Question Paper Name: Electronics and Communication Engineering 11th May 2017 Shift 1

Subject Name: Electronics and Communication Engineering

Duration: 120

Electronics and Communication Engineering

Display Number Panel:

Group All Questions:

Question Number: 1 Question Id: 871112361 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If $\lambda = a + ib$ is an eigenvalue of a Hermitian matrix, then

Options:

$$b = 0$$

$$_{2.} a = 0$$

$$|a + ib| = 1$$

IQPBANK.COM

The length of one loop of the curve $6y^2 = x(x-2)^2$ is

Options:

1
$$\sqrt{3}$$

$$\frac{4}{\sqrt{3}}$$

Question Number: 3 Question Id: 871112363 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The maximum value of xyz^2 subject to $x^2 + y^2 + z^2 = 1$ is

- 2
- J.
- 4

Question Number: 4 Question Id: 871112364 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The solution of differential equation dx - (x + y + 1)dy = 0 is

Options:

$$(x+y+2)e^y = c$$

$$(x-y-2)e^{y}=c$$

$$(x + y + 2)e^{-y} = c$$

$$(x-y+2)e^{y}=c$$

Question Number: 5 Question Id: 871112365 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If the rate of disintegration of uranium is proportional to its mass with λ as the constant of proportionality then the half-life of uranium is

Options:

$$\frac{1}{\lambda} \ln 2$$

 $_2$ $\lambda \ln 2$

$$\frac{\lambda}{\ln 2}$$

1

Question Number: 6 Question Id: 871112366 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

An example of a nowhere analytic function is

Options:

$$e^{x}(\cos y + i \sin y)$$

 $(x-y)^2 + 2i(x+y)$

Question Number: 7 Question Id: 871112367 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

In a family of four children, the probability that at least one child is a girl, is

Options:

- 15 16
- $\frac{3}{4}$
- 3. 4
- 4. 16

Question Number: 8 Question Id: 871112368 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

In a college 60% are girls and 40% are boys; 25% of boys and 10% of girls study mathematics. If a student is chosen at random then the probability that he/she studies mathematics is

ernatio

Options:

- 1 25
- 3
- 5
- 21

UPIQPBANK.COM

Question Number: 9 Question Id: 871112369 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

From the table given below

X	0	1	2	3	4
f(x)	1	1.5	3	5.5	9

The value of $\int_0^4 f(x)dx$ by Simpson's rule, is

Options:

1. 12.00

Question Number: 10 Question Id: 871112370 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of y(0.2), by Euler's method, if y(0) = 1, h = 0.2, $f(x_0, y_0) = 1$, is

Options:

- 1.02
- 2 0.98
- , 1.2
- 4 0.99

Question Number: 11 Question Id: 871112371 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The magnitude of the frequency response of a second order closed loop system with transfer function $\frac{C(S)}{R(S)} = \frac{8}{S^2 + S + 4}$ is shown below.

The resonant frequency ω₀ and the resonant peak M₀ are

Options:

1.

$$\omega_0 = 0.66 \text{ rad/sec}, M_0 = 6.30 \text{ dB}$$

 $\omega_0 = 0.66 \text{ rad/sec}, M_0 = 12.30 \text{ dB}$

 $\omega_0 = 1.87 \text{ rad/sec}, M_0 = 12.30 \text{ dB}$

 $\omega_0 = 1.87 \text{ rad/sec}, M_0 = 6.30 \text{ dB}$

Question Number : 12 Question Id : 871112372 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

A source of angular frequency 1 rad/sec has a source impedance consisting of 1 Ω resistance in series with 1 H inductance. The load that will obtain the maximum power transfer is

