Candidate's Name :		
Enrolment No. :	Signature of Invigilator:	
- 1	invignator:	345689

JEM-2008

(Do not open this MCQ BOOKLET until you are asked to do so)

Subject: MATHEMATICS

Maximum Marks: 80 (Each question carries equal mark.)

IMPORTANT INSTRUCTIONS

Candidates should read the following instructions carefully and fill in all the required particulars before answering the questions:

- The Question Booklet with 16 pages has been scaled. Candidates should open the Question Booklet only when
 they are asked to do so by the Invigilator.
- (2) The candidates must check that the Question Booklet has 80 questions with multiple choice answers immediately after opening the seal. Each MCQ carries *one* mark.
- (3) Answers will have to be given on the OMR Answer Sheet supplied for this purpose. Question numbers progress from 1 to 80 with options shown as (A), (B), (C) and (D).
- (4) OMR Answer Sheets will be processed by electronic means. Hence, invalidation of Answer Sheet resulting due to folding or putting stray marks on it or any damage to the Answer Sheet as well as incomplete/incorrect filling of the Answer Sheet, will be the sole responsibility of the Candidate.
- (5) Use Black Ball Pen to mark your answers.
- (6) While answering, choose only the Correct/Best option from the four choices given in the question and mark the same in the corresponding circle in the Answer Sheet only. Answers without any response shall be awarded zero mark. Wrong response or more than one response shall be treated as incorrect answer. For every incorrect answer one-third (1/3) mark of that Question will be deducted.
- (7) Darken with Black Ball Pen completely only one option which you think correct as shown in the figure below:

CORRECT METHOD WRONG METHOD

● ○ ○ ○

- (8) Mark the answers only in the space provided. Please do not make any stray marks on the Answer Sheet.
- (9) Rough work may be done on the space provided in the Question Booklet.
- (10) Please hand over the OMR Answer Sheet to the Invigilator before leaving the Examination Hall.

Mathematics

The number of ways four boys can be seated around a round-table in four chairs of different colours

	(A) 24	(B) 12	(C) 23	(D) 64
2:	If one root of the equa	tion $x^2 + (1-3i)x - 2(1+i)$	= 0 is $-1+i$, then the o	ther root is
	(A) -1-i	(B) $\frac{(-1-i)}{2}$	(C) i	(D) 2i
3,4	Three sets A, B, C are (A) $A \subset B$	such that $A = B \cap C$ and (B) $A \supset B$	$A B = C \cap A$, then (C) $A \equiv B$	(D) A ⊂ B'
4.	The sum of the infinit	e series $\left(\frac{1}{3}\right)^2 + \frac{1}{3}\left(\frac{1}{3}\right)^6$	$^{4} + \frac{1}{5} \left(\frac{1}{3}\right)^{6} + \dots $ is	
	(A) $\frac{1}{4}\log_e 2$	(B) $\frac{1}{2}\log_e 2$	(C) $\frac{1}{6}\log_e 2$	
5.	The values of x for w	hich the given matrix		singular are
	(A) $-2 \le x \le 2$ (C) $x \ge 2$	(B) for all x other that (D) $x \le -2$	an 2 and -2	
6	If $\tan\left(\frac{\alpha\pi}{4}\right) = \cot\left(\frac{\beta\pi}{4}\right)$, then		
	(A) $\alpha+\beta=0$ n is an integer.	(B) $\alpha + \beta = 2n$	(C) $\alpha + \beta = 2n + 1$	(D) $\alpha + \beta = 2(2n+1)$,
7:	The principal value of	of $\sin^{-1}\tan\left(-\frac{5\pi}{4}\right)$ is		
		$(B) -\frac{\pi}{4}$	(C) $\frac{\pi}{2}$	$(D) = \frac{\pi}{2}$
8,	The value of $\cos \frac{\pi}{15}$	$\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{8\pi}{15}$ is		
	(A) $\frac{1}{16}$	(B) $-\frac{1}{16}$	(C) 1	(D) 0
9	If a, b, c be in Arith (A) 16abc	metic progression, then, (B) 4abc	the value of (a+2b-c)(2 (C) 8abc	b+c-a)(a+2b+c) is (D) 3abc
10	. The equation x ² -3 (A) No real root	x + 2 = 0 has (B) One real root	(C) Two real roots	(D) Four real roots
11	. The principal ampli	tude of (sin40' + icos40° (B) -110') ⁵ is (C) 110	(D) -70°
12	2. If $\log_5 \log_5 \log_2 x =$ (A) 32	0 then value of x is (B) 125	(C) 625	(D) 25
13	A parcon draws O		ly from a bag containing red is (C) $\frac{48}{90}$	ng 6 red and 4 white balls. The (D) $\frac{12}{90}$

1

Name and Address of the Owner,

- 14. If three real numbers a, b, c are in Harmonic Progression, then which of the following is true?
 - (A) $\frac{1}{a}$, b, $\frac{1}{c}$ are in A.P.
- (B) $\frac{1}{bc}$, $\frac{1}{ca}$, $\frac{1}{ab}$ are in H.P. (D) $\frac{a}{b}$, $\frac{b}{c}$, $\frac{c}{a}$ are in H.P.
- (C) ab, bc, ca are in H.P.

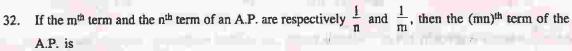
- 15. A mapping $f: N \rightarrow N$ where N is the set of natural numbers is defined as
 - $f(n) = n^2$ for n odd
 - f(n) = 2n + 1 for n even

for $n \in \mathbb{N}$.

