GGSIPU Mathmatics 2004

1. If the angles between the pair of straight lines represented by the equation

$$
x^{2}-3 x y+\lambda y^{2}+3 x-5 y+2=0 \text { is } \tan ^{-1} \frac{1}{3}
$$

Where' λ^{\prime} is a non-negative real number, then λ is :
a $2 \quad b \quad 0$
c $\quad 3 \quad$ d 1
2. The distance of the line $2 x-3 y=4$ from the point 1,1 measurırl parallel tache line $x+y=1$ is :
a $\sqrt{2}$
b 5/ $\sqrt{2}$
c $1 / \sqrt{2} d 6$
3. The equations of bisectors of the angles between the lines $|\mathbf{x}|=|\mathbf{y}|$ are :
$a y= \pm x$ and $x=0$
$b x=\frac{1}{2}$ and $y=\frac{1}{2}$
$c y=0$ and $x=0$
d none of these
4. The base of vertices of an isosceles triangle $P Q R$ are $Q 1,3$ and $R \quad-2,7.1$ Te vertex p can be :
a $1,6, y^{\prime} \quad \frac{1}{2}, 5$
c $\frac{5}{6}, 6 \mathrm{~d}$ none of these
5. The normal at the point 3,4 on a circle cuts the circle at the point $-1,-2$. Then the equation of the circle is :
a $x^{2}+y^{2}+2 x-2 y-13=0$
b $\quad x^{2}+y^{2}-2 x-2 y-11=0$
C $x^{2}+y^{2}-2 x+2 y+12=0$
$d x^{2}+y^{2}-2 x-2 y+14=0$
6. If $\cos P=\frac{1}{7}$ and $\cos Q=\frac{13}{14 \prime}$ where ' P ' and ' Q ' both are acute angles. Then the value of $P-Q$ is :
a $30{ }^{\circ}$
b $60{ }^{\circ}$
c 45^{0}
d 75°
7. The equation $3 \cos x+4 \sin x=6$ has \qquad solution
a finite
b infinite
c one
d no
8. If $\sec ^{-1} x=\operatorname{cosec}^{-1} y$, then $\cos ^{-1} \frac{1}{x}+\cos ^{-1} \frac{1}{y}$ is equal to :
a π
b $\pi / 4$
C $-\pi / 2$
d $\pi / 2$
9. If ' n ' be any integer , then $n n+12 n+1$ is :
a odd number b integral
multiple of 6
c perfect square d does not
necessarily have any of the foregoing proof
10. If $\tan \theta=-\frac{4}{3}$, than the value of $\sin \theta$ is :

$$
\begin{aligned}
& \text { a } \quad \frac{4}{5} \text { but } \neq \frac{4}{5} \\
& \text { b } \quad-\frac{4}{5} \text { or } \frac{4}{5} \\
& \text { (but } \neq-\frac{4}{5} \\
& \text { d } \frac{1}{5}
\end{aligned}
$$

11. If $\mathbf{c}=2 \cos \theta$, then the value of the determinant $\Delta=\begin{array}{lll}c & 1 & 0 \\ 1 & c & 1 \\ 6 & 1 & c\end{array}$ is :
a $\frac{\sin 4 \theta}{\sin \theta}$ b $\frac{2 \sin ^{2} 2 \theta}{\sin \theta}$
c $4 \cos ^{2} \theta 2 \cos \theta-1$ d none of these
12. the set of values of x for which the inequality $|x-1|+|x+1|<4$ always holds true is :

2, ∞
a $-\mathbf{- 2 , 2} \quad$ b $\quad-\infty, 2 \cup$
c $-\infty, 1] \cup[1, \infty$ d none
of these.
13. The equation of the parabola whose vertex is $-1,-2$, axis is vertical and which passes through the point 3,6 ,is :

$$
\begin{aligned}
& \text { a } x^{2}+2 x-2 y-3=0 \\
& \text { b } 2 x^{2}=3 y \\
& \text { c } x^{2}-2 x+2 y-3=0 \\
& \text { d } x^{2}-2 x-2 y-3=0
\end{aligned}
$$

