Math Level 2 SAT Practice Test 15

26.

Figure 4
What is the volume of the solid created by rotating rectangle $A B C D$ in Figure 4 around the y-axis?
A. 219.91
B. 245
C. 549.78
D. 769.69
E. 816.24
27. If $f(x, y)=\frac{x^{2}-2 x y+y^{2}}{x^{2}-y^{2}}$, then $f(-x,-y)=$
A. 1
B. $\frac{1}{x+y}$
$-x+y$
C. $x+y$
$-x+y$
D. $x-y$
$\underline{x-y}$
E. $x+y$
28. In order to disprove the hypothesis, "No number divisible by 5 is less than 5 ," it would be necessary to
A. prove the statement false for all numbers divisible by 5
B. demonstrate that numbers greater than 5 are often divisible by 5
C. indicate that infinitely many numbers greater than 5 are divisible by 5
D. supply one case in which a number divisible by 5 is less than 5
E. show that a statement true of numbers greater than 5 is also true of numbers less than 5
29. A parallelogram has vertices at $(0,0),(5,0)$, and $(2,3)$. What are the coordinates of the fourth vertex?
A. $(3,-2)$
B. $(5,3)$
C. $(7,3)$
D. $(10,5)$
E. It cannot be determined from the information given.
30. The expression $\frac{x^{2}+3 x-4}{2 x^{2}+10 x+8}$ is undefined for what values of x ?
A. $x=\{-1,-4\}$
B. $x=\{-1\}$
C. $x=\{0\}$
D. $x=\{1,-4\}$
E. $x=\{0,1,4\}$
31. For which of the following functions is $f(x)>0$ for all real values of x ?
I. $f(x)=x^{2}+1$
II. $f(x)=1-\sin x$
III. $f(x)=\pi\left(\pi^{x-1}\right)$
A. I only
B. II only
C. I and III only
D. II and III only
E. I, II, and III
32.

Figure 5
The graph of $y=f(x)$ is shown in Figure 5. Which of the following could be the graph of $y=-f(-x)$?
A.

B.

D.

E.

33. A wire is stretched from the top of a two-foot-tall anchor to the top of a 50 -foot-tall antenna. If the wire 2
is straight and has a slope of 5 , then what is the length of the wire in feet?
A. 89.18
B. 120
C. 123.26
D. 129.24
E. 134.63
3π
34. If $2>\theta 2 \pi$ and $\sec \theta=4$, then $\tan \theta=$
A. -3.93
B. -3.87
C. 0.26
D. 3.87
E. 3.93
35. Circle O is centered at $(-3,1)$ and has a radius of 4 . Circle P is centered at $(4,-4)$ and has a radius of n. If circle O is externally tangent to circle P, then what is the value of n ?
A. 4
B. 4.37
C. 4.6
D. 5.28
E. 6.25
36. In triangle $A B C, \frac{\sin A}{\sin B}=\frac{7}{10}$ and $\frac{\sin B}{\sin C}=\frac{5}{2}$. If angles A, B, and C are opposite sides a, b, and c, respectively, and the triangle has a perimeter of 16 , then what is the length of a ?
A. 2.7
B. 4.7
C. 5.3
D. 8
E. 14
37.

x	$h(x)$
-1	0
0	3
1	0
2	3

The table of values above shows selected coordinate pairs on the graph of $h(x)$. Which of the following could be $h(x)$?
A. $x(x+1)(x-1)$
B. $(x+1)^{2}(x-1)$
C. $(x-1)(x+2)^{2}$
D. $(x-1)^{2}(x+3)$
E. $(x-1)(x+1)(2 x-3)$
38. $a+b+2 c=7$
$a-2 b=8$
$3 b+2 c=n$

For what values of n does the system of equations above have no real solutions?
A. $n \neq-1$
B. $n \leq 0$
C. $n \geq 1$
D. $n>7$
E. $n=-15$

39.