Then f is

- (A) Surjective but not injective
 - (B) Injective but not surjective
- (C) Bijective

- (D) Neither injective nor surjective
- If the magnitude of the coefficient of x^7 in the expansion of $\left(ax^2 + \frac{1}{bx}\right)^8$, where a, b are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the expansion of $\left(ax - \frac{1}{bx^2}\right)^8$, then a and b are connected by the relation
 - (A) ab = 1,
- **(B)** ab = 2
- (D) $ab^2 = 2$
- The mapping $f: N \to N$ given by $f(n) = 1 + n^2$, $n \in N$ where N is the set of natural numbers, is
 - (A) One to one and onto


- (B) Onto but not one-to-one
- (C) One-to-one but not onto
- (D) Neither one-to-one nor onto
- A and B are two points on the Argand plane such that the segment AB is bisected at the point (0,0). If the point A, which is in the third quadrant has principal amplitude θ, then the principal amplitude of the point B is
 - $(A) \sim \theta$
- (B) $\pi \theta$
- (C) $\theta \pi$
- (D) $\pi + \theta$
- A function $f: A \rightarrow B$, where $A = \{x / -1 \le x \le 1\}$ and $B = \{y / 1 \le y \le 2\}$ is defined by the rule $y = f(x) = 1 + x^2$. Which of the following statements is then true?
 - (A) f is injective but not surjective
- (B) f is surjective but not injective
- (C) f is both injective and surjective
- (D) f is neither injective nor surjective
- The function f(x) which satisfies $f(x) = f(-x) = \frac{f'(x)}{x}$ is given by (A) $f(x) = \frac{1}{2}e^{x^2}$ (B) $f(x) = \frac{1}{2}e^{-x^2}$ (C) $f(x) = x^2e^{x^2/2}$ (D) $f(x) = e^{x^2/2}$

- $f(x) = \begin{cases} 1 x^2 & \text{for } x < 1 \\ 0 & \text{for } x = 1 \\ 1 + x^2 & \text{for } x > 1 \end{cases}$ A function f(x) is defined as follows for real x

Then

- (A) f(x) is not continuous at x = 1
- (B) f(x) is continuous but not differentiable at x = 1
- (C) f(x) is both continuous and differentiable at x = 1
- (D) f(x) is continuous everywhere but differentiable nowhere
- Select the correct statement from (A), (B), (C), (D). The function $f(x) = xe^{1-x}$
 - (A) strictly increases in the interval $(\frac{1}{2}, 2)$ (B) increases in the interval $(0, \infty)$
 - (C) decreases in the interval (0, 2)
- (D) strictly decreases in the interval (1,∞)

	(A) One other real roo		(B)	Two real roots		had been been
	(C) No other real root		(D)	Infinite number of	real	roots
24.	The function f(x) - cax	+ e ^{-ax} , a > 0 is monoto	-icall	u inconsina for		April 1 miles
24.	(A) $-1 < x < 1$	(B) x < -1		x > -1	(D)	x>0
	(13)	(D) X \-1	(0)	~~-1	(1)	
25.	For two complex num	bers z ₁ , z ₂ the relation	z ₁ +z ₂	$ z = z_1 + z_2 $ holds	if	
	(A) $arg(z_1) = arg(z_2)$		(B)	$\arg(z_1) + \arg(z_2) =$	$\frac{\pi}{2}$	
	(C) $z_1 z_2 = 1$			$ \mathbf{z}_1 = \mathbf{z}_2 $	4	
				4 4 1 24		Barrier San Land Agency Land
26.	If ${}^{16}C_r = {}^{16}C_{r+1}$ then t	he value of P _{r-3} is				
	(A) 31	(B) 120	(C)	210	(D)	840
27.	The coefficient of x ⁻¹⁰	$(-2)^{10}$				
21.		\ A /				
	(A) - 252	(B) -210	(C)	- (5!)	(D)	- 120
28.	If the matrix a b is	s commutative with the	matri	x 1 1 then		
	(A) $a=0, b=c,$			c=0, d=a	(D)	d=0, $a=b$
						10.75 m 40.5
		15	-20	281		
29.	If 1, ω , ω^2 are cube roo	ots of unity, then	1	ma has value		
		ω"	ω^{2n}	1		
	(A) 0	(B) ω	(C)	ω^2	(D)	$\omega + \omega^2$
		***			-	
30.	Let $A = \{1, 2, 3\}$ and 1	$B = \{2, 3, 4\}$, then which	ch of t	he following relatio	ns is	a function from A to B?
	(A) {(1,2), (2,3), (3,4)			$\{(1,2), (2,3), (1,3)$		The second second
	(C) $\{(1,3), (2,3), (3,3)\}$)}	(D)	$\{(1,1), (2,3), (3,4)$	}	
				12.7 125		ture to
31.	One possible condition (A) $a-b=2$	for the three points (a, (B) a+b = 2		(a) and $(a^2, -b^2)$ to b a = 1+b	e coll (D)	a = 1-b

(A) $\frac{1}{mn}$

(B) m

23. The equation $e^x + x - 1 = 0$ has, apart from x = 0

(C) 1

(D) $\frac{n}{m}$

33. $\int_{-\pi/2}^{\pi/2} \sin^9 x \cos^5 x \, dx \text{ equals}$

(A) $\frac{1}{20}$

(B) 20

(C) 0

(D) $\frac{1}{330}$

- The function $f(x) = \log \left(\frac{1+x}{1-x} \right)$ satisfies the equation
 - (A) f(x+2) 2f(x+1) + f(x) = 0
- (B) f(x) + f(x+1) = f(x(x+1))

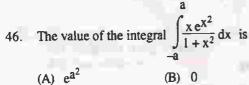
- (C) $f(x) + f(y) = f\left(\frac{x+y}{1+xy}\right)$
- (D) f(x+y) = f(x)f(y)
- 35. If $I = \int \frac{e^{\sin x}}{e^{\sin x} + e^{-\sin x}} dx$, then I equals
 - (A) $\frac{\pi}{2}$
- (B) 2π

- 36. If $h(x) = \int \sin^4 t \, dt$, then $h(x+\pi)$ equals
- (B) $h(x)h(\pi)$

- 37. The value of $(1-\omega+\omega^2)^5+(1+\omega-\omega^2)^5$, where ω and ω^2 are the complex cube roots of unity is
- (B) 32w

- The degree of the differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{5/3} = \frac{d^2y}{dx^2}$ is
 - (A) 1
- (B) 5
- (C) $\frac{10}{3}$
- (D) 3
- The differential equation of all parabolas whose axes are parallel to y-axis is