1 Ω resistance in series with a 1 F capacitor. 4 1 Ω resistance in parallel with a 1 F capacitor. Question Number: 13 Question Id: 871112373 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical Which of the following cannot be connected in series unless they are identical? **Options:** Voltage sources Current sources Voltage sources and Current sources Resistances Question Number: 14 Question Id: 871112374 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** A series RLC circuit has $R = 80 \Omega$, L = 240 mH and C = 5 mF. If the input voltage is $v(t) = 10 \cos(2t)V$ then current flowing through the circuit is $29.61 \cos(2t - 51.2^{\circ}) \text{ mA}$ $29.61 \cos(2t + 51.2^{\circ}) \text{ mA}$ $78.32 \cos(2t - 51.2^{\circ}) \text{ mA}$ $78.32 \cos(2t + 51.2^{\circ}) \text{ mA}$ Question Number: 15 Question Id: 871112375 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** Reactance curve is a graph drawn between and **Options:** Reactance, Frequency Reactance, Phase Frequency, Amplitude Phase, Time period

The second Leaves with a second to the secon

Options:

poles at s = 0, $s = \infty$

poles at s = 0 and zero at $s = \infty$

no poles at s = 0

no poles at $s = \infty$

Question Number: 17 Question Id: 871112377 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A series RLC circuit has resonance frequency of 1 kHz and a quality factor Q = 100. If each of R, L and C is doubled from its original value, the new Q of the circuit is

Options:

- , 25
- 2 50
- 3. 100

4. 200

UPIQPBANK.COM

Question Number: 18 Question Id: 871112378 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Calculate the current (I) in the following network.

Question Number: 19 Question Id: 871112379 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The switch S in the circuit shown has been closed for a long time. It is opened at time t=0 and remains open after that. Assume that the diode has zero reverse current and zero forward voltage drop. The steady state magnitude of the capacitor voltage V_c (in volts) is

Options:

- 1. 100
- , 105
- 3. 110
- 4 115

Question Number: 20 Question Id: 871112380 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A two port network is defined by the relations: $I_1 = 2V_1 + V_2$ and $I_2 = 2V_1 + 3V_2$ then Z_{12} is

UPIQPBANK.COM

Options:

- $, 2\Omega$
- $_2$ 1 Ω
- $_3$ 0.5 Ω
- 0.25 Ω

Question Number: 21 Question Id: 871112381 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Two coupled coils of $L_1 = 0.8$ H and $L_2 = 0.2$ H are having a coupling coefficient K = 0.9 The mutual inductance M is

Options:

0.144 H

3.

0.43 H

Question Number: 22 Question Id: 871112382 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The Y-Parameters of a two port network is Y=

$$\begin{bmatrix} 0 & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \Omega$$
 then the Network is

Options:

- Asymmetrical, Reciprocal and Passive
- Asymmetrical, Non-Reciprocal and Active
 - Symmetrical, Non-Reciprocal and Active
 - Symmetrical, Reciprocal and Passive

Question Number: 23 Question Id: 871112383 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Tunnel diode is used as

Options:

- High speed switch
- Clipper
- Low gain amplifier
- Low frequency oscillator

Question Number: 24 Question Id: 871112384 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

At 300 K, a Si diode has a saturation current of 10 nA. If the current through diode is 5 mA, then voltage across the diode is

- 0.28 V
- 0.96 V
- 0.68 V
- ₄ 0.79 V

Orientation: Vertical

The constant current area of a FET lies in between

Options:

- Cutoff and saturation
- Cutoff and pinchoff
- Pinchoff and breakdown
- 0 and IDSS

Question Number: 30 Question Id: 871112390 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If $\alpha = 0.98$, $I_{co} = 6 \mu A$ and $I_{B} = 100 \mu A$ for a transistor then value of I_{c} will be

Options:

- 1. 6.2 mA
- ₂ 5.4 mA
- ₃ 5.2 mA
- 4.4.6 mA

Question Number: 31 Question Id: 871112391 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

MOSFET is a

Options:

- Three terminal device
- 2 Four terminal device OPBAKCOM
- Two terminal device
- Five terminal device

