SECTION 1

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
Q. $1 \quad$ Consider a triangle Δ whose two sides lie on the x -axis and the line $x+y+1=0$. If the orthocenter of Δ is $(1,1)$, then the equation of the circle passing through the vertices of the triangle Δ is
(A) $x^{2}+y^{2}-3 x+y=0$
(B) $x^{2}+y^{2}+x+3 y=0$
(C) $x^{2}+y^{2}+2 y-1=0$
(D) $x^{2}+y^{2}+x+y=0$
Q. 2 The area of the region

$$
\left\{(x, y): 0 \leq x \leq \frac{9}{4}, \quad 0 \leq y \leq 1, \quad x \geq 3 y, \quad x+y \geq 2\right\}
$$

is
(A) $\frac{11}{32}$
(B) $\frac{35}{96}$
(C) $\frac{37}{96}$
(D) $\frac{13}{32}$
Q. 3 Consider three sets $E_{1}=\{1,2,3\}, F_{1}=\{1,3,4\}$ and $G_{1}=\{2,3,4,5\}$. Two elements are chosen at random, without replacement, from the set E_{1}, and let S_{1} denote the set of these chosen elements. Let $E_{2}=E_{1}-S_{1}$ and $F_{2}=F_{1} \cup S_{1}$. Now two elements are chosen at random, without replacement, from the set F_{2} and let S_{2} denote the set of these chosen elements.

Let $G_{2}=G_{1} \cup S_{2}$. Finally, two elements are chosen at random, without replacement, from the set G_{2} and let S_{3} denote the set of these chosen elements.
Let $E_{3}=E_{2} \cup S_{3}$. Given that $E_{1}=E_{3}$, let p be the conditional probability of the event $S_{1}=\{1,2\}$. Then the value of p is
(A) $\frac{1}{5}$
(B) $\frac{3}{5}$
(C) $\frac{1}{2}$
(D) $\frac{2}{5}$
Q. 4 Let $\theta_{1}, \theta_{2}, \ldots, \theta_{10}$ be positive valued angles (in radian) such that $\theta_{1}+\theta_{2}+\cdots+\theta_{10}=2 \pi$. Define the complex numbers $z_{1}=e^{i \theta 1}, z_{k}=z_{k-1} e^{i \theta k}$ for k $=2,3, \ldots, 10$, where $i=\sqrt{ }-1$. Consider the statements P and Q given below:

$$
\begin{aligned}
& P:\left|z_{2}-z_{1}\right|+\left|z_{3}-z_{2}\right|+\cdots+\left|z_{10}-z_{9}\right|+\left|z_{1}-z_{10}\right| \leq 2 \pi \\
& Q:\left|z_{2}^{2}-z_{1}^{2}\right|+\left|z_{3}^{2}-z^{2}\right|+\cdots+\left|z^{2}-z_{10}^{2}\right|+\left|z^{2}-z_{1}^{2}\right| \leq 4 \pi
\end{aligned}
$$

Then,
(A) P is TRUE and Q is FALSE
(B) Q is TRUE and P is FALSE
(C) both P and Q are TRUE
(D) both P and Q are FALSE

SECTION 2

- This section contains THREE (03) question stems.
- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +2 If ONLY the correct numerical value is entered at the designated place; Zero Marks : 0 In all other cases.

Question Stem for Question Nos. 5 and 6

Question Stem

Three numbers are chosen at random, one after another with replacement, from the set $S=\{1,2,3, \ldots, 100\}$. Let p_{1} be the probability that the maximum of chosen numbers is at least 81 and p_{2} be the probability that the minimum of chosen numbers is at most 40.
Q. 5 The value of $\frac{0 \angle 0}{4} p_{1}$ is
Q. 6 The value of $\frac{125}{4} p_{2}$ is __.

Question Stem for Question Nos. 7 and 8

Question Stem

Let α, β and γ be real numbers such that the system of linear equations

$$
\begin{gathered}
x+2 y+3 z=\alpha 4 x \\
+5 y+6 z=\beta \\
7 x+8 y+9 z=\gamma-1
\end{gathered}
$$

is consistent. Let $|M|$ represent the determinant of the matrix

$$
\left.M=\begin{array}{rrl}
\alpha & 2 & \gamma \\
{[\beta} & 1 & 0
\end{array}\right]
$$

Let P be the plane containing all those (α, β, γ) for which the above system of linear equations is consistent, and D be the square of the distance of the point $(0,1,0)$ from the plane P.
Q. 7 The value of $|\mathrm{M}|$ is \qquad .
Q. 8 The value of D is \qquad .

Question Stem for Question Nos. 9 and 10

Question Stem

Consider the lines L_{1} and L_{2} defined by

$$
L_{1}: x \sqrt{2}+y-1=0 \text { and } L_{2}: x \sqrt{2}-\bar{y}+1=0
$$

For a fixed constant λ, let C be the locus of a point P such that the product of the distance of P from L_{1} and the distance of P from L_{2} is λ^{2}. The line $y=2 x+1$ meets C at two points R and S, where the distance between R and S is $\sqrt{270}$.

