- $\mathbf{2}$
- \mathbb{C} denotes the set of complex numbers.
- \mathbb{R} denotes the set of real numbers.
- $\bullet \mathbb{Q}$ denotes the set of rational numbers.
- \mathbb{Z} denotes the set of integers.
- \mathbb{N} denotes the set of positive integers.
 - **Q** 1. Let G be a group of order n, H a subgroup of G of order m, $k = \frac{n}{m}$ and S_k the symmetric group on k symbols.
 - (a) Show that there is a nontrivial group homomorphism $\phi: G \to S_k$.
 - (b) Assuming $\frac{k!}{2} < n$, show that G has a nontrivial proper normal subgroup.
 - **Q 2.** Let G be the multiplicative group of complex numbers of modulus 1 and G_n (n a positive integer) the subgroup consisting of the n-th roots of unity. For positive integers m and n, show that G/G_m and G/G_n are isomorphic groups.
 - **Q 3.** Let $A = \mathbb{Q}[X]/(X^3 1)$.
 - (a) Prove that A is a direct product of two integral domains.
 - (b) Is the ring A isomorphic to $\mathbb{Q}[X]/(X^3+1)$? Justify your answer.
 - **Q** 4. Let X be an $n \times n$ complex matrix of rank 1 and I the $n \times n$ identity matrix. Show that

$$\det(I+X) = 1 + \operatorname{tr}(X),$$

where tr(X) denotes the trace of X and det(X) denotes the determinant of X.

Q 5. Let A and X be invertible complex matrices such that $XAX^{-1} = A^2$. Prove that there exists a natural number m such that each eigenvalue of A is an m-th root of unity.

- **Q 6.** For $A = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} a \\ b \end{pmatrix}$, we define a sequence of vectors $\vec{v}_1 = \vec{v}, \vec{v}_{n+1} = A\vec{v}_n$ for $n \in \mathbb{N}$. Show that $\lim_{n \to \infty} \vec{v}_n$ exists and is equal to $\begin{pmatrix} \frac{a+b}{2} \\ \frac{a+b}{2} \end{pmatrix}$.
- **Q 7.** Let p_k be the k-th prime number. Show that there are infinitely many k such that

$$p_{k+1} - p_k > 2.$$

- **Q 8.** Let $\{e_n\}_{n\in\mathbb{N}}$ be an orthonormal basis of a Hilbert space \mathcal{H} and P_n the orthogonal projection onto $\operatorname{span}\{e_1, e_2, \ldots, e_n\}, n \geq 1$. Prove that for all bounded linear operator $T : \mathcal{H} \to \mathcal{H}$ and $h \in \mathcal{H}, P_n T P_n h \to Th$ as $n \to \infty$.
- **Q 9.** Let S be a linear subspace of C([0,1]) which is closed in $L^2([0,1])$. (a) Show that S is closed in $(C([0,1]), \|\cdot\|_{\infty})$.
 - (b) Show that there exists M > 0 such that for all $f \in S$,

$$||f||_2 \le ||f||_{\infty} \le M ||f||_2.$$

Q 10. Let $\ell^p(\mathbb{Z}) = \{\{x_n\}_{n \in \mathbb{Z}} : x_n \in \mathbb{C} \text{ and } \lim_{N \to \infty} \sum_{n=-N}^N |x_n|^p < \infty\}$ for $p \in [1, \infty)$. Let $\{x_n\}_{n \in \mathbb{Z}}$ and $\{y_n\}_{n \in \mathbb{Z}}$ be any two elements of $\ell^1(\mathbb{Z})$. (a) Prove that $\lim_{N \to \infty} \sum_{m=-N}^N x_{n-m} y_m$ exists for every $n \in \mathbb{Z}$.

- (b) If $z_n = \lim_{N \to \infty} \sum_{m=-N}^{N} x_{n-m} y_m$, then prove that $\{z_n\}_{n \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$.
- (c) Conclude that $\{z_n\}_{n\in\mathbb{Z}}\in\ell^p(\mathbb{Z})$ for all $p\in(1,\infty)$.

