\nu}{\lambda} - W \quad (i) \]

For second case

\[eV_0 = \frac{h\nu}{2\lambda} - W \quad (ii) \]

From equation (i) and (ii)

\[W = \frac{h\nu}{4\lambda} \]

For \(\lambda\),
(1) \(\tan^{-1} \left(\frac{1}{\sqrt{6}} \right) \)

(2) \(\tan^{-1} \left(\frac{1}{\sqrt{2}} \right) \)

(3) \(\tan^{-1} \left(\frac{1}{\sqrt{4}} \right) \)

(4) \(\tan^{-1} \left(\frac{1}{\sqrt{3}} \right) \)

Ans. (1)

Sol. Let vertical and horizontal component of earth's magnetic field at meridian will be V and H.

Angle of dip, \(\tan \theta = \frac{V}{H} \)

at angle of 45° from magnetic meridian, angle of dip = 30°

\[\tan 30° = \frac{V}{H \cos 45°} \]

\[= \frac{1}{\sqrt{3}} \]

\[\Rightarrow \frac{V}{H} = \frac{1}{\sqrt{3}} \]

\[\theta = \tan^{-1} \left(\frac{1}{\sqrt{3}} \right) \]

22. A sodium lamp in space was emitting waves of wavelength 2880 Å. When observed from a planet, its wavelength was recorded 2886 Å. Find the speed of planet?

(1) \(4.25 \times 10^5 \) m/s

(2) \(6.25 \times 10^5 \) m/s

(3) \(2.75 \times 10^5 \) m/s

(4) \(3.75 \times 10^5 \) m/s

Ans. (2)

Sol. \(v_{\text{rel}} = \frac{n_2}{n_1} \lambda_1 \)

\[v_{\text{rel}} = \frac{6}{2880} \times 3 \times 10^8 \]

\[= 6.25 \times 10^5 \text{ m/s} \]

23. An electron having de Broglie wavelength is falls on an X-ray tube. The cut off wave length of emitted X-Ray is

(1) \(\frac{2\pi m c^2}{\hbar} \)

(2) \(\frac{2\pi}{mc} \)

(3) \(\frac{h}{mc} \)

(4) \(\frac{2\pi m c^2}{3\hbar} \)

Ans. (1)
24. A gas is undergoing change in state by an isothermal process AB as follows. Work done by gas in process AB is

\[W = \int_{V_1}^{V_2} P \, dV \]

where \(P \) is the pressure and \(V \) is the volume.

\[W = P \cdot \Delta V \]

\[W = P \cdot (V_2 - V_1) \]

\[W = P \cdot V_2 - P \cdot V_1 \]

\[W = \Delta P \cdot V_1 \]

(1) 100 ln2 Joule \hspace{1cm} (2) - 100 ln2 Joule \hspace{1cm} (3) 200 ln2 Joule \hspace{1cm} (4) - 200 ln2 Joule

Ans. (3)

Sol. \[W_{volumetric} = P \cdot V_1 \cdot \ln \left(\frac{V_2}{V_1} \right) \]

\[V_1 = 100 \text{ m}^3 \]

\[V_2 = 200 \text{ m}^3 \]

\[P_1 = 2 \text{ N/m}^2 \]

\[W = 2 \times 100 \ln \left(\frac{200}{100} \right) \]

\[W = 200 \ln 2 \text{ Joule} \]
26. \(I - V \) characteristic curve of a diode in forward bias is given in fig. Find out dynamic resistance -

\[
\begin{align*}
3mA & \\
0.7V & \\
0.7 & \\
0.7 & \\
0.7 & \\
0.7 & \\
I & \\
V & \\
\end{align*}
\]

(1) 212.3Ω
(2) 205.3Ω
(3) 245.3Ω
(4) 233.3Ω

Ans. (4)

Sol.
Dynamic resistance = \(\frac{\Delta V}{\Delta I} \)

\[
= \frac{0.7}{3mA} = 233.3Ω
\]

27. An electron is accelerated through a voltage of 40 kV. What will be its wavelength?

(1) 0.061Å
(2) 0.011Å
(3) 0.021Å
(4) 0.161Å

Ans. (1)

Sol. \(\lambda = \frac{h}{p} \)
28. Find value of Rs in given ckt? (V2 = 8V)

\[
\begin{align*}
\sqrt{2} \text{meV} \\
= \sqrt{12.27} \frac{\AA}{40 \times 10^3} = 0.061\AA \\
20V \\
R_s & \quad (Zener_diode) \\
& \quad \Rightarrow 8\uparrow \\
& \quad 2\downarrow \\
& \quad \Rightarrow \quad R_s \\
(1) \quad 4\Omega & \quad (2) \quad 6\Omega \\
(3) \quad 3\Omega & \quad (4) \quad 5\Omega
\end{align*}
\]

Resonance Eduventures Ltd.
Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ans. (2)
Sol. Applying KVL

\[20 - 8 - 2R_s = 0\]

\[R_s = 6\Omega\]

29. Two stars of masses \(m_1\) and \(m_2\) are in mutual interaction and revolving in orbits of radii \(r_1\) and \(r_2\) respectively. Time period of revolution for this system will be

\[T = \frac{2\pi}{\omega}
\]

\[
\omega = \sqrt{\frac{GM}{r^3}}
\]

\[T = 2\pi \sqrt{\frac{(r_1 + r_2)^3}{GM}}
\]

\[T = 2\pi \sqrt{\frac{(r_1 + r_2)^3}{GM}}
\]
Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744 2777777, 2777700 | FAX No.: +91-022 33167722
To Know more : www.resonance.ac.in | Email: contact@resonance.ac.in | CIN: U80300RJ2007PLC024029
Toll Free: 1800 258 5555 | 7340010333

© Resonance Eduventures Limited | Toll Free: 1800-258-5555 | (0744) 2777777, 2777700 | contact@resonance.ac.in | CIN - U80300RJ2007PLC024029