Question Number: 32 Question Id: 871112392 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Under low level injection assumption, the injected minority carrier current for an extrinsic semiconductor is essentially the

- Diffusion current
- 2. Drift current

Question Number: 33 Question Id: 871112393 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

An LED is connected to a supply voltage of 15 V through a 2.2 k Ω resistor. The voltage across LED is 2 V. The current through the LED is

Options:

- 6.8 mA
- 2 13 mA
- 3 5.91 mA
- 4. 3.9 mA

Question Number: 34 Question Id: 871112394 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

For MOSFET to work as an amplifier, it should be biased in

Options:

- Saturation region
- , Linear region
- Cutoff region
- Unsaturation region

Question Number: 35 Question Id: 871112395 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The Ebers-Moll model of a BJT is valid

Options:

only in active mode

- only in active and saturation modes
- only in active and cut-off modes
- in active, saturation and cut-off modes

Question Number: 36 Question Id: 871112396 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which of the following is a characteristic of positive photoresister?

Options:

Unexposed areas are removed during development

-3

Finer resolution not achieved

Question Number: 37 Question Id: 871112397 Display Question Number: Yes Single Line Question Option: No Option

The configuration of a cascade amplifier is

Options:

- 1 CE-CE
- , CE-CB
- , CC-CB
- CC-CC

Question Number : 38 Question Id : 871112398 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

For a BJT, the common-base current gain α =0.98 and the collector base junction reverse bias saturation current I_{CO} = 0.6 μ A. This BJT is connected in the common emitter mode and operated in the active region with a base drive current I_B = 20 μ A. The collector current I_C for this mode of operation is

Options:

- 0.98 mA
- 2 0.99 mA
- ₂ 1.0 mA
- 4. 1.01 mA

Question Number: 39 Question Id: 871112399 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

An instrumentation amplifier has a high

Options:

- output impedance
- power gain
- , CMRR
- supply voltage

Question Number: 40 Question Id: 871112400 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

2

reduces gain increases frequency and phase distortions reduces bandwidth increases noise Question Number: 41 Question Id: 871112401 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical The action of a JFET in its equivalent circuit can best be represented as a **Options:** 1 Current controlled current source 2 Current controlled voltage source Voltage controlled voltage source Voltage controlled current source Question Number: 42 Question Id: 871112402 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** An NPN transistor has a beta cut-off frequency f_B of 1 MHz and Common Emitter short circuit low frequency current gain β_0 of 200 at unity gain frequency f_T and the alpha cutoff frequency fo respectively are **Options:**

200 MHz, 201 MHz

200 MHz, 199 MHz

, 199 MHz, 200 MHz

201 MHz, 200 MHz

Question Number: 43 Question Id: 871112403 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

IQPBANK.COM

Question Number: 44 Question Id: 871112404 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which of the following configurations has inherent bias stability?

Options:

- Common Emitter Amplifier
- Common Base Amplifier
- Common Source Amplifier PBA CO

Common Emitter with Emitter Degeneration

Question Number: 45 Question Id: 871112405 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A transistor has $h_{fe} = 160$ and at frequency 50 MHz the magnitude of short circuit current gain is 8. The 3 dB bandwidth of the transistor is

- 1.5 MHz
- 2.5 MHz
- 3.5 MHz

Question Number: 46 Question Id: 871112406 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

An amplifier has an open-loop gain of 100, an input impedance of 1 k Ω and an output impedance of 100 Ω . A feedback network with a feedback factor of 0.99 is connected to the amplifier in a voltage series feedback mode. The new input and output impedance respectively are

Options:

- 10Ω and 1Ω
- 10Ω and 10Ω
- , $100 \text{ k}\Omega$ and 1Ω
- $100 \text{ k}\Omega$ and $1 \text{ k}\Omega$

Question Number: 47 Question Id: 871112407 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If a feedback resistor R is connected between positive terminal and output of a non-inverting op-amp having a gain of 2, then the input resistance with respect to ground is