5
Figure 6
Note: Figure not drawn to scale.
In Figure 6, what is the value of θ in degrees?
A. 62
B. 65.38
C. 65.91
D. 68.49
E. 68.7
40. If $\left|\begin{array}{ccc}l & m & n \\ p & q & r \\ s & t & u\end{array}\right|=A$, then $\left|\begin{array}{ccc}2 l & 2 m & 2 n \\ 2 p & 2 q & 2 r \\ 2 s & 2 t & 2 u\end{array}\right|=$
A. $2 A$
B. $4 A$
C. $6 A$
D. 8 A
E. 18 A
41. In the function $g(x)=A[\sin (B x+C)]+D$, constants are represented by A, B, C, and D. If $g(x)$ is to be altered in such a way that both its period and amplitude are increased, which of the following constants must be increased?
A. A only
B. B only
C. C only
D. A and B only
E. C and D only
42. All of the elements of list M and list N are arranged in exactly 20 pairs, such that every element from list M is paired with a distinct element from list N. If in each such pair, the element from list M is larger than the element from list N, then which of the following statements must be true?
A. The median of the elements in M is greater than the median of the elements in N.
B. Any element of M is greater than any element of N.
C. The mode of the elements in M is greater than the mode of the elements in N.
D. The range of the elements in M is greater than the range of the elements in N.
E. The standard deviation of the elements in M is greater than the standard deviation of the elements in N.
43. If $3,5,8.333$, and 13.889 are the first four terms of a sequence, then which of the following could define that sequence?
A. $a_{0}=3 ; a_{n+1}=a_{n}+2$
B. $a_{0}=3 ; a_{n+1}=2 a_{n}-1$
C. $a_{0}=3 ; a_{n}=a_{n+1}+\frac{40}{9}$
D. $a_{0}=3 ; a_{n}=\frac{5}{3} a_{n-1}$
E. $a_{0}=3 ; a_{n} \frac{7}{3} a_{n-1}-\frac{40}{9} a_{n-1}$
44. If $0 \leq n \leq \frac{\pi}{2}$ and $\cos (\cos n)=0.8$, then $\tan n=$
A. 0.65
B. 0.75
C. 0.83
D. 1.19
E. 1.22
45. The height of a cylinder is equal to one-half of n, where n is equal to one-half of the cylinder's diameter. What is the surface area of this cylinder in terms of n ?
А. $\frac{3 \pi n^{2}}{2}$
B. $2 \pi n^{2}$
C. $3 \pi n^{2}$
D. $2 \pi n^{2}+\frac{\pi n}{2}$
E. $2 \pi n^{2}+\pi n$
46. If $(\tan \theta-1)^{2}=4$, then which of the following could be the value of θ in radian measure?
A. -0.785
B. 1.373
C. 1.504
D. 1.512
E. 3
47. Which of the following expresses the range of values of $y=g(x)$, if $g(x)=\frac{5}{x+4}$?
A. $\{y: y \neq 0\}$
B. $\{y: y \neq 1.25\}$
C. $\{y: y \neq-4.00\}$
D. $\{y: y>0\}$
E. $\{y: y \leq-1$ or $y \geq 1\}$
48. If $\csc \theta=\frac{1}{3 t}$, then where defined, $\cos \theta=$
A. $3 t$
B. $\sqrt{1-3 t^{2}}$
C. $\sqrt{1-9 t^{2}}$
D. $\frac{3 t}{\sqrt{1-3 t^{2}}}$
E. $\frac{3 t}{\sqrt{1-9 t^{2}}}$

$$
x y+y
$$

49. If $f(x, y)=x+y$, then which of the following statements must be true?
I. If $x=0$ and $y \neq 0$, then $f(x, y)=1$.
II. If $x=1$, then $f(x, x)=1$.
III. $f(x, y)=f(y, x)$
A. I only
B. II only
C. I and II only
D. I and III only
E. I, II, and III
50. A triangle is formed by the x-axis, the y-axis, and the line $y=m x+b$. If $m=-b^{3}$, then what is the volume of the cone generated by rotating this triangle around the x-axis?
π
A. 9
B. $\frac{\pi}{3}$
C. π
D. 3π
E. 9т