 (A) $\frac{d^3y}{dx^3} = 0$ (B) $\frac{d^2y}{dx^2} = 0$ (C) $\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$ (D) $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$
- (B) $\frac{d^2y}{dv^2} = 0$


- 40. The solution of the differential equation $\frac{dy}{dx} = e^{y+x} + e^{y-x}$ is
 - (A) $e^{-y} = e^x e^{-x} + c$, c integrating constant (B) $e^{-y} = e^{-x} e^x + c$, c integrating constant
 - (C) $e^{-y} = e^x + e^{-x} + c$, c integrating constant (D) $e^{-y} + e^x + e^{-x} = c$, c integrating constant
- 41. The value of the integral $\int |x^2 1| dx$ is
 - (A) 0

- 42. If $x = e^t \sin t$, $y = e^t \cos t$ then $\frac{d^2y}{dx^2}$ at $x = \pi$ is
- (C) $\frac{1}{2e^{\pi}}$
- 43. The value of $\frac{dy}{dx}$ at $x = \frac{\pi}{2}$, where y is given by $y = x^{\sin x} + \sqrt{x}$ is
 - (A) $1 + \frac{1}{\sqrt{2\pi}}$ (B) 1
- (C) $\frac{1}{\sqrt{2\pi}}$ (D) $1 \frac{1}{\sqrt{2\pi}}$
- The value of \[\cosx \ dx \ is
 - (A) 2m
- (B) 2 (C) $\frac{2}{\pi}$ (D) π

(D) a

(D) log 3

	3			
45.	The value of \int	$(ax^5 + bx^3 + cx + k) dx, when$	re a, b, c, k are constants	, depends only o
	(A) a and k	(B) a and b	(C) a, b and c	(D) k

THE RESERVE

47. The value of the limit
$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{6n}\right)$$
 is

(A) $\log 2$ (B) $\log 6$ (C) 1

48. The order and degree of the following differential equation
$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{5/2} = \frac{d^3y}{dx^3}$$
 are respectively

(C) e^{-a^2}

(A)
$$y_1(y^2-x^2) + 2xy + a^2 = 0$$

(B) $y_1y^2 + xy + a^2x^2 = 0$
(C) $y_1(y^2-x^2+a^2) + 2xy = 0$
(D) $y_1(y^2+x^2) - 2xy + a^2 = 0$

50. The differential equation of the family of curves
$$y = e^{2x}(a\cos x + b\sin x)$$
, where a and b are arbitrary constants, is given by

(A) $y_2-4y_1+5y=0$ (B) $2y_2-y_1+5y=0$ (C) $y_2+4y_1-5y=0$ (D) $y_2-2y_1+5y=0$

51 Lt
$$\frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x}$$
, $a > 0$
(A) $= \log_e \frac{\pi}{2}$ (B) $= \log_e 2$ (C) $= \log_e a$ (D) $= a$

82. Rolle's theorem is not applicable to the function
$$f(x) = |x|$$
 for $-2 \le x \le 2$ because

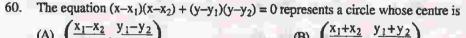
(A) f is continuous for
$$-2 \le x \le 2$$
 (B) f is not derivable for $x = 0$ (C) $f(-2) = f(2)$ (D) f is not a constant function

53. The equation of the circle which passes through the points of intersection of the circles
$$x^2+y^2-6x=0$$
 and $x^2+y^2-6y=0$, and has its centre at $\left(\frac{3}{2},\frac{3}{2}\right)$ is

(A)
$$x^2+y^2+3x+3y+9=0$$
 (B) $x^2+y^2+3x+3y=0$ (C) $x^2+y^2-3x-3y=0$ (D) $x^2+y^2-3x-3y+9=0$

54. If
$$2y = x$$
 and $3y+4x = 0$ are the equations of a pair of conjugate diameters of an ellipse, then the eccentricity of the ellipse is

(A)
$$\sqrt{\frac{2}{3}}$$
 (B) $\sqrt{\frac{2}{5}}$ (C) $\sqrt{\frac{1}{3}}$


55. The area enclosed between the curve
$$y = 1+x^2$$
, the y-axis, and the straight line $y = 5$ is given by

(A) $\frac{14}{3}$ square units (B) $\frac{7}{3}$ square units (C) 5 square units (D) $\frac{16}{3}$ square units

56. If t is a parameter, then
$$x = a\left(t + \frac{1}{t}\right)$$
, $y = b\left(t - \frac{1}{t}\right)$ represents

(A) An ellipse (B) A circle (C) A pair of straight lines (D) A hyperbola

			34300	
57.			osses the curve $y = \sqrt{x}$ at	an angle 45° is
	(A) $y = \frac{1}{4}$	(B) $y = \frac{1}{2}$	(C) $y = 1$	(D) $y = 4$
58.	The distance betwee (A) 4	cen the lines 5x-12y+6: (B) 16	5 = 0 and $5x-12y-39 = 0$ (C) 2	is (D) 8
59.			dar from $(a, 0)$ on the line (C) $\begin{pmatrix} a & 0 \end{pmatrix}$	m

The circles $x^2+y^2+6x+6y=0$ and $x^2+y^2-12x-12y=0$

(A) $\left(\frac{x_1-x_2}{2}, \frac{y_1-y_2}{2}\right)$

(A) cut orthogonally

(B) touch each other internally

(C) (x_1, y_1)

(C) intersect in two points (D) touch each other externally

The two parabolas $x^2 = 4y$ and $y^2 = 4x$ meet in two distinct points. One of these is the origin and 62. the other is

(A) (2, 2)

(B) (4, -4)

(C) (4,4)

(D) (-2,2)

The vertex of the parabola $x^2+2y = 8x-7$ is

(A) $(\frac{9}{2}, 0)$

(B) $\left(4, \frac{9}{2}\right)$ (C) $\left(2, \frac{9}{2}\right)$ (D) $\left(4, \frac{7}{2}\right)$

64. If $P(at^2, 2at)$ be one end of a focal chord of the parabola $y^2 = 4ax$, then the length of the chord is

(B) $a\left(t-\frac{1}{t}\right)$ (C) $a\left(t+\frac{1}{t}\right)$ (D) $a\left(t+\frac{1}{t}\right)^2$