Options:

- 1. R
- R/2
- $_3$ -R/2
- 4. -R

Question Number: 48 Question Id: 871112408 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Cerna

The final stage of a multistage amplifier uses

Options:

- RC coupling
- Transformer coupling
- Direct coupling
- Impedance coupling

Question Number : 49 Question Id : 871112409 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

The voltage gain of an amplifier in an oscillator is 50. The attenuation of the feedback circuit must be

ique /

Question Number: 50 Question Id: 871112410 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

CMRR of an op-amp is given as 80db and Ad is 20000. Value of Acm will be

Options:

- , 4
- . 8
- , 2
- 4. 1

Question Number: 51 Question Id: 871112411 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The K-map for a Boolean function is shown in the following figure. The number of essential prime implicants for this function are

CD AB	00	01	11	10
00	1	1	0	1
01	0	0	0	1
11	1	0	0	0
10	1	0	0	1

UPIQPBANK.COM

Options:

- 1 4
- . .
- 6
- . 8

Question Number: 52 Question Id: 871112412 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The number of comparators in a 4-bit flash A/D converter is

- 1 4
- 2 5
- 3. 15

Orientation: Vertical Consider the following logic families: A) MOS B) DTL C) RTL D) ECL The sequence of these logic families in the order of their increasing noise margin is **Options:** C, D, A, B , C, D, B, A 3. D, C, A, B 4 D, C, B, A Question Number: 54 Question Id: 871112414 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical The Boolean function Y = AB + CD is to be realized using only 2-input gates. The minimum number of gates required is **Options:** Prnatio Question Number: 55 Question Id: 871112415 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** Commercially available ECL gates use two ground lines and one negative supply in order to **Options:** Reduce power dissipation Increase fan-out Reduce loading effect

Question Number: 56 Question Id: 871112416 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Eliminate the effect of power line glitches on the biasing circuit

Options:

- 1 10 μs
- 2 20 µs
- ₃ 40 μs
- 4. 50 μs

Question Number: 57 Question Id: 871112417 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Consider the following circuits (Assume all gates to have a finite propagation delay):

Which of these circuits generate a periodic square wave output?

Options:

- 1 and 2 only
- 2 3 and 4 only PIQPBANK.COM
- 2, 3 and 4 only
- 1, 2, 3 and 4

Question Number: 58 Question Id: 871112418 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

In an 8085 microprocessor, the registers which store the result of an addition and the carry bit are, respectively

- 1. B and F
- 2. A and F

Question Number: 59 Question Id: 871112419 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A 3-input majority gate is defined by the logic function M(a, b, c) = ab + bc + ca. Which one of the following gates is represented by the function $M(\overline{M(a, b, c)}, \overline{M(a, b, \overline{c})}, c)$?

Options:

- 3-input NAND gate
- 2 3-input XOR gate
- 3-input NOR gate
- 4-input XNOR gate

Question Number: 60 Question Id: 871112420 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Assume that all the digital gates in the circuit shown in the figure are ideal, the resistor $R = 10 \text{ k}\Omega$ and the supply voltage is 5 V. The D flip-flops D1, D2, D3, D4 and D5 are initialized with logic values 0, 1, 0, 1 and 0 respectively. The clock has a 30% duty cycle. The average power dissipated (in mW) in the resistor R is

Options:

- . 1.5
- 2. 2.5
- 3.5
- 4.4.5

Question Number : 61 Question Id : 871112421 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

A 12 bit ADC of the counter type has input clock frequency of 1 MHz. The maximum conversion time of counter type ADC is

UPIQPBANK.COM

Options:

4.095 ms

1

16.095 ms

Question Number : 62 Question Id : 871112422 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

The 2's complement representation of -17 is

Options:

