GGSIPU Mathmatics 2004

1. If the angles between the pair of straight lines represented by the equation

$$X^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0$$
 is $\tan^{-1}\frac{1}{3}$.

Where' λ' is a non-negative real number,then λ is :

2. The distance of the line 2x-3y = 4 from the point 1,1 measuring parallel to the line x+y = 1 is :

- a √2 b5/√2 c1/√2 d6
- 3. The equations of bisectors of the angles between the lines $|\mathbf{x}| = |\mathbf{y}|$ are :

ay= <u>±</u> xaı	nd x=0
$b = \frac{1}{2} and$	$dy = \frac{1}{2}$
c y =0 and	x =0
d none of	these

4. The base of vertices of an isosceles triangle PQR are Q 1,3 and R -2,7. The vertex p can be :

a 1,6, b $\frac{1}{2}$, 5 c $\frac{5}{6}$, 6 d none of these

5. The normal at the point 3,4 on a circle cuts the circle at the point -1,-2. Then the equation of the circle is :

a $x^{2} + y^{2} + 2x - 2y - 13 = 0$ b $x^{2} + y^{2} - 2x - 2y - 11 = 0$ c $x^{2} + y^{2} - 2x + 2y + 12 = 0$ d $x^{2} + y^{2} - 2x - 2y + 14 = 0$

6. If $\cos P = \frac{1}{7}$ and $\cos Q = \frac{13}{14}$ where 'P' and 'Q' both are acute angles. Then the value of P-Q is :

	c 45° d 75 °
7. The equation 3 cos x + 4 sin x = 6 has solution	
	a finite b infinite
	cone dno
8. If $\sec^{-1} x = \csc^{-1} y$, then $\cos^{-1} \frac{1}{x} + \cos^{-1} \frac{1}{y}$ is equal to :	
	a π b π /4
	c - π/2 d π/2
9. If 'n' be any integer ,then nn+1 2n+1 is :	
multiple of 6	a odd number b integral
	c perfect square d does not
necessarily have any of the foregoing proof	
10. If tan $\theta = -\frac{4}{3}$, than the value of sin θ is :	
	a $-\frac{4}{5}$ but $\neq \frac{4}{5}$ b $-\frac{4}{5}$ or $\frac{4}{5}$
	$\left(\begin{array}{cc} \frac{4}{5} \text{but} \neq -\frac{4}{5} & \text{d} & \frac{1}{5} \end{array}\right)$
11. If c = 2 cos θ , then the value of the determinant =	c 1 0 1 c 1 is:
	61 <i>c</i>
$a = \frac{\sin 4 \theta}{\sin \theta}$	b $\frac{2 \sin^2 2\theta}{\sin \theta}$
c 4cos ² θ	2 cos θ - 1 d none of these
12. the set of values of x for which the inequality $ x-1 $	+ x+1 < 4 always holds true is :
	a -2,2 b -∞,2 ∪
2, ∞	

c $-\infty,1] \cup [1,\infty \text{ d none}]$

of these.

13. The equation of the parabola whose vertex is -1,-2, axis is vertical and which passes through the point 3,6,is :

a
$$x^{2} + 2x - 2y - 3 = 0$$

b $2x^{-2} = 3y$
c $x^{-2} - 2x + 2y - 3 = 0$
d $x^{-2} - 2x - 2y - 3 = 0$
14. The length of the axis of the conic $9x^{2} + 4y^{2} - 6x + 4y + 1 = 0$ are :
a $\frac{1}{2}, 9$ b $3, \frac{2}{5}$
(c) $, \frac{2}{3}$ d $3, 2$
15. If $fx = \cot^{-1}\left(\frac{3x - x^{3}}{1 - 3x^{2}}\right)$ and $gx = \cos^{-1}\left(\frac{1 - x^{2}}{1 + x^{2}}\right)$, then $\lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}, 0 \le a \le \frac{1}{2}$, is :
a $\frac{3}{2(1 + a^{2})}$ b $\frac{3}{2(1 + x^{2})}$
c $\frac{3}{2}$ d $-\frac{3}{2}$