The length of the common chord of the parabolas $y^2 = x$ and $x^2 = y$ is

(A) 2\square

(C) $\sqrt{2}$ (D) $\frac{1}{\sqrt{2}}$

The equation of the ellipse having vertices at (±5,0) and foci (±4,0) is

(B) $9x^2+25y^2=225$ (C) $\frac{x^2}{9}+\frac{y^2}{25}=1$ (D) $4x^2+5y^2=20$

The area included between the parabolas $y^2 = 4x$ and $x^2 = 4y$ is

(A) $\frac{8}{3}$ sq. units

(B) 8 sq. units

(C) $\frac{16}{3}$ sq. units

(D) 12 sq. units

The locus of the centres of the circles which touch both the axes is given by

(A) $x^2 - y^2 = 0$

(B) $x^2+y^2=0$

(C) $x^2-y^2=1$

The sum of the series $(1+2) + (1+2+2^2) + (1+2+2^2+2^3) + \cdots$ up to n terms is

(A) $2^{n+2}-n-4$

(B) $2(2^n-1)-n$ (C) $2^{n+1}-n$

(B) no solution
(D) only one solution

(C) $\frac{2}{5}$

70. The 5th term of the series $\frac{10}{9}$

71. The equation √3 sinx + cosx = 4 has
(A) infinitely many solutions
(C) two solutions

72.	The value of $\tan \alpha + 2t$ (A) $\cot(2^n \alpha)$		$(2^n \tan(2^n \alpha) + 4 \tan(2^n \alpha)$				is cotex
73.	Out of 8 given points, any two points from the (A) 26		3 points ?	any (es ca (D)	- 7
74.	How many odd number no digit is repeated? (A) 120	rs of (B)			n be formed with th 360		its 0, 1, 2, 5, 6, 7 who
75.	Let α , β be the roots of (A) $x^2-2x\cos n\phi - 1 =$ (C) $x^2-2x\sin n\phi + 1 =$: 0	$2x\cos\phi + 1 = 0$, the	(B)	equation whose ro $x^2 - 2x\cos n\phi + 1 =$ $x^2 + 2x\sin n\phi - 1 =$	0	re α ⁿ , β ⁿ is
76.	The latus rectum of an (A) $\frac{1}{\sqrt{6}}$					(D)	
77.	A particle is projected seconds then (A) h = gt ₁ t ₂		tically upwards and $h = \frac{1}{2}gt_1t_2$				onds and again after $h = \sqrt{gt_1t_2}$
78.	The value of the limit	Lt x→2	$\frac{e^{3x-6}-1}{\sin(2-x)}$ is				
79.	(A) $\frac{3}{2}$ The limit Lt $\frac{5}{x \to 2} \sqrt{2} = \sqrt{2}$	(B) = is		(C)	-3	(D)	(e)
	(A) 10√2	(B)	+00	, ,	~∞	(D)	Does not exist
80.	The range of the function (A) (0,∞)	on f((B)	$x) = \log_e \sqrt{4 - x^2} $ is $(-\infty, \infty)$	give: (C)	n by (-∞, log _e 2):	(D)	$(\log_e 2, \infty)$

See overleaf
for Bengali Version

Mathematics (Bengali Version)

(D) 64

(D) 2i

(D) $A \subset B'$

(D) $\alpha + \beta = 2(2n+1)$,

🔝 একটি গোলটেবিলের সঙ্গে চারটি বিভিন্ন রং-এর চেয়ার আছে। চারটি ছেলেকে ঐ টেবিল ঘিরে কত ভাবে বসানো যায় ?

(C) 23

(C) i

(C) A ≡ B

(A) $\frac{1}{4}\log_e 2$ (B) $\frac{1}{2}\log_e 2$ (C) $\frac{1}{6}\log_e 2$ (D) $\frac{1}{4}\log_e \frac{3}{2}$

(B) 2 বা -2 ব্যতীত যে কোনো x - এর জন্য

(B) 12

(B) $\frac{(-1-i)}{2}$

(B) A ⊃ B

4. $\left(\frac{1}{3}\right)^2 + \frac{1}{3}\left(\frac{1}{3}\right)^4 + \frac{1}{5}\left(\frac{1}{3}\right)^6 + \cdots$ এই অসীম শ্রেণীটির যোগফল হল

(D) $x \le -2$

(B) $\alpha + \beta = 2n$

3. তিনটি সেট A, B, C এইপ্রকার যে $A = B \cap C$ এবং $B = C \cap A$, তাহলে

2. $x^2 + (1-3i)x - 2(1+i) = 0$ সমীকরণটির একটি বীজ -1+i হলে অপর বীজটি হবে

(A) 24

(A) -l-i

(A) $A \subset B$

(A) $-2 \le x \le 2$

 $6 \quad \tan\left(\frac{\alpha\pi}{4}\right) = \cot\left(\frac{\beta\pi}{4}\right)$

n একটি পূর্ণসংখ্যা।

7. $\sin^{-1}\tan\left(-\frac{5\pi}{4}\right)$ এর মুখ্য মান হল

(C) x≥2

8.	$\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos$	s 15 এর মান হল				
	(A) $\frac{1}{16}$	(B) $-\frac{1}{16}$	(C)	1	(D)	0
9.	a, b, c যদি সমান্তর প্রগতি৷	তে থাকে, তবে (a+2b-c)(2	b+c-a)(a+2b+c) এর মান :	হল	
I	(A) 16abc	(B) 4abc	(C)			3abc
10.	$ x^2-3 x +2=0$ সমীকর	ণ্টির				
	(A) কোনো বাস্তব বীজ ন	包	(B)	একটি বাস্তব বীজ আ	Ę	
	(C) দুটি বাস্তব বীজ আছে	ξ	(D)	চারটি বাস্তব বীজ আ	Ę	
11:	(sin40°+icos40°) ⁵ এই	অবাস্তব সংখ্যাটির মুখ্য কোণ	ছ হল			
	(A) 70'	(B) -110°	(C)	110	(D)	-70°
12.	$\log_5\log_5\log_2 x = 0$	r x এর মান হল				
	(A) 32	(B) 125	(C) (625	(D)	25