- 1 01110
- , 01111
- , 11110
- 4. 10001

Question Number: 63 Question Id: 871112423 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A 4-bit modulo-16 ripple counter uses JK-flip-flops. If the propagation delay of each flip flop is 50 ns, the maximum clock frequency that can be used is equal to

Options:

- , 20 MHz
- , 10 MHz
- 5 MHz
- 4. 4 MHz

Question Number: 64 Question Id: 871112424 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Cern

A digital system is required to amplify a binary-encoded audio signal. The user should be able to control the gain of the amplifier from a minimum to a maximum in 100 increments. The minimum number of bits required to encode, in straight binary is

Options:

- . 8
- 2 6
- 2 5
- 5. 7

Question Number: 65 Question Id: 871112425 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The most commonly used amplifier in sample and hold circuit is

- An inverting amplifier with a gain of 10
- An inverting amplifier with a gain of 100

Question Number: 66 Question Id: 871112426 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

Programmable ICs with AND-OR-NOT gates and fuses for AND and OR gates are designated as

Options:

- PAL
- PLA
- ASIC
- PROM

Question Number: 67 Question Id: 871112427 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

The area under the curve $\int_{-\infty}^{\infty} \delta(t) dt$ is

Options:

- Infinite
- Unity
- 3. Zero
- Undefined

Question Number: 68 Question Id: 871112428 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical

Convolution is used to find

Options:

- the impulse response of an LTI system
- the frequency response of the system
- the time response of an LTI system
- the phase response of the system

Question Number: 69 Question Id: 871112429 Display Question Number: Yes Single Line Question Option: No Option

Orientation: Vertical

Options:

- Fourier series
- Discrete Cosine transform
- 3 Discrete Fourier transform
- Hilbert transform

Question Number: 70 Question Id: 871112430 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Fourier transform of a DC signal with unity strength is

Options:

- Zero
- 2 1
- $_3 2\pi\delta(\omega)$
- 2δ(ω)

Question Number: 71 Question Id: 871112431 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The relationship between Laplace transform and frequency response is

Options:

Laplace transform and frequency response are unrelated

Frequency response is a special case of Laplace transform that is restricted to the imaginary axis of the s-plane

- Frequency response is the logarithm of Laplace transform
- Frequency response is the integral of Laplace transform

Question Number: 72 Question Id: 871112432 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The result of the convolution $x(-t) * \delta(-t - t_0)$ is

- $x(t + t_0)$
- $x(t-t_0)$

Question Number: 73 Question Id: 871112433 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The Discrete Fourier Transform (DFT) of the 4-point sequence is

$$x[n] = \{x[0], x[1], x[2], x[3]\} = \{3, 2, 3, 4\}$$
 is

$$X[k] = \{X[0], X[1], X[2], X[3]\} = \{12, 2j, 0, -2j\}.$$

If $X_1[k]$ is the DFT of the 12-point sequence $x_1[n] = \{3, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0\}$, the value of $|X_1[8]/X_1[11]|$ is

Options:

- , 6
- 2 12
- 3. 18
- , 24

Question Number: 74 Question Id: 871112434 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A system is described by the following differential equation, where (t) is the input to the system and y(t) is the output of the system.

$$\dot{y}(tt) + 5y(t) = u(t)$$

When (0) = 1 and (t) is a unit step function, (t) is

Options:

$$0.2 + 0.8e^{-5t}$$

$$0.2 - 0.2e^{-5t}$$

$$0.8 - 0.8e^{-5t}$$

Question Number: 75 Question Id: 871112435 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which of the following statements is true?

