GMAT Fractions Practice Test 6

1. What is the units digit of $(2)^{5}(3)^{3}(4)^{2}$?
2. What is the sum of all the possible 3 -digit numbers that can be constructed using the digits 3,4 , and 5 , if each digit can be used only once in each number?
3. In the decimal, $2.4 d 7, d$ represents a digit from 0 to 9 . If the value of the decimal rounded to the nearest tenth is less than 2.5 , what are the possible values of d ?
4. If k is an integer, and if 0.02468×10^{k} is greater than 10,000 , what is the least possible value of k ?
5. Which integer values of b would give the number $2002 \div 10^{-b}$ a value between 1 and 100?
6. Estimate to the nearest $10,000: \frac{4,509,982,344}{5.342 \times 10^{4}}$
7. Simplify: $(4.5 \times 2+6.6) \div 0.003$
8. Simplify: $\left(4 \times 10^{-2}\right)-\left(2.5 \times 10^{-3}\right)$
9. What is $4,563,021 \div 10^{5}$, rounded to the nearest whole number?
10. Simplify: $(0.08)^{2} \div 0.4$
11. Data Sufficiency: The number A is a two-digit positive integer; the number B is the two-digit positive integer formed by reversing the digits of A. If $Q=10 B-A$, what is the value of Q ?
(1) The tens digit of A is 7 .
(2) The tens digit of B is 6 .
12. Simplify: $[8-(1.08+6.9)]^{2}$
13. Which integer values of j would give the number $-37,129 \times 10^{j}$ a value between -100 and -1 ?
14. Simplify: $\frac{0.00081}{0.09}$
15. Simplify: $\sqrt[8]{0.00000256}$

Question 16

Order from least to greatest:
1.19
$\frac{120}{84}$
131.44\%

Question 17

$$
\begin{array}{llll}
\text { Order from least to greatest: } & 2 \frac{4}{7} & 2400 \% & 2.401
\end{array}
$$

Question 18

$$
\text { Order from least to greatest }(x \neq 0): \frac{50}{17} x^{2} \quad 2.9 x^{2} \quad\left(x^{2}\right)(3.10 \%)
$$

Question 19

Order from least to greatest: $\quad \frac{500}{199} \quad 248,000 \% \quad 2.9002003$

Question 20

What number is 62.5% of $192 ?$