8

		345689
13.	. একটি ব্যাগে 6 <mark>টি লাল ও</mark> 4টি সাদা বল আবে সম্ভাবনা	হ। পরপর দুবার ব্যাগটি হতে <mark>বল তোলা হলে অন্তত একটি বল লাল হবা</mark> র
	(A) $\frac{78}{90}$ (B) $\frac{30}{90}$	(C) $\frac{48}{90}$ (D) $\frac{12}{90}$
14	তনটি বাস্তব <mark>সংখ্</mark> যা a, b, c হরা <mark>ত্মক প্র</mark> গতি কোনটি সভ্য ?	তে (Harmonic Progr <mark>essio</mark> n) থাকলে নিম্নলিখিত বাক্যগুলির মধ্যে
	(A) $\frac{1}{a}$, b. $\frac{1}{c}$ সমান্তর প্রগতিতে আছে	(B) $\frac{1}{bc}$, $\frac{1}{ca}$, $\frac{1}{ab}$ হরাত্মক প্রগতিতে আছে
	(C) ab, bc, ca হরাত্মক প্রগতিতে আছে	(D) $\frac{a}{b}$, $\frac{b}{c}$, $\frac{c}{a}$ হরাত্মক প্রগতিতে আছে
15.	সাভাবিক সংখ্যার সেট N এর উপরে একটি	চিত্রণ $f:N o N$ এইরূপে সংজ্ঞায়িত আছে
	$f(n) = n^2$ n অধ্থা হলে	The second secon
	f(n) = 2n + 1 n যুগা হলে	
	যখন n∈ N তাহলে f হল	
	(A) উপরিচিত্রণ কিন্তু একৈক নয়	(B) একৈক কিন্তু উপরিচিত্রণ নয়
	(C) উপরিচিত্রণ ও একৈক চিত্রণ দুইই	(D) উ <mark>পরিচিত্রণ ও একৈক চিত্রণ কোনোটিই নয়</mark>
16.		পরমুমান যদি $\left(ax - \frac{1}{bx^2}\right)^8$ এর প্রসারণে x^{-7} এর সহগের পরমুমানের
	সমান হয় (a, b ধনাত্মক রাশি), তবে a ও b ও	
	(A) $ab = 1$, (B) $ab = 2$	(C) $a^2b = 1$ (D) $ab^2 = 2$
17.		ত $f: N \to N$ চিত্রণটি এইরূপে সংজ্ঞায়িত $f(n) = 1 + n^2$, $n \in N$ তবে
	(A) f একৈক এবং উপরি চিত্রণ	(B) f উপরিচিত্রণ হলেও একৈক নয়
	(C) f একৈক কিন্তু উপরিচিত্রণ নয়	(D) েএকৈক এবং উপরিচিত্রণ কোনোর্টিই নয়
18.	A ও B বিন্দু দুটি আরগ্যাণ্ড তলের উপরে তৃতীয় চতুর্থাংশে আছে, এবং A এর মুখ্য কে	আছে এবং AB রেখাংশটি (0,0) বিন্দুতে সমদ্বিখন্ডিত হয়। A বিন্দুটি। াণাঙ্ক ৪। তবে B এর মুখ্য কোণাংক হবে
	` "	(C) $\theta - \pi$ (D) $\pi + \theta$
19.		$x / -1 \le x \le 1$ এবং $B = \{y / 1 \le y \le 2\}$, এইভাবে রূপায়িত হয়
	$y = f(x) = 1 + x^2$ । নিম্নের বক্তব্যগুলির মধ্	
		ল নয় (B) f একটি উপরিচিত্রণ কিন্তু এক-এক চিত্রণ নয়
	` '	(D) f উপরিচিত্রণ ও এক-এক চিত্রণ কোনোটিই নয়
20.	যে অপেক্ষকটি $f(x) = f(-x) = \frac{f'(x)}{x}$ এই *	ার্তটি পূরণ করে সেটি হল

(A) $f(x) = \frac{1}{2}e^{x^2}$ (C) $f(x) = x^2e^{x^2/2}$

(B) $f(x) = \frac{1}{2}e^{-x^2}$

(D) $f(x) = e^{x^2/2}$

21. যদি একটি অপেক্ষক f(x) এইরূপে সংজ্ঞায়িত হয়, যেখানে x বাস্তব, f(x) =

তবে

(A) f(x), x = 1 বিন্দৃতে সম্ভত নয়

(B) f(x), x = 1 বিন্দুতে সম্ভত হলেও অন্তরকলনযোগ্য নয়

(C) f(x), x = 1 বিন্দুতে সম্ভত এবং অন্তরকলনযোগ্য

(D) f(x) সর্বত্র সম্ভত কিন্তু কোনোস্থানেই অন্তরকলনযোগ্য নয়।

(B) (0,∞) অন্তরে বর্ধমান

(D) (1,∞) অন্তরে যথার্থ হাসমান

(B) দৃটি বান্তব সমাধান আছে

of real

From State of

 $f(x) = xe^{1-x}$ অপেক্ষকটি

(A) $\left(\frac{1}{2},2\right)$ অন্তরে মথার্থ বর্গমান

(C) (0, 2) অন্তরে হাসমান

23. x = 0 ব্যতীত $e^x + x - 1 = 0$ সমীকরণটির (A) একটি বাস্তব সমাধান আছে

22. (A), (B), (C), (D) বিবৃতিগুলির মধ্যে কোনটি সঠিক?