- (A) In a system, if the input is bounded then the output is always bounded
- (B) An LTI system is stable only if the integral of the impulse is finite
- (C) An LTI system is always stable
- (D) In a system, even if the input is unbounded the output can be bounded

Options:

A only

B and D only

Question Number: 76 Question Id: 871112436 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical

If X(Z) is z-transform of x[n], then z-transform of $\{a^{-n}x[n]\}$ will be

Options:

- X(az)
- X(a/z)
- $_4$ X(1/az)

Question Number: 77 Question Id: 871112437 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

The Fourier transform of auto-correlation function is equal to

Options:

- Energy Spectral Density
- Power Spectral Density
- Energy Spectral Density and Power Spectral Density
- Current Spectral Density

Question Number: 78 Question Id: 871112438 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A system with an input x(t) and an output y(t) is described by the relation: y(t) = tx(t). This system is

Options:

- Linear and time-invariant
- Linear and time varying
- Non-linear and time in-variant
- Non-linear and time-varying

Question Number: 79 Question Id: 871112439 Display Question Number: Yes Single Line Question Option: No Option

Orientation: Vertical

	4	
	1	٠

Question Number: 80 Question Id: 871112440 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

The Laplace transform of $\frac{\sin \pi t}{\pi t}u(t)$ is

Options:

$$\frac{2\pi}{(S^2+\pi^2)^2}$$

$$\frac{1}{\pi} \cot^{-1} \frac{s}{\pi}$$

$$\frac{1}{\pi} \tan^{-1} \frac{s}{\pi}$$

$$2\pi(s^2 + \pi^2)$$

Question Number: 81 Question Id: 871112441 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

The gain margin of a system is 0 dB. It represents a

Options:

Stable system

PIQPBANK.COM Unstab<mark>le</mark> system

Conditionally stable system

Marginally stable system

Question Number: 82 Question Id: 871112442 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

Question Number: 83 Question Id: 871112443 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If the characteristic equation of a closed-loop system is $s^2 + 2s + 2 = 0$ then the system is

Options:

Overdamped

Criticallydamped

Underdamped PQPBANK.COM

Undamped

Question Number: 84 Question Id: 871112444 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A polynomial $f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x - a_0$ with all coefficients positive has

Options:

No real roots

No negative real root

Odd number of real roots

Question Number: 85 Question 1a: 8/1112445 Display Question Number: Yes Single Line Question Option: No Option

Dominant stable closed-loop poles are those

Options:

- That are close to the imaginary axis of the left s-plane
- That are far away from the imaginary axis of the left s-plane
- They are close to the real axis of the s-plane
- They are far away from the real axis of the s-plane

Question Number: 86 Question Id: 871112446 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

A unity feedback system has the open loop transfer function G(S) Nyquist plot of G encircles the origin

Options:

- never
- once
- twice
- thrice

Question Number: 87 Question Id: 871112447 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

Consider the signal flow graph of a control plant shown below. The relationship between b₁ and b₂ to make system uncontrollable is

$$b_2 = b_1/2$$

Question Number: 88 Question Id: 871112448 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical

The characteristic equation of a system is $q(s) = S^5 + S^4 - S^3 + S - 1$. The system is

Options:

- Stable
- Marginally Stable
- Unstable
 - Oscillatory

Question Number: 89 Question Id: 871112449 Display Question Number: Yes Single Line Question Option: No Option

For the Bode plot shown in figure, the transfer function is.

Options:

$$\frac{1}{(1+S)^2}$$

$$\frac{1}{S(S+1)}$$

Question Number: 90 Question Id: 871112450 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

A unity feedback system has open loop transfer function G(S). The steady state error is zero for

UPIQPBANK.COM

step input and type-0 G(S)

ramp input and type-0 G(S)

Question Number: 91 Question Id: 871112451 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A certain linear time invariant system has the state and the output equations as given below:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

if
$$x_1(0) = 1$$
, $x_2(0) = -1$, $u(0) = 0$, then $\frac{dy}{dt}|_{t=0}$ is _____.

Options:

- 0.5
- 2 0.75
- 2 1
- , 1.25

Question Number: 92 Question Id: 871112452 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

ASK, FSK and PSK are examples of which of the following encoding?