14. The length of the axis of the conic $9 x^{2}+4 y^{2}-6 x+4 y+1=0$ are :
a $\frac{1}{2}, 9$
b $3, \frac{2}{5}$
(c) , $\frac{2}{3}$
d 3,2
15. If $\mathrm{fx}=\cot ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$ and $g \mathrm{gx}=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$, then $\lim _{x \rightarrow a} \frac{f(x)-f(a}{g(x)-g(a}, 0<-\hat{a}<\frac{1}{2}$, is:
a $\quad=\frac{3}{2} \frac{1+a^{2}}{2} \quad$ b $\quad \frac{3}{1+x^{2}}$
C $\frac{3}{2}$
d $-\frac{3}{2}$
16. If $\mathrm{f}\left(\mathrm{x}=\left\{\begin{array}{cc}x, & 0 \leq \\ 2 x-1 & 1<x\end{array} x \leq 1\right.\right.$ then :
a f is discontinuous at x
b \mathbf{f} is differentiable at x
$=1$
c f is continuous but
not differentiable at $x=1$
d none of these
17. $\lim \frac{\sin ^{-1(x+2)}}{x^{2}+2 x}$ is equal to :
$x \rightarrow-2$
a 0
b
∞
C $-\frac{1}{2}$
d none of these
18. Let $f x=x^{p} \cos \frac{1}{x}$, when $x \neq 0$ and $f(x=0$, when $x=0$. then $f(x$ will be differentiable at $x=0$,if :
a $p>0$
b $p>$)
c $0<p<1$
d $\quad \frac{1}{2}<p<$

1
19. The derivative of $f\left(x=3|2+x|\right.$ atv the point $x_{0}=-3$ is:
a 3
b -3
c 0
d none
of these
20. Derivative of the function $f(x=\log 5(\log 7 x), x>7$ is :
a $\quad \frac{1}{x \log 5)(\log 7)\left(\log _{7} x\right)}$
b $\frac{1}{x(\log 5)(\log 7)}$
C $\quad \frac{1}{x \log x)}$
d none of these
21. If $z=x+i y, z^{1 / 3}=a-i b$,then $\frac{x}{a}-\frac{y}{b}=k a^{2}-b^{2}$, where k is equal to :
a 1
b 2
c 3
d 4
22. The number of real solutions of the equation $1+\left|e^{x}-1\right|=e^{x} e^{x}-2$ is :
a 1
b 2
c 4
d 8
23. The points of extrema of $f\left(x=\int_{0}^{x \sin t} \frac{t}{t}\right.$ in a domain $x>0$ are :
$1,2, \ldots .$.
a $2 \mathrm{n}+1 \frac{\pi}{2}, \mathrm{n}=$
b $4 n+1 \quad \frac{\pi}{2}, n=$ 1,2,.....

1,2,.....

$$
\mathrm{d} \mathrm{n} \quad \pi, \mathrm{n}=1,2, \ldots \ldots
$$

24. If $\mathrm{i}=\mathrm{x}^{2}+\mathrm{y}^{2}$ and $\mathrm{x}=\mathrm{s}+3 \mathrm{t}, \mathrm{y}=2 \mathrm{~s}-\mathrm{t}$, then $\frac{d^{e} u}{d s^{2}}$ is equal to :
a 12 b 10
c 32 d 36
25. If the equation $x^{2}+q x+p=0$ have a common root then $p+q+1$ is equal to :
a 0
b 1
c 2
d -1
26. The value of $a a \geq b$ for which the sum of the cubes of the roots of $x^{2}-a-2 x+a-3=0$ assumes the last value is :
a 3
b 4
c 5
d
none of these
27. Let z_{1}, z_{2}, z_{3} be three vertices of an equilateral triangle circumscribing the circle $|z|=\frac{1}{2}$. If $z_{1}=\frac{1}{2}+$ $\frac{i \sqrt{3}}{2}$ and $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}$ were in anticlockwise sense, then \mathbf{z}_{2} is :
a $1+\sqrt{3 i}$
b