	(C) আর কোনো বাস্তব স	মাধান নাহ	(D)	অসংখ্য বাস্তব সমাধা-	আং		
24.	$a>0 \ \overline{e}(x)=e^{ax} +$	e ^{-ax} অপেক্ষকটি কোন অঞ্চ	লে ক্র	ম বর্ধমান			
	(A) $-1 < x < 1$	(B) x < −1	(C)	1- <x< td=""><td>(D)</td><td>x>0</td><td></td></x<>	(D)	x>0	
25.	দৃটি জটিল রা <mark>শি z₁, z₂ -</mark> র	জন্য $ z_1+z_2 = z_1 + z_2 $	শৰ্ভটি	প্রযোজ্য হবে যদি			
	(A) $arg(z_1) = arg(z_2)^{-3}$	रुग्न	(B)	$arg(z_1) + arg(z_2) =$	$\frac{\pi}{2}$ \mathbf{z}	ग्र	
	(C) z ₁ z ₂ = 1 হয়		(D)	$ z_1 = z_2 $ হয়			
26.	যদি $^{16}C_r = {}^{16}C_{r+1}$ হয় ত	াহলে ^r P _{r-3} হবে					
	(A) 31	(B) 120	(C)	210	(D)	840	
27.	$\left(x^2 - \frac{1}{x^3}\right)^{10}$ বিস্তৃতিতে	x ⁻¹⁰ এর সহগ হ'ল					
	(A) -252		(C)	- (5!)	(D)	- 120	
20	ا هجــ [طء] عــ	1 17 ss					
28.		1 1 আড়িক্সের সাথে বিনি					
	(A) a=0, b=c e(4	(B) b=0, c=d হবে			(D)	d=0, a=b হবে	
00	-G. 1			on w ^{2#}			
29.	याम १, ७, ७ मध्याखान ।	এর ঘনমূল হয় তাহ'লে 👊	η ^π α	। তে ^ন এর মান			
	(A) 0	(B) w	(C)	6)2	(D)	$\omega + \omega^2$	
30.	যদি A = {1, 2, 3} এবং	$B = \{2, 3, 4\}$ হয়, তাহতে	ল নিম	লিখিত সম্পর্কতলির স	ग्रं श	কোনটি A হতে B	ত একটি
	অপেক্ষক হবে?			's Shiffing a series			
	(A) {(1,2), (2,3), (3,4), (C) {(1,3), (2,3), (3,3)), (2,2)} }	(B) (D)	{(1,2), (2,3), (1,3) {(1,1), (2,3), (3,4)	} }	-	
31.	তিনটি বিন্দু (a,b), (b,a) এ	বং (a², -b²) সমরেখ হওয়া	র একা	ট শৰ্ত হল			
	(A) $a-b=2$			$a = 1 + b \qquad (D$) a=	= 1b	
32.	যদি কোন সমান্তর প্রগতির	m-তম পদ এবং n-তম পদ	যথাক্র	মে <u>।</u> এবং <u>।</u> হয়, তাহ	লে m	ın-তম পদ্টি হবে	
	(A) $\frac{1}{mn}$	(B) m/n	(C)		(D)		
	mn	n	(-)		(20)	m	
22	π/ ₂						
33	$\int \sin^9 x \cos^5 x dx - এর$	भान एव					
	$(\Delta) \frac{1}{}$	(B) 20	(C)	0	(Ta)	1	

330

34.
$$f(x) = \log\left(\frac{1+x}{1-x}\right)$$
 অপেক্ষকটি সিদ্ধ করে

(A)
$$f(x+2) - 2f(x+1) + f(x) = 0$$

(B)
$$f(x) + f(x+1) = f(x(x+1))$$

(A)
$$f(x+2) - 2f(x+1) + f(x) = 0$$

(C) $f(x) + f(y) = f\left(\frac{x+y}{1+xy}\right)$

(D)
$$f(x+y) = f(x) f(y)$$

35. यिम
$$I = \int_{-\pi}^{\pi} \frac{e^{\sin x}}{e^{\sin x} + e^{-\sin x}} dx$$
 হয়, তাহলো I - এর মান হবে

- (A) $\frac{\pi}{2}$
- (B) 2π
- (C) n

36 যদি
$$h(x) = \int_{0}^{x} \sin^4 t \, dt$$
 হয়, তাহলে $h(x+\pi)$ - এর মান

- (A) $\frac{\ln(x)}{\ln(x)}$
- (B) $h(x)h(\pi)$
- (C) $h(x)-h(\pi)$ (D) $h(x)+h(\pi)$

37. যদি
$$\omega$$
 এবং ω^2 , 1-এর জটিল ঘনমূল হয়, তাহলে $(1-\omega+\omega^2)^5+(1+\omega-\omega^2)^5$ -এর মান হবে

- (A) 0
- (B) 32m
- (C) -32 (D) 32

38.
$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{5/3} = \frac{d^2y}{dx^2}$$
 অন্তরকল সমীকরণটির ঘাত

- (A) 1
- (B) 5
- (C) $\frac{10}{3}$ (D) 3

(A)
$$\frac{d^3y}{dy^3} = 0$$

- (B) $\frac{d^2y}{dx^2} = 0$ (C) $\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$ (D) $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$

$$40.$$
 $\frac{dy}{dx} = e^{y+x} + e^{y-x}$ অস্তর্কল সমীকরণটির সমাধান হল

- (A) $e^{-y}=e^x-e^{-x}+c$, c একটি অন্তরকল ধ্রুকে (B) $e^{-y}=e^{-x}-e^x+c$, c একটি অন্তরকল ধ্রুক
- $(C) e^{-y} = e^x + e^{-x} + c$, c একটি অন্তর্কল ধ্রুবক (D) $e^{-y} + e^x + e^{-x} = c$, c একটি অন্তর্কল ধ্রুবক

41.
$$\int_{0}^{2} |x^2 - 1| dx$$
 এই সমাকলটির মান হল

- (A) 0
- (B) 2 (C) $-\frac{1}{3}$ (D) -2

42.
$$x = e^t \sin t$$
 এবং $y = e^t \cos t$ হলে $x = \pi$ তে $\frac{d^2y}{dx^2}$ ব সম

- (B) $\frac{1}{2}e^{\pi t}$ (C) $\frac{1}{2e^{\pi}}$ (D) $\frac{2}{e^{\pi}}$

43.
$$y = x^{\sin x} + \sqrt{x}$$
 হলে $x = \frac{\pi}{2}$ তে $\frac{dy}{dx}$ এর মান

