- 2
- C denotes the set of complex numbers.
- R denotes the set of real numbers.
- Q denotes the set of rational numbers.
- Z denotes the set of integers.
- N denotes the set of positive integers.
	- **Q 1.** Let G be a group of order n, H a subgroup of G of order m, $k = \frac{n}{2}$ m and S_k the symmetric group on k symbols.
		- (a) Show that there is a nontrivial group homomorphism $\phi : G \rightarrow$ S_k .
		- (b) Assuming $\frac{k!}{2} < n$, show that G has a nontrivial proper normal subgroup.
	- Q 2. Let G be the multiplicative group of complex numbers of modulus 1 and G_n (*n* a positive integer) the subgroup consisting of the *n*-th roots of unity. For positive integers m and n , show that G/G_m and G/G_n are isomorphic groups.
	- **Q 3.** Let $A = \mathbb{Q}[X]/(X^3 1)$.
		- (a) Prove that A is a direct product of two integral domains.
		- (b) Is the ring A isomorphic to $\mathbb{Q}[X]/(X^3+1)$? Justify your answer.
	- **Q 4.** Let X be an $n \times n$ complex matrix of rank 1 and I the $n \times n$ identity matrix. Show that

$$
\det(I + X) = 1 + \operatorname{tr}(X),
$$

where $tr(X)$ denotes the trace of X and $det(X)$ denotes the determinant of X.

Q 5. Let A and X be invertible complex matrices such that $XAX^{-1} = A^2$. Prove that there exists a natural number m such that each eigenvalue of A is an m -th root of unity.

- Q 6. For $A =$ $\sqrt{ }$ \mathcal{L} 2 3 1 3 1 3 2 3 \setminus and $\vec{v} = \begin{pmatrix} a \\ b \end{pmatrix}$ b , we define a sequence of vectors $\vec{v}_1 = \vec{v}, \vec{v}_{n+1} = A\vec{v}_n$ for $n \in \mathbb{N}$. Show that $\lim_{n \to \infty} \vec{v}_n$ exists and is equal to $\sqrt{ }$ \mathcal{L} $\frac{a+b}{b}$ 2 $a+b$ 2 \setminus \cdot
- **Q 7.** Let p_k be the k-th prime number. Show that there are infinitely many k such that

$$
p_{k+1}-p_k>2.
$$

- **Q** 8. Let ${e_n}_{n\in\mathbb{N}}$ be an orthonormal basis of a Hilbert space H and P_n the orthogonal projection onto $\text{span}\{e_1, e_2, \ldots, e_n\}, n \geq 1$. Prove that for all bounded linear operator $T : \mathcal{H} \to \mathcal{H}$ and $h \in \mathcal{H}$, $P_n T P_n h \to$ Th as $n \to \infty$.
- **Q 9.** Let S be a linear subspace of $C([0,1])$ which is closed in $L^2([0,1])$. (a) Show that S is closed in $(C([0, 1]), \|\cdot\|_{\infty})$.
	- (b) Show that there exists $M > 0$ such that for all $f \in S$,

$$
||f||_2 \le ||f||_{\infty} \le M||f||_2.
$$

Q 10. Let $\ell^p(\mathbb{Z}) = \left\{ \{x_n\}_{n \in \mathbb{Z}} : x_n \in \mathbb{C} \text{ and } \lim_{N \to \infty} \sum_{n=-N}^N \ell^p(\mathbb{Z}) \right\}$ $n=-N$ $|x_n|^p < \infty$ for $p \in [1, \infty)$. Let $\{x_n\}_{n \in \mathbb{Z}}$ and $\{y_n\}_{n \in \mathbb{Z}}$ be any two elements of $\ell^1(\mathbb{Z})$. (a) Prove that $\lim_{N \to \infty} \sum_{m=-\infty}^{N}$ $m=-N$ $x_{n-m}y_m$ exists for every $n \in \mathbb{Z}$.

- (b) If $z_n = \lim_{N \to \infty} \sum_{m=-\infty}^{N}$ $m=-N$ $x_{n-m}y_m$, then prove that $\{z_n\}_{n\in\mathbb{Z}}\in\ell^1(\mathbb{Z})$.
- (c) Conclude that $\{z_n\}_{n\in\mathbb{Z}} \in \ell^p(\mathbb{Z})$ for all $p \in (1,\infty)$.