1- $\sqrt{3 i}$
c 1
d $\quad-1$
28. If $\mathrm{z}=\frac{-2}{1+\sqrt{3 i}}$, then the value of $\arg \mathrm{z}$ is :
a π
b
$\pi / 3$

$$
\text { c } 2 \pi / 3
$$

d
$\pi / 4$
29. Let ω is an imaginary cube roots of unity , then the value of

$$
\text { a }\left[\frac{n(n+1)}{2}\right]^{2}+n\left(k\left[\frac{n^{2}(n+1)^{2}}{4}\right]\right.
$$

c $\quad\left[\frac{n(n+1)}{2}\right]^{2}-n$ d none of these
30. The locus of the point z satisfying $\arg \left[\frac{z-1}{z+1}\right]=k$,(vhere k is non zero is:
centre on y-axis a a circle with
b circle with
centre on x -axis
c a straight line
parallel to x - axis
d a straight line
making an angle 60° with the x-axis
31. If $3,4,5, Q(4,6,3, R \quad-1,2,4,51,0,5$, then the projection of $R S$ on $P Q$ is :
$4 / 3$
$\begin{array}{lll}a & -2 / 3 & b\end{array}$
c $1 / 2 \quad$ d 2
32. If a line makes α, β, γ with the positive direction of x, y, z-axes respectively.Then $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma$ is equal to :
a $1 / 2$
b $-1 / 2$
c -1
d 1
33. The projection of a line on co-ordinate axes are $\mathbf{2 , 3}, 6$. Then the length of the line is :
a 7 b 5
c 1 d 11
34. The decimal equivalent of the binary number 10011.1 is :
a 19.50 b
11001.11
c 5005.55
d 19.10
35. The binary represents of 60 is :
36. Which of the following statement is not tautology ?
b $p \wedge q \Rightarrow p$
$a \quad \sim p \wedge q \vee p$
$c q \wedge \sim p \wedge q$
d $\quad \sim p \wedge q \cap \sim p \vee p$
37. The period of $\mathrm{f}\left(\mathrm{x}=\sin \left(\frac{r x}{n-1}\right)+\cos \left(\frac{r x}{n}\right), \mathrm{n} \in \mathrm{z}, \mathrm{n}>2\right.$ is :
a $2 r n \quad$ n 1
b 4nn -1
c $2 n n-1$
d none of these
39. The radius of the circle whose arc of length 15 km makes an angle of $\frac{3}{4}$ radian at the centre ,is:
a 10 cm
b 20 cm

C $11 \frac{1}{4} \mathrm{~cm}$
d $22 \frac{1}{2} \mathrm{~cm}$
40. If $f_{n} x=e f\left(n-1^{x}\right.$,for all $n \in N$ and $f_{0} x=x$, then $\frac{d}{d x}\left\{f_{n} x\right\}$ is equal to :
b f ${ }_{n} x \frac{d}{d x}\left\{f_{n+1} 9 x\right\}$
a $f_{n} x f_{n-1} x$
$\ldots . f_{2} \times f{ }_{1} \times d$ none of these
41. if $3^{x}+2^{2 x} \geq 5^{x}$, then the solution set for x is :
a $-\infty, 2]$
b [2, ∞
d \{2\}
42. The number of integral solution of $\frac{x+1}{x^{2+2}}>\frac{1}{4}$ is :
a 1
b 2
c 5
d none of these
43. The value of k for which the equation $k-2 x^{2}+8 x+k+4=0$ has both real, distinct and $-v e$, is :
a 0
b 2
c 3
d -4
44. The triangle $P Q R$ of which the angles P, Q, R satisfy $\cos P=\frac{\sin Q}{2 \sin R i s}$:
a equilateral
b right angled
c any triangle
d isosceles
45. If $f x=a \quad-x^{n} 1 / n$, where $a>0$ and n is a positive integer, then $f[f x]$ is equal to :
$a x^{3}$
b x^{2}
c x
d none of tese
46. The function $f\left(x=[x]^{2}-\left[x^{2}\right]\right.$ where $[y]$ is the gretest integer less then or equal to y is discontinuous at :
a all integers
b all integers
except 0 and 1
c all integers
except 0
d all integers
except 1
47. the function $f x=|p x-q|+r|x|, x \in-\infty, \infty$ where $p>0, q \cdot 0, r>0$ assumes its maximum value only at one point,if :
a $\mathbf{p} \neq \mathbf{q} \quad b$
$\mathbf{q} \neq \mathbf{r}$
c $r \neq p$
d
$p=q=r$
48. A function $\mathrm{f}\left(\mathrm{x}=\frac{x^{2}-3 x+2}{x^{2}+2 x-3}\right.$ is :
a maximum at
$x=-3$
b maximum
at $x=-3$ and maximum at $x=1$
c maximum at $x=1$
d function is
increasing in its domain
49. The locus of the point $p>x, y$) satising thinrelel:itin

$$
\begin{aligned}
& \sqrt{\left(x-3^{2}+y-1^{2}\right.}+\sqrt{\left(x+3^{2}\right.}+y-1^{2}-\overline{2} \text { is } \\
& \text { a Straight line } \\
& \text { b Pair of straight lines } \\
& \text { c Circle } \\
& \text { d Ellipse }
\end{aligned}
$$