- (A) $1 + \frac{1}{\sqrt{2\pi}}$ (B) 1 (C) $\frac{1}{\sqrt{2\pi}}$ (D) $1 \frac{1}{\sqrt{2\pi}}$

$$\int_{0}^{\pi} |\cos x| dx$$
 এর মান হল

- (A) 2π
- (B) 2 (C) $\frac{2}{\pi}$ (D) π

 $\int (ax^5 + bx^3 + cx + k) dx$, এর মান (যেখানে a, b, c, k ধ্বরাশি) মা কেবল নির্ভর করে (A) a এবং k-এর উপর (B) a এবং b-এর উপর (C) a, b এবং c-এর উপর (D) k-এর উপর

 $\int \frac{x e^{X^2}}{1 + x^2} dx$ সমাকল্টির মান হল

- $(A) e^{a^2}$
- (B) 0

47. $\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{6n} \right)$ লিমিটটির মান হল

- (C) 1
- (D) log3

48. $\left[1+\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right]^{5/2}=\frac{\mathrm{d}^3y}{\mathrm{d}x^3}$ অবকল সমীকরণটির মাত্রা ও ঘাত হল কথাক্রেমে

- (B) 3, 10
- (C) 2,3 (D) 3,5

49. স্থির বিন্দু (a, 0) এবং (-a, 0)-র মধ্য দিয়ে যে সব বৃত্তগুলি যায় তাদের অবকল সমীকরণ হল

- (A) $y_1(y^2-x^2) + 2xy + a^2 = 0$
- (B) $y_1y^2 + xy + a^2x^2 = 0$
- (C) $y_1(y^2-x^2+a^2) + 2xy = 0$
- (D) $y_1(y^2+x^2) 2xy + a^2 = 0$

50. $y = e^{2x}(a\cos x + b\sin x)$ এই বক্তগোষ্ঠীর (a ও b যদৃষ্টে ধ্রুবক) অবকল সমীকরণ হল

- (A) $y_2-4y_1+5y=0$ (B) $2y_2-y_1+5y=0$ (C) $y_2+4y_1-5y=0$ (D) $y_2-2y_1+5y=0$

51. Lt $\frac{a^{\cos x} - a^{\cos x}}{\cot x - \cos x}$, a > 0

- (A)
- (C) = log_a

52. f(x) = |x| অপেককের $-2 \le x \le 2$ কেন্দ্রে রোলের উপপাদ্য প্রযোজ্য নয় কারণ

- (A) f অপেকক –2≤x≤2 কেনে সম্ভত
- (B) f অপেকক x = 0 বিশুতে অন্তরকলনযোগ্য নয়

(C) f(-2) = f(2)

(D) f সর্বদা ধ্রুবক নয়

53. $x^2+y^2-6x=0$ এবং $x^2+y^2-6y=0$ বৃস্তদুটির চ্ছেননিন্দুগামী এবং $\left(\frac{3}{2},\frac{3}{2}\right)$ কেন্দ্রনিশিষ্ট বৃস্তটির সমীকরণ হল

(A) $x^2+y^2+3x+3y+9=0$

(B) $x^2+y^2+3x+3y=0$

(C) $x^2+y^2-3x-3y=0$

(D) $x^2+y^2-3x-3y+9=0$

54. 2y = x এবং 3y+4x = 0 সরলরেখাদুটি একটি উপবৃত্তের অনুবন্ধী ব্যাস হলে উপবৃত্তটির উৎকেন্দ্রতা হল

 $y = 1 + x^2$, y-আক ও y = 5 সরলরেখা যারা বেষ্টিত কেন্দ্রটির কেন্দ্রফল হল

- (A) $\frac{14}{3}$ or wood (B) $\frac{7}{3}$ or wood
- (C) 5 বৰ্গ একক

56. t একটি প্রমাত্রা হলে $x = a\left(t + \frac{1}{t}\right)$, $y = b\left(t - \frac{1}{t}\right)$ সূচিত করে

- (A) একটি উপবৃদ্ধ
- (B) একটি বৃত্ত
- (C) मृष्टि मजनातथा
 - (D) একটি পরাব্য

(D) y = 4

(D) 8

(C) y = 1

(C) 2

59. (a,0) বিন্দু হতে অন্ধিত $y=mx+rac{a}{2}$ সরলরেখার উপর লম্বের পাদবিন্দুর স্থানান্ধ