16. If $f(x = \begin{cases} x & 0 \le \\ 2x - 1 & 1 \le x \end{cases}$ then :

= 1

= 1

not differentiable at x = 1

a f is discontinuous at x

b f is differentiable at x

c f is continuous but

d none of these

17. $\lim \frac{sin^{-1}(x+2)}{x^2+2x}$ is equal to : x -2

a 0 b
$$\infty$$

c $-\frac{1}{2}$ d none of these

18. Let $fx = x^{p} \cos \frac{1}{x}$, when $x \neq 0$ and $f(x = 0$, when $x = 0$. then $f(x \text{ will be differentiable at } x = 0$, if :		
	a p>0	h n
	-	
1	c 0 <p 1<="" <="" td=""><td>d</td></p>	d
19. The derivative of $f(x = 3 2+x $ atv the point $x_0 = -3$ is :		
	-	
	a 3	b -3
of these	c 0	d none
20. Derivative of the function f(x = log 5 (log 7x), x>7 is :		
	a $\frac{1}{x \log 5}$	$\frac{1}{(log_7)(log_7 x)}$
	b <u>*(</u> 1	1 0g5)(log7)
	c $\frac{1}{x \log x}$	<u>x)</u>
	d none c	of these
21. If $z = x+iy$, $z^{1/3} = a - ib$, then $\frac{x}{a} - \frac{y}{b} = k a^2 - b^2$, where k is equal t	0:	
	a 1	b 2
	c 3	d 4
22. The number of real solutions of the equation $1+ e^{x}-1 =e^{x}e^{x}$	[×] – 2 is :	
	a 1	b 2
	с 4	d 8
23. The points of extrema of $f(x = \frac{x \sin t}{0} dt$ in a domain x>0 are :		
1,2,	a 2n+1	$\frac{\pi}{2}$, n =
±, ב,	b 4n+1	$\frac{\pi}{2}$, n =
1, 2 ,	~ ±	2

collegedunia

1,2,	C	2n-	+1 [#] 4	, n =	
	d	n π	,n =1,	2,	•
24. If $i=x^2 + y^2$ and $x=s+3t$, $y=2s-t$, then $\frac{d^e u}{ds^2}$ is equal to :					
	а	12	b 10)	
	С	32	d 3	6	
25. If the equation $x^2+qx+p = 0$ have a common root then $p+q+1$ is equal to) :				
	а	0	b 1		
	с	2	C	l -1	
26. The value of aa b for which the sum of the cubes of the roots of x 2 - a assumes the last value is :	-2	x+ a	-3 =0)	
	а	3	b	4	
	С	5	d		
none of these					
27. Let z_1, z_2, z_3 be three vertices of an equilateral triangle circumscribing the	e cir	cle z	$=\frac{1}{2}$	f z ₁ =	$\frac{1}{2}$ +
$\frac{\sqrt{3}}{2}$ and z_1, z_2, z_3 were in anticlockwise sense, then z_2 is :					
1- <u>3i</u>	а	1+	31	b	
	с	1		d	-1
28. If $z = \frac{-2}{1 + \sqrt{3l}}$, then the value of arg z is :					
π/3	а	π		b	
	с	2 π/	3	d	
π/4					

29. Let $\boldsymbol{\omega}$ is an imaginary cube roots of unity ,then the value of

21+ ω **1+** ω^2 + **32** ω + **12** ω^2 + **1** + ... + n + **1** n ω + **1** n ω^2 + **1** is :

a $\left[\frac{n(n+1)}{2}\right]^2$ + n (t	$n^2(n+1)^2$]
a [<u></u>] +n (r [4
$c \qquad \left[\frac{n(n+1)}{2}\right]^2 - n d$	none of these
30. The locus of the point z satisfying $\arg \left[\frac{z-1}{z+1}\right] = k$, (vhere k is non zero is :	
centre on y-axis	a a circle with
	b circle with
centre on x-axis	
parallel to x- axis	c a straight line
	d a straight line
making an angle 60° with the x-axis	
31. If 3,4,5,Q(4,6,3,R -1,2,4,s1,0,5,then the projection of RS on PQ is :	
	a -2/3 b -
4/3	
	c ½ d 2
32. If a line makes α , β , γ with the positive direction of x,y,z-axes respectively. $\cos^2\alpha + \cos^2\beta + \cos^2\gamma$ is equal to :	l hen
	a½ b -1/2
	c -1 d 1
33. The projection of a line on co-ordinate axes are 2,3,6.Then the length of th	e line is :
	a7 b5
	c 1 d 11
34. The decimal equivalent of the binary number 10011.1 is :	
11001 11	a 19.50 b
11001.11	
d 19.10	c 5005.55
35. The binary represents of 60 is :	

111100	a 101110 b
110000	c 110011 d
110000	
36. Which of the following statement is not tautology ?	
р д р	a~p q p
d ~p q ∩ ~p p	cq~pq
37. The period of f(x = sin $\left(\frac{rx}{n-1}\right)$ + cos $\left(\frac{rx}{n}\right)$, n \in z,n>2 is :	
b 4nn -1	a 2rn n - 1
d none of these	c 2nn -1
39. The radius of the circle whose arc of length 15 km makes an angle of $\frac{3}{4}$ radia	n at the centre ,is :
b 20 cm	a 10 cm
	c 11 $\frac{1}{4}$ cm
d 22 $\frac{1}{2}$ cm	
40. If $f_n x = e f(n - 1^x)$, for all $n \in N$ and $f_0 x = x$, then $\frac{d}{dx} \{f_n x\}$ is equal to :	
$b f_n x \frac{d}{dx} \{f_{n+1} 9x\}$	af _n xf _{n-1} x
, $f_2 \ge f_1 \ge d$ none of these	c f _n x f _{n-1} x
41. if $3^x + 2^{2x} \ge 5^x$, then the solution set for x is :	
	a -∞,2]