Cerr

Options:

- Analog to digital
- Digital to digital
- Analog to analog
- Digital to analog

Question Number: 93 Question Id: 871112453 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A component used to connect a balance line to an unbalanced line is called a

Balun

Waveguide

Question Number: 94 Question Id: 871112454 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The de-emphasis filter in a FM receiver increases the output SNR because

Options:

The de-emphasis filter decreases the output noise power

The de-emphasis filter enhances the signal quality

The de-emphasis filter increases the bandwidth of the transmitted signal

The de-emphasis filter increases the output noise power

Question Number: 95 Question Id: 871112455 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Choose the correct one from among the alternatives A, B, C, D after matching an item in group 1 with the most appropriate item in group 2.

Group 1

- P. Ring modulator
- Q. VCO
- R. Foster-Seely
- S. Mixer

Group2

- 1. Clock recovery
- 2. Demodulation of FM
- 3. Frequency Discriminator Conversion
- 4. Summing the two inputs
- 5. Generation of FM
- Generation of DSB-SC

Options:

P-1 Q-6 R-6 S-5

, P-3 Q-5 R-2 S-6

P-2 Q-2 R-3 S-1

4 P-4 Q-3 R-2 S-3

Question Number: 96 Question Id: 871112456 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The bit rate of digital communication system is R Kbits/s. The modulation used is 16 QAM. The minimum bandwidth required for ISI free transmission is?

3. R/4 kHz
4. R/4 Hz
Question Number: 97 Question Id: 871112457 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
For a bit rate of 8 Kbps, the best possible values of transmitted frequencies in a coherent
binary FSK 4
Options:
1. 16 kHz and 20 kHz
20 kHz and 32 kHz
3. 20 kHz and 40 kHz
4. 40 kHz and 32 kHz
Question Number: 98 Question Id: 871112458 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Which of the following statements of matched filter is incorrect?
Options:
It maximizes the SNR at the detected instant
2. It minimizes the error at the output
3. It produces ISI
It's impulse response depends on the signal shape
Question Number: 99 Question Id: 871112459 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The image channel rejection in a super heterodyne receiver comes from
Options:
Detector, RF and IF stages
Detector and RF stage only
RF stage only
4. IF stage only

2. 100 112

Options :	
SDMA	
_{2.} FDMA	
3. CDMA	
TDMA	
Question Number : 101 Orientation : Vertical	Questio
The Nyquist sar	nplin
$s(t) = \frac{\sin(500\pi t)}{100\pi t}$	× sin

QPBANK.COM

n Id: 871112461 Display Question Number: Yes Single Line Question Option: No Option

g rate for a signal

$$s(t) = \frac{\sin(500\pi t)}{\pi t} \times \frac{\sin(700\pi t)}{\pi t}$$
 is given by

Options:

- 400 Hz
- 600 Hz
- 1200 Hz
- 1400 Hz

Question Number: 102 Question Id: 871112462 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical

Compression in PCM refers to relative compression of

Options:

- higher signal amplitudes
- lower signal amplitudes
- lower signal frequencies
 - higher signal frequencies

Question Number: 103 Question Id: 871112463 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

A 400 W carrier is amplitude modulated with m = 0.75. The total power in AM is

- 400 W
- 512.5 W

Question Number: 104 Question Id: 871112464 Display Question Number: Yes Single Line Question Option: No Option Which of the following is the indirect way of FM generation? **Options:** Reactance bipolar transistor modulator Armstrong modulator Varactor diode modulator Reactance FM modulator Question Number: 105 Question Id: 871112465 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical In commercial TV transmission in India, picture and speech signals are modulated respectively as **Options:** VSB and VSB Cer VSB and SSB VSB and FM FM and VSB Ouestion Number: 106 Ouestion Id: 871112466 Display Ouestion Number: Yes Single Line Ouestion Option: No Option **Orientation: Vertical** In a PCM system, if we increase the quantization levels from 2 to 8, how do the relative bandwidth requirements vary **Options:** Get doubled

- Get tripled
- Remains same
- Become eight times

Question Number: 107 Question Id: 871112467 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A time varying magnetic field creates

Electric field that is conservative.