50. If z_{1}, z_{2} and z_{3} are complex number such thatt $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}=1$ then $\mid z_{1}+z_{2}$ $+z_{3} \mid$ is :
a equal to 1
b less than 1
c greater
than 3
d equal to 3
51. Let a_{1}, a_{2}, a_{3} be any positive real numbers , then which of the following statement is not true ?
a $3 \mathrm{a}{ }_{1}{ }^{2}, a_{3} \leq$
$a_{1}{ }^{3}+a_{2}^{3}+a_{3}^{3}$
b $\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+$
$\frac{a_{3}}{a_{1}} \geq 3$
c $a{ }_{1} a_{2} a_{3}$
$\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right) \geq 9$
d $\quad a_{1} a_{2} a_{3}$
$\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right)^{3} \leq 27$
52. If $a b=2 a+3 b, a>0, b<0$, then the minimum value of $a b$ is :
a 12
b 24

C $\frac{1}{4}$
d none of these
53. Let \mathbf{N} be +ve integer $\neq 1$, then none of the numbers $2,3, \ldots, N$ is divisor of N ! -1 .So we can conclude that N ! -1 is :
a prime
number
b at least
one of this number $N+1, N+2, \ldots, N!-2$ is divisor of $N!-1$
c The
smallest numbers between \mathbf{N} and $\mathbf{N}!$ which is divisor of $\mathbf{N}!-1$ is pr ime number
d none of
these
54. If $f\left(x=\cos \left[\pi^{2}\right] x+\cos \left[-\pi^{2}\right] x\right.$, then :
a f $\pi / 4=2$

$$
\begin{array}{lll}
\text { b } & \text { f } & -\pi=2 \\
\text { c } & f & \pi=1 \\
\text { d } & f & \pi / 2=-1
\end{array}
$$

55. let $\mathrm{fx}=\frac{x^{2}-4}{x^{2}+4}$, for $|\mathrm{x}|>2$, then the function $\left.\mathrm{f}:-\infty,-2\right] \cup[2, \infty \rightarrow-1,1$ is :
one into b one -one onto
c many -
one into d many-one onto
56. The function $f\left(x=\sin \log x+\sqrt{x^{2}+1}\right.$ is :
a even
function \mathbf{b} odd function
b neither
even nor odd d periodic funnction
57. The range of $f\left(x=\sec \left(\frac{\pi}{4} \cos ^{2} x\right),-\infty<x<\infty\right.$ is :
a $[1, \sqrt{2} \overline{2}]$
b $[1, \infty$ $c[-\sqrt{2}$,
1] $\cup[1, \sqrt{2}] \quad$ d $\quad-\infty, 1] \cup[1, \infty$
58. For any three sets A_{1}, A_{2}, A_{3}. Let $B_{1}=A_{1}, B_{2}=A_{2}-A_{1}$ and $B_{3}=A_{3}-A_{1} \cup A_{2}$, then which of the following statement is always true ?
$A_{2} \cup A_{3} \supset B_{1} \cup B_{2} \cup B_{3}$
b $A_{1} \cup$
$A_{2} \cup A_{3}=B_{1} \cup B_{2} \cup B_{3}$
c $\mathrm{A}_{1} \cup$
$A_{2} \cup A_{3} \subset B_{1} \cup B_{2} \cup B_{3}$
d none
of these
59. the domain of the function $f\left(x=\frac{\sin ^{-1}(3-x)}{\log (/ x+2)}\right.$ is :
b 3,4]
c $[2, \infty$
d $-\infty, \mathbf{3} \cup[\mathbf{2}, \infty$
60. The remainder obtained when $1!+2!+\ldots .+200$! Is divided by 14 is :
a 3
b 4
c 5
d none of these