Let the perpendicular bisector of $R S$ meet C at two distinct points R^{\prime} and S^{\prime}. Let D be the square of the distance between R^{\prime} and S^{\prime}.
Q. 9 The value of λ^{2} is _.
Q. 10 The value of D is \qquad

SECTION 3

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ If only (all) the correct option(s) is(are) chosen;
Partial Marks : + 3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks :+1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If unanswered;
Negative Marks : -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks.
Q. 11 For any 3×3 matrix M, let $|M|$ denote the determinant of M. Let

$$
\left.\left.\left.E=\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 4
\end{array}\right], P=\begin{array}{rll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } F=\begin{array}{ccc}
1 & 3 & 2 \\
8 & 13 & 18
\end{array}\right)
$$

If Q is a nonsingular matrix of order 3×3, then which of the following statements is (are) TRUE ?

1000
(A) $F=P E P$ and $P^{2}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ $\begin{array}{lll}0 & 0 & 1\end{array}$
(B) $\left|E Q+P F Q^{-1}\right|=|E Q|+\left|P F Q^{-1}\right|$
(C) $\left|(E F)^{3}\right|>|E F|^{2}$
(D) Sum of the diagonal entries of $P^{-1} E P+F$ is equal to the sum of diagonal entries of $E+P^{-1} F P$
Q. 12 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\frac{x^{2}-3 x-6}{x^{2}+2 x+4}
$$

Then which of the following statements is (are) TRUE?
(A) f is decreasing in the interval $(-2,-1)$
(B) f is increasing in the interval $(1,2)$
(C) f is onto
(D) Range of f is $\left[-\frac{3}{2}, 2\right]$
Q. 13 Let E, F and G be three events having probabilities

$$
P(E)=\frac{1}{8}, P(F)=\frac{1}{6} \text { and } P(G)={ }_{4}^{1} \text { and let } P(E \cap F \cap G)=\frac{1}{10} .
$$

For any event H, if H^{c} denotes its complement, then which of the following statements is (are) TRUE ?
(A) $P\left(E \cap F \cap G^{c}\right) \leq \frac{1}{40}$
(B) $P\left(E^{c} \cap F \cap G\right) \leq \frac{1}{15}$
(C) $P(E \cup F \cup G) \leq \frac{13}{24}$
(D) $P\left(E^{c} \cap F^{c} \cap G^{c}\right) \leq \frac{5}{12}$
Q. 14 For any 3×3 matrix M, let $|M|$ denote the determinant of M. Let I be the 3×3 identity matrix. Let E and F be two 3×3 matrices such that $(I-E F)$ is invertible. If $G=(I-E F)^{-1}$, then which of the following statements is (are) TRUE ?
(A) $|F E|=|I-F E||F G E|$
(B) $(I-F E)(I+F G E)=I$
(C) $E F G=G E F$
(D) $(I-F E)(I-F G E)=I$
Q. 15 For any positive integer n, let $S_{n}:(0, \infty) \rightarrow \mathbb{R}$ be defined by

$$
S_{n}(x)=\sum_{k=1}^{n} \cot ^{-1}\left(\frac{1+k(k+1) x^{2}}{x}\right)
$$

where for any $x \in \mathbb{R}, \cot ^{-1}(x) \in(0, \pi)$ and $\tan ^{-1}(x) \in\left(-\frac{\pi}{2}\right)_{2}^{\pi}$ Then which of the following statements is (are) TRUE ?
(A) $S(x)={ }_{-}^{\pi}-\tan ^{-1}{ }_{2}^{1+11 x}{ }_{10}^{\left(\frac{2}{10 x}\right.}$, for all $x>0$
(B) $\lim _{n \rightarrow \infty} \cot \left(S_{n}(x)\right)=x$, for all $x>0$
(C) The equation $S_{3}(x)={ }_{4}^{\pi}$ has a root in $(0, \infty)$
(D) $\tan \left(S_{n}(x)\right) \leq_{2}^{1}$, for all $n \geq 1$ and $x>0$
Q. $16 \quad$ For any complex number $w=c+i d$, let $\arg (\mathrm{w}) \in(-\pi, \pi]$, where $i=\sqrt{-1 .}$ Let α and β be real numbers such that for all complex numbers $z=x+i y$ satisfying $\arg \left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$, the ordered pair (x, y) lies on the circle

$$
x^{2}+y^{2}+5 x-3 y+4=0
$$

Then which of the following statements is (are) TRUE?
(A) $\alpha=-1$
(B) $\alpha \beta=4$
(C) $\alpha \beta=-4$
(D) $\beta=4$

SECTION 4

- This section contains THREE (03) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ If ONLY the correct integer is entered;
Zero Marks : 0 In all other cases.
Q. 17 For $x \in \mathbb{R}$, the number of real roots of the equation

$$
3 x^{2}-4\left|x^{2}-1\right|+x-1=0
$$

is \qquad
Q. 18 In a triangle $A B C$, let $A B=\sqrt{23}, B C=3$ and $C A=4$. Then the value of $\underline{\cot A+\cot C}$ $\cot B$ is \qquad .
Q. 19 Let \vec{u}, \vec{v} and \vec{w} be vectors in three-dimensional space, where \vec{u} and \vec{v} are unit vectors which are not perpendicular to each other and

$$
\vec{u} \cdot \vec{w}=1, \quad \vec{v} \cdot \vec{w}=1, \quad \vec{w} \cdot \vec{w}=4
$$

If the volume of the parallelopiped, whose adjacent sides are represented by the vectors \vec{u}, \vec{v} and \vec{w}, is $\sqrt{2}$, then the value of $|3 \vec{u}+5 \vec{v}|$ is \qquad .

END OF THE QUESTION PAPER