(A) $y = \frac{1}{4}$

(A) 4

(B) $y = \frac{1}{2}$

58. 5x-12y+65 = 0 এবং 5x-12y-39 = 0 সরলরেখাদুটির মধ্যেকার দূরত্ব হ'ল

	(A) $\left(0, \frac{a}{m}\right)$	(B) $\left(0, -\frac{a}{m}\right)$	(C) $\left(\frac{a}{m}, 0\right)$	(D) $\left(-\frac{a}{m}, 0\right)$
60.	$(x-x_1)(x-x_2) + (y-y_1)(x-x_2)$	y-y ₂) = 0 একটি বুত্তের সর্ম	কৈরণ হবে যার কেন্দ্র হল	
	(A) $\left(\frac{x_1-x_2}{2}, \frac{y_1-y_2}{2}\right)$ (C) (x_1, y_1)		(B) $\left(\frac{x_1+x_2}{2}, \frac{y_1+y}{2}\right)$ (D) (x_2, y_2)	2)
61.	$x^2+y^2+6x+6y=0$ এবং (A) লম্বভাবে ছেদ করে (C) দুটি বিন্দুতে ছেদ করে	x ² +y ² –12x–12y = 0 রু র	ঙ্গুটি (B) পরস্পরকে অন্তস্প (D) পরস্পরকে বহিস্প	
62.	•	x y ² = 4x পরস্পরকে দুটি বি (B) (4, –4)	ন্দুতে ছেদ করে। তাদের। (C) (4,4)	একটি হল মূলবিন্দু এবং অপরটি হল (D) (–2,2)
<i>c</i> 0				
63.	$x^2+2y = 8x-7$ অধিবৃত্তটি (A) $\left(\frac{9}{2}, 0\right)$		(C) $\left(2, \frac{9}{2}\right)$	(D) $\left(4,\frac{7}{2}\right)$
64.	যদি P(at², 2at) বিন্দু y² =	: 4ax অধিবৃত্তের নাভিজ্ঞা-এর	ন একটি প্রান্তবিন্দু হয় তাহ	ল জ্যা-এর দৈর্ঘ্য হবে
		(B) $a\left(t-\frac{1}{t}\right)$		
65.	$y^2 = x$ এবং $x^2 = y$ অধিবৃ	ত্তের সাধারণ জ্যা-এর দৈর্ঘ্য		
	(A) 2√2	(B) 1	(C) √2	(D) $\frac{1}{\sqrt{2}}$
66.	শীর্যবিন্দু (±5,0) এবং না	ভ (±4,0) সম্পন্ন উপবৃত্তের	সমীকরণ হল	
	(A) $\frac{x^2}{25} + \frac{y^2}{16} = 1$	(B) $9x^2 + 25y^2 = 225$	(C) $\frac{x^2}{9} + \frac{y^2}{25} = 1$	(D) $4x^2 + 5y^2 = 20$
67.	$y^2 = 4x$ এবং $x^2 = 4y$ ত	ধিবৃত্ত দ্বারা সীমাবদ্ধ ক্ষেত্রের	ক্ষেত্ৰফল হল	
	(A) $\frac{8}{3}$ বর্গ একক	(B) ৪ বর্গ একক	(C) $\frac{16}{3}$ বৰ্গ একক	(D) 12 বৰ্গ একক
68.	উভয় অক্ষকেই স্পর্শ করে	যে সমস্ত বৃদ্ত তাদের কেটে	রে স্থারপথ হল	
	(A) $x^2 - y^2 = 0$	(B) $x^2 + y^2 = 0$	(C) $x^2-y^2=1$	(D) $x^2 + y^2 = 1$
69.	$(1+2) + (1+2+2^2) + ($ (A) $2^{n+2}-n-4$	1+2+2 ² +2 ³) + ···· শ্ৰেণী (B) 2(2 ⁿ -1)—n	টির n-ভম পদ পর্য্যন্ত যে (C) 2 ⁿ⁺¹ —n	গ্ৰফল হ'ল (D) 2 ⁿ⁺¹ -1
			13	

(III

10, 11 1,1 11

(A) 10√2

(A) (0, ∞)

80. $f(x) = \log_e \sqrt{4-x^2}$ অপেক্ষকটির প্রসার হল

(B) (-∞, ∞)

1.040

70.	নিম্নলিখিত শ্রেণীটির 5-তম	ম পদটি হ'ল $\frac{10}{9}$, $\frac{1}{3}$	$\sqrt{\frac{20}{3}}, \frac{2}{3}, \dots$		
	(A) $\frac{1}{3}$	(B) 1	(C) $\frac{2}{5}$	(D) $\sqrt{\frac{2}{3}}$	and the second
71.	$\sqrt{3}\sin x + \cos x = 4$				
	(A) অসীয় সংখ্যক সমাধ	নি আছে	(B) কোন সমাধান	耐	
	(C) দুইটি সমাধান আছে		(D) কেবলমতি এ	চটি সমাধান আছে	
72.	$\tan\alpha + 2\tan(2\alpha) + 4\tan^2\alpha$	$n(4\alpha) + \cdots + 2^{n-1}$	$\tan(2^{n-1}\alpha) + 2^n \cot(2^n\alpha)$	এর মান হ'ল	
	(A) $\cot(2^n\alpha)$	(B) $2^n \tan(2^n \alpha)$	(C) 0	(D) cota	
			বিন্দু থেকে যে কোনো দুটি	ু কিন্তু মোগ করে মোটি ব	जन्मनि असमायश
73	প্রাট বিন্দুর মধ্যে ওাট বিন্দু গঠন করা যাবেং	সমরেশ হলে আ ১১০			COMPLETE VIEW AL
	(A) 26	(B) 28	(C) 27	(D) 25	
74.	একই অঙ্ককে একাধিক বা সংখ্যা গঠন করা যাবে?	্ র ব্যবহার না করে 0	, 1, 2, 5, 6, 7 অৰণ্ডলি দ্বাৰ	া কডগুলি 6টি সার্থক ও	মন্কবিশিষ্ট বিজ্ঞোড়
		(B) 96	(C) 360	(D) 288	
	• *				
<i>7</i> 5.	α , β $x^2 - 2x\cos\phi + 1 =$	= 0 সমীকরণের বীজ	হলে, যে সমীকরণের বীজ	α ⁿ , β ⁿ তা হল	
	(A) $x^2-2x\cos n\phi-1$	= 0	(B) $x^2 - 2x\cos t$	1 + 1 = 0	
	(C) $x^2-2x\sin n\phi+1$	= 0	(D) $x^2 + 2x\sin x$	1 0 1 0 0	
76.	একটি উপবৃত্তের অভিলম্ব	•	অর্থেক। উপবৃত্তের উৎকেত্রি		
	(A) $\frac{1}{\sqrt{6}}$	$(B) \frac{\sqrt{3}}{2}$	(C) $\frac{\sqrt{3}}{4}$	(D) $\frac{1}{2}$	
77.	একটি বম্বকণাকে উল্লম্বভ	লবে হোঁড়া হল া t _া	সেকেণ্ড বাদে সেটি h উচ্চত	ায় থাকে এবং 🗘 সেকে	ও বাদে আবার ঐ
	উচ্চতায় আসে। তাহলে	•	ii .		
	(A) $h = gt_1t_2$	$\mathbf{(B)} \mathbf{h} = \frac{1}{2} \mathbf{g} \mathbf{t}_1 \mathbf{t}_2$	$(C) h = \frac{2}{g} t_1 t_2$	(D) $h = \sqrt{g}$	<u> </u>
78.	Lt <u>e^{3x-6}-1</u> এর মান র x→2 sin(2-x)				
	(A) $\frac{3}{2}$	(B) 3	(C) -3	(D): -1	
	2				
79.	Lt $\frac{5}{\sqrt{2}-\sqrt{x}}$ এই লিমি	ট-টির মান			

(C) $(-\infty, \log_e 2)$ (D) $(\log_e 2, \infty)$