b [2, ∞

d {2}	0 [0,2]
42. The number of integral solution of $\frac{x+1}{x^{2+2}} > \frac{1}{4}$ is :	
b 2	a 1
d none of these	c 5
43. The value of k for which the equation k -2 x 2 + 8x + k +4 = 0 has both real, dis	tinct and -ve,is :
b 2	a 0
d -4	c 3
44. The triangle PQR of which the angles P,Q,R satisfy $\cos P = \frac{\sin Q}{2 \sin R is}$:	
b right angled	a equilateral
d isosceles	c any triangle
45. If fx = a $-x^{n}$, where a>0 and n is a positive integer, then f[f x] is equal to	o :
b x ²	ах ³
d none of tese	сх
46. The function $f(x = [x]^2 - [x^2]$ where [y] is the gretest integer less then or ec discontinuous at :	qual to y is

a all integers

c [0,2]

b all integers

except 0 and 1

c all integers

all integers

d

except 0

except 1

47. the function fx = $|px-q| + r |x|, x \in -\infty, \infty$ where p>0,q.0,r>0 assumes its maximum value only at one point, if :

 $q \neq r$ $q \neq r$ $r \neq p \quad d$ $r \neq p \quad d$ r = -3 r = -3

increasing in its domain

- 49. The locus of the point px,y) satisfyg th hrelelitn
 - $\sqrt{(x-3^2 + y-1^2} + \sqrt{(x+3^2 + y-1^2)} = 6 \text{ is}$ a Straight line b Pair of straight lines c Circle d Ellipse

50. If z_1 , z_2 and z_3 are complex number such that $|z_1| = |z_2| = |z_3| = \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} = 1$ then $|z_1 + z_2 + z_3|$ is :

a equal to 1

b less than 1

c greater

than 3

d equal to 3

51. Let a_1,a_2,a_3 be any positive real numbers, then which of the following statement is not true?

$a_1^3 + a_2^3 + a_3^3$	a 3a ₁a₂a₃≤
$\frac{a_3}{a_1} \ge 3$	b $\frac{a_1}{a_2} + \frac{a_2}{a_3} +$
$\left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3}\right) \ge 9$	C a ₁ a ₂ a ₃
$\left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3}\right)^3 \le 27$	d a ₁ a ₂ a ₃
52. If ab = 2a +3b,a>0,b<0,then the minimum value of ab is :	
b 24	a 12
d none of these	c $\frac{1}{4}$
53. Let N be +ve integer \neq 1, then none of the numbers 2,3,,N is divisor of N $!$ -1.S conclude that N! -1 is :	o we can
number	a prime
one of this number N+1, N+2,,N ! – 2 is divisor of N! – 1	b at least
smallest numbers between N and N ! which is divisor of N $! \ -1$ is pr ime number	c The
these	d none of

54 . If f(x = cos [π^2] x+cos [- π^2] x,then :

a f π/4=2

b f
$$-\pi=2$$

c f $\pi = 1$
d f $\pi/2= -1$
55. let fx = $\frac{x^2-4}{x^2+4}$, for $|\mathbf{x}| > 2$, then the function f: $-\infty, -2$] $\cup [2, \infty$ $-1, 1$ is :
a one -
one into b one -one onto
c many -
one into d many-one onto
56. The function f(x = sin log x+ $\sqrt{x^2 + 1}$ is :
a even
function b odd function
b neither
even nor odd d periodic function
57. The range of f(x = sec $(\frac{\pi}{4} \cos^2 x), -\infty < x < \infty$ is :
a $[1, \sqrt{2}]$
b $[1, \infty$

c[-
$$\overline{2}$$
,-
1] \cup [1, $\overline{2}$] d - ∞ ,1] \cup [1, ∞

58. For any three sets A_1 , A_2 , A_3 . Let $B_1 = A_1$, $B_2 = A_2$ - A_1 and $B_3 = A_3 - A_1 \cup A_2$, then which of the following statement is always true ?

$$\begin{array}{c} \mathsf{a} \ \mathsf{A}_{\ 1} \cup \\ \mathsf{A}_2 \cup \mathsf{A}_3 \supset \mathsf{B}_1 \cup \mathsf{B}_2 \cup \mathsf{B}_3 \end{array}$$

b A
$$_1 \cup$$

c A
$$_1 \cup$$

$$\mathsf{A}_2 \cup \mathsf{A}_3 \subset \mathsf{B}_1 \cup \mathsf{B}_2 \cup \mathsf{B}_3$$

of these

 $\textbf{A}_2 \cup \textbf{A}_3 \texttt{=} \textbf{B}_1 \cup \textbf{B}_2 \cup \textbf{B}_3$

59. the domain of the function
$$f(x = \frac{sin^{-1}(3-x)}{\log(/x-2)}$$
 is :

d none

b 3,4]	a [2,4]
d -∞,3 ∪ [2,∞	c [2, ∞
60. The remainder obtained when 1! + 2! + + 200! Is divided by 14 is :	
h a	a 3
b 4	c 5
d none of these	