Electric field that is non-conservative.

4.

Question Number: 108 Question Id: 871112468 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

For a rectangular waveguide with a = 2 cm and b = 1 cm, the cut-off wavelength for TE_{10} mode will be

Options:

- , 2 cm
- 1 cm
- , 4 cm
- , 3 cm

Question Number: 109 Question Id: 871112469 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which one of the following modes does not exist in waveguides?

Options:

- TE₁₀ mode
- TE11 mode
 - TEM mode
- TE01 mode UPIQPBANK.COM

Question Number: 110 Question Id: 871112470 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The dominant mode in a rectangular waveguide is TE10, because this mode has

Options:

No attenuation

- No cut-off
- No magnetic field component
- The highest cut-off wavelength

Sives Hise to

Options:

- a decrease in the value of reactance
- an increase in the value of reactance
- no change in the reactance value
 - no change in the impedance value

Question Number: 112 Question Id: 871112472 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The unit of ∇XH is

Options:

- Ampere
- Ampere /meter
- Ampere / m²
- Ampere-meter

Question Number: 113 Question Id: 871112473 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The propagation constant of a lossy transmission line is (2 + j5) m⁻¹ and its characteristic impedance is (50 + j0) Ω at $\omega = 106$ rad s⁻¹. The values of the line constants L, C, R, G are

Options:

$$L = 200 \mu H/m$$
, $C = 0.1 \mu F/m$, $R = 50 \Omega/m$, $G = 0.02 S/m$

$$L = 250 \mu H/m$$
, $C = 0.1 \mu F/m$, $R = 100 \Omega/m$, $G = 0.04 S/m$

_{3.} L = 200
$$\mu$$
H/m, C = 0.2 μ F/m, R = 100 Ω /m, G = 0.02 S/m

$$L = 250 \mu H/m$$
, $C = 0.2 \mu F/m$, $R = 50 \Omega/m$, $G = 0.04 S/m$

Question Number: 114 Question Id: 871112474 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A broadside array consisting of 200 cm wavelength with 10 half-wave dipole spacing 10 cm. And if each array element feeding with 1 Amp current and operating at same frequency, then what is the half power beam width?

Question Number: 115 Question Id: 871112475 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Degenerate modes in a waveguide are characterized by

Options:

- , same cut off frequencies but with different field distributions
- same cut off frequencies but with same field distributions
- different cut off frequencies but with same field distributions
- different cut off frequencies but with different field distributions

Question Number: 116 Question Id: 871112476 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If a plane electromagnetic wave satisfies the equation $\frac{\partial^2 E_x}{\partial z^2} = C^2 \frac{\partial^2 E_x}{\partial t^2}$. The wave propagates in the

Options:

- X-direction
- Z-direction
- Y-direction

XZ plane at an angle of 45° between the X and Z direction

Question Number: 117 Question Id: 871112477 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The magnitudes of the open circuit and short circuit input impedances of a transmission line are 100Ω and 25Ω respectively. The characteristic impedance of the line is

- $_{1}$ 25 Ω
- 2 50 Ω
- $_{3}$ 75 Ω
- 4 100 Ω

Options:

jwμ
σ

1.

2.

$$\sqrt{\frac{jw\mu}{(\sigma+jw\epsilon)}}$$

J.

Question Number: 119 Question Id: 871112479 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The reflection co-efficient on a line is 0.2-45°. The SWR of the line is

Options:

- 0.8
- 2 1.5
- 1.2
- 4. 1.3

Question Number: 120 Question Id: 871112480 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

PBANK.COM

A helical antenna is used for satellite tracking because of its

Options:

Circular polarization

Maneuverability

Broad bandwidth

Good front to back ratio