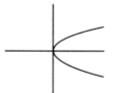
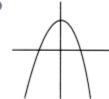
Math Level 1 SAT Practice Test 18

20. If
$$xyz \neq 0$$
, then $\frac{2x^3y^2z}{8x^2y^3z^2}$

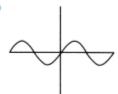

- (A) 4xyz

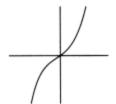
- **21.** If $f(x) = -x^2 3$ and $g(x) = 3 x^2$, what is the value of f(f(g(7)))?
 - (A) -46
 - (B) -2119
 - (C) -73207
 - (D) -4490164
 - (E) -7295398
- 22. A polygon Q with a certain perimeter P will have its greatest area when all of its sides have the same length. What is the maximum area of a rectangle with a perimeter of P units?
 - (A) $\frac{P^2}{16}$ (B) $\frac{P^2}{4}$ (C) P^2 (D) $2P^2$

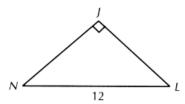

 - (E) 4P²

23. Which of the following graphs is NOT the graph of a function?

(A)


(B)


(C)



(D)

(E)

- **24.** In the figure above, if sin $N = \frac{\sqrt{5}}{2}$, then $\overline{JL} =$
 - (A) 26.83
 - **(B)** 13.42
 - (C) 6.71
 - **(D)** 1.12
 - (E) 0.37
- **25.** An equation for the circle with its center at the origin and passing through the point (1,2) is
 - **(A)** $x^2 + y^2 = \sqrt{5}$
 - **(B)** $x^2 + y^2 = 3$
 - (C) $x^2 + y^2 = 5$
 - **(D)** $x^2 + y^2 = 9$
 - **(E)** $x^2 + y^2 = 25$
- **26.** How many integers are in the solution set of |1 3x| < 5?
 - (A) None
 - (B) One
 - (C) Two
 - (D) Three
 - (E) Infinitely many
- **27.** If x, y, and z are positive integers such that 4x + 6y = z, then z must be divisible by
 - (A) 2
 - **(B)** 4
 - **(C)** 6
 - **(D)** 10
 - **(E)** 24
- **28.** If the points (-2,4), (3,4), and (3, -2) are connected to form a triangle, the area of the triangle is
 - **(A)** $\frac{11}{2}$
 - (\mathbf{B}) $\tilde{6}$
 - (C) 12
 - **(D)** 15
 - (E) 24

- **29.** If $i^2 = -1$ and if k = 2 + i, then $k^2 =$
 - **(A)** 1
 - **(B)** 3 + 4i
 - (C) 4 + 3i
 - **(D)** 6 + 7i
 - **(E)** 9 + 12i
- **30.** If a line contains the points (-2, 1) and (4,4), then the *x*-intercept is
 - (A) -4
 - **(B)** $-\frac{1}{2}$
 - **(C)** 0
 - **(D)** $\frac{2}{3}$
 - **(E)** $\frac{3}{2}$
- 31. In Figure 7, if the radius of the circle is r, then the ratio $\frac{\text{area of the larger square}}{\text{area of the smaller square}} =$
 - **(A)** $\frac{2\sqrt{2}}{1}$
 - **(B)** $\frac{2}{1}$
 - (C) $\frac{\sqrt{2}}{1}$
 - **(D)** $\frac{1}{\sqrt{2}}$
 - **(E)** $\frac{1}{2}$

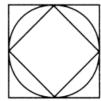


Figure 7

- **32.** $f(\theta) = \sin^2 4 \theta + \cos^2 4 \theta$, find $f(72^\circ)$
 - (A) -.71
 - (**B**) −.22
 - (C) 1.0
 - **(D)** 1.26
 - **(E)** 4.0

- **33.** If f(x) = 3x 2 and g(f(x)) = x, then g(x) = x
 - (A) 3x + 2
 - **(B)** 2 3x

 - **(D)** $\frac{x}{3} + 2$
 - **(E)** $\frac{x+2}{3}$
- **34.** In Figure 8, if AC // GE and GF = x and FE = y,

then the ratio $\frac{\text{area } \Delta BCD}{\text{area } \Delta BCA}$ =

- (A) $\frac{x}{y}$ (B) $\frac{y}{x}$

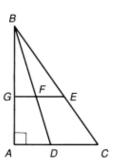


Figure 8

- **35.** If $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$, then c =
 - (A) $\frac{1}{ab}$
 - (B) ab

- **36.** If $x^3y^2z < 0$, then it must be true that
 - **(A)** $x^3 < 0$
 - **(B)** z < 0
 - (C) xy < 0
 - **(D)** xz < 0
 - **(E)** yz < 0
- **37.** If the slope of a line is 3 and the *y*-intercept is 2, then the *x*-intercept of the line is
 - **(A)** $-\frac{3}{2}$
 - (B) $-\frac{2}{3}$ (C) -1(D) $\frac{2}{3}$ (E) $\frac{3}{2}$
- 38. For the right triangle in Figure 9, all of the following statements are true EXCEPT:

 - (A) $\sin \theta = \frac{b}{c}$ (B) $\tan \sigma = \frac{a}{b}$ (C) $\cos \theta = \frac{c}{a}$
 - (D) $\sin \theta = \cos \sigma$
 - (E) $\cot \sigma = \tan \theta$

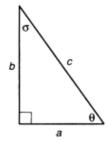


Figure 9

20. E 21. D 22. A 23. A 24. B 25. C 26. D 27. A 28. D 29. B 30. A 31. B 32. C 33. E 34. D 35. D 36. D 37. B 38